My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

planner.h 14KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * planner.h
  24. *
  25. * Buffer movement commands and manage the acceleration profile plan
  26. *
  27. * Derived from Grbl
  28. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  29. */
  30. #ifndef PLANNER_H
  31. #define PLANNER_H
  32. #include "types.h"
  33. #include "enum.h"
  34. #include "MarlinConfig.h"
  35. #if HAS_ABL
  36. #include "vector_3.h"
  37. #endif
  38. class Planner;
  39. extern Planner planner;
  40. #if IS_KINEMATIC
  41. // for inline buffer_line_kinematic
  42. extern float delta[ABC];
  43. void inverse_kinematics(const float logical[XYZ]);
  44. #endif
  45. /**
  46. * struct block_t
  47. *
  48. * A single entry in the planner buffer.
  49. * Tracks linear movement over multiple axes.
  50. *
  51. * The "nominal" values are as-specified by gcode, and
  52. * may never actually be reached due to acceleration limits.
  53. */
  54. typedef struct {
  55. unsigned char active_extruder; // The extruder to move (if E move)
  56. // Fields used by the bresenham algorithm for tracing the line
  57. long steps[NUM_AXIS]; // Step count along each axis
  58. unsigned long step_event_count; // The number of step events required to complete this block
  59. #if ENABLED(MIXING_EXTRUDER)
  60. unsigned long mix_event_count[MIXING_STEPPERS]; // Scaled step_event_count for the mixing steppers
  61. #endif
  62. long accelerate_until, // The index of the step event on which to stop acceleration
  63. decelerate_after, // The index of the step event on which to start decelerating
  64. acceleration_rate; // The acceleration rate used for acceleration calculation
  65. unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
  66. // Advance extrusion
  67. #if ENABLED(LIN_ADVANCE)
  68. bool use_advance_lead;
  69. int e_speed_multiplier8; // Factorised by 2^8 to avoid float
  70. #elif ENABLED(ADVANCE)
  71. long advance_rate;
  72. volatile long initial_advance;
  73. volatile long final_advance;
  74. float advance;
  75. #endif
  76. // Fields used by the motion planner to manage acceleration
  77. float nominal_speed, // The nominal speed for this block in mm/sec
  78. entry_speed, // Entry speed at previous-current junction in mm/sec
  79. max_entry_speed, // Maximum allowable junction entry speed in mm/sec
  80. millimeters, // The total travel of this block in mm
  81. acceleration; // acceleration mm/sec^2
  82. unsigned char recalculate_flag, // Planner flag to recalculate trapezoids on entry junction
  83. nominal_length_flag; // Planner flag for nominal speed always reached
  84. // Settings for the trapezoid generator
  85. unsigned long nominal_rate, // The nominal step rate for this block in step_events/sec
  86. initial_rate, // The jerk-adjusted step rate at start of block
  87. final_rate, // The minimal rate at exit
  88. acceleration_steps_per_s2; // acceleration steps/sec^2
  89. #if FAN_COUNT > 0
  90. unsigned long fan_speed[FAN_COUNT];
  91. #endif
  92. #if ENABLED(BARICUDA)
  93. unsigned long valve_pressure, e_to_p_pressure;
  94. #endif
  95. volatile char busy;
  96. } block_t;
  97. #define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
  98. class Planner {
  99. public:
  100. /**
  101. * A ring buffer of moves described in steps
  102. */
  103. static block_t block_buffer[BLOCK_BUFFER_SIZE];
  104. static volatile uint8_t block_buffer_head; // Index of the next block to be pushed
  105. static volatile uint8_t block_buffer_tail;
  106. static float max_feedrate_mm_s[NUM_AXIS]; // Max speeds in mm per second
  107. static float axis_steps_per_mm[NUM_AXIS];
  108. static float steps_to_mm[NUM_AXIS];
  109. static unsigned long max_acceleration_steps_per_s2[NUM_AXIS];
  110. static unsigned long max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
  111. static millis_t min_segment_time;
  112. static float min_feedrate_mm_s;
  113. static float acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
  114. static float retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
  115. static float travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
  116. static float max_jerk[XYZE]; // The largest speed change requiring no acceleration
  117. static float min_travel_feedrate_mm_s;
  118. #if HAS_ABL
  119. static bool abl_enabled; // Flag that bed leveling is enabled
  120. static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
  121. #endif
  122. private:
  123. /**
  124. * The current position of the tool in absolute steps
  125. * Recalculated if any axis_steps_per_mm are changed by gcode
  126. */
  127. static long position[NUM_AXIS];
  128. /**
  129. * Speed of previous path line segment
  130. */
  131. static float previous_speed[NUM_AXIS];
  132. /**
  133. * Nominal speed of previous path line segment
  134. */
  135. static float previous_nominal_speed;
  136. #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
  137. /**
  138. * Counters to manage disabling inactive extruders
  139. */
  140. static uint8_t g_uc_extruder_last_move[EXTRUDERS];
  141. #endif // DISABLE_INACTIVE_EXTRUDER
  142. #ifdef XY_FREQUENCY_LIMIT
  143. // Used for the frequency limit
  144. #define MAX_FREQ_TIME long(1000000.0/XY_FREQUENCY_LIMIT)
  145. // Old direction bits. Used for speed calculations
  146. static unsigned char old_direction_bits;
  147. // Segment times (in µs). Used for speed calculations
  148. static long axis_segment_time[2][3];
  149. #endif
  150. public:
  151. /**
  152. * Instance Methods
  153. */
  154. Planner();
  155. void init();
  156. /**
  157. * Static (class) Methods
  158. */
  159. static void reset_acceleration_rates();
  160. static void refresh_positioning();
  161. // Manage fans, paste pressure, etc.
  162. static void check_axes_activity();
  163. /**
  164. * Number of moves currently in the planner
  165. */
  166. static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
  167. static bool is_full() { return (block_buffer_tail == BLOCK_MOD(block_buffer_head + 1)); }
  168. #if HAS_ABL || ENABLED(MESH_BED_LEVELING)
  169. #define ARG_X float lx
  170. #define ARG_Y float ly
  171. #define ARG_Z float lz
  172. #else
  173. #define ARG_X const float &lx
  174. #define ARG_Y const float &ly
  175. #define ARG_Z const float &lz
  176. #endif
  177. #if PLANNER_LEVELING
  178. /**
  179. * Apply leveling to transform a cartesian position
  180. * as it will be given to the planner and steppers.
  181. */
  182. static void apply_leveling(float &lx, float &ly, float &lz);
  183. static void apply_leveling(float logical[XYZ]) { apply_leveling(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS]); }
  184. static void unapply_leveling(float logical[XYZ]);
  185. #endif
  186. /**
  187. * Planner::_buffer_line
  188. *
  189. * Add a new linear movement to the buffer.
  190. * Doesn't apply the leveling.
  191. *
  192. * x,y,z,e - target position in mm
  193. * fr_mm_s - (target) speed of the move
  194. * extruder - target extruder
  195. */
  196. static void _buffer_line(const float &lx, const float &ly, const float &lz, const float &e, float fr_mm_s, const uint8_t extruder);
  197. static void _set_position_mm(const float &lx, const float &ly, const float &lz, const float &e);
  198. /**
  199. * Add a new linear movement to the buffer.
  200. * The target is NOT translated to delta/scara
  201. *
  202. * x,y,z,e - target position in mm
  203. * fr_mm_s - (target) speed of the move (mm/s)
  204. * extruder - target extruder
  205. */
  206. static FORCE_INLINE void buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, const uint8_t extruder) {
  207. #if PLANNER_LEVELING && ! IS_KINEMATIC
  208. apply_leveling(lx, ly, lz);
  209. #endif
  210. _buffer_line(lx, ly, lz, e, fr_mm_s, extruder);
  211. }
  212. /**
  213. * Add a new linear movement to the buffer.
  214. * The target is cartesian, it's translated to delta/scara if
  215. * needed.
  216. *
  217. * target - x,y,z,e CARTESIAN target in mm
  218. * fr_mm_s - (target) speed of the move (mm/s)
  219. * extruder - target extruder
  220. */
  221. static FORCE_INLINE void buffer_line_kinematic(const float target[NUM_AXIS], float fr_mm_s, const uint8_t extruder) {
  222. #if PLANNER_LEVELING
  223. float pos[XYZ] = { target[X_AXIS], target[Y_AXIS], target[Z_AXIS] };
  224. apply_leveling(pos);
  225. #else
  226. const float * const pos = target;
  227. #endif
  228. #if IS_KINEMATIC
  229. inverse_kinematics(pos);
  230. _buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], target[E_AXIS], fr_mm_s, extruder);
  231. #else
  232. _buffer_line(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], target[E_AXIS], fr_mm_s, extruder);
  233. #endif
  234. }
  235. /**
  236. * Set the planner.position and individual stepper positions.
  237. * Used by G92, G28, G29, and other procedures.
  238. *
  239. * Multiplies by axis_steps_per_mm[] and does necessary conversion
  240. * for COREXY / COREXZ / COREYZ to set the corresponding stepper positions.
  241. *
  242. * Clears previous speed values.
  243. */
  244. static FORCE_INLINE void set_position_mm(ARG_X, ARG_Y, ARG_Z, const float &e) {
  245. #if PLANNER_LEVELING && ! IS_KINEMATIC
  246. apply_leveling(lx, ly, lz);
  247. #endif
  248. _set_position_mm(lx, ly, lz, e);
  249. }
  250. static void set_position_mm_kinematic(const float position[NUM_AXIS]);
  251. static void set_position_mm(const AxisEnum axis, const float& v);
  252. static FORCE_INLINE void set_z_position_mm(const float& z) { set_position_mm(Z_AXIS, z); }
  253. static FORCE_INLINE void set_e_position_mm(const float& e) { set_position_mm(E_AXIS, e); }
  254. /**
  255. * Sync from the stepper positions. (e.g., after an interrupted move)
  256. */
  257. static void sync_from_steppers();
  258. /**
  259. * Does the buffer have any blocks queued?
  260. */
  261. static bool blocks_queued() { return (block_buffer_head != block_buffer_tail); }
  262. /**
  263. * "Discards" the block and "releases" the memory.
  264. * Called when the current block is no longer needed.
  265. */
  266. static void discard_current_block() {
  267. if (blocks_queued())
  268. block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
  269. }
  270. /**
  271. * The current block. NULL if the buffer is empty.
  272. * This also marks the block as busy.
  273. */
  274. static block_t* get_current_block() {
  275. if (blocks_queued()) {
  276. block_t* block = &block_buffer[block_buffer_tail];
  277. block->busy = true;
  278. return block;
  279. }
  280. else
  281. return NULL;
  282. }
  283. #if ENABLED(AUTOTEMP)
  284. static float autotemp_max;
  285. static float autotemp_min;
  286. static float autotemp_factor;
  287. static bool autotemp_enabled;
  288. static void getHighESpeed();
  289. static void autotemp_M109();
  290. #endif
  291. private:
  292. /**
  293. * Get the index of the next / previous block in the ring buffer
  294. */
  295. static int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
  296. static int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
  297. /**
  298. * Calculate the distance (not time) it takes to accelerate
  299. * from initial_rate to target_rate using the given acceleration:
  300. */
  301. static float estimate_acceleration_distance(float initial_rate, float target_rate, float accel) {
  302. if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
  303. return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
  304. }
  305. /**
  306. * Return the point at which you must start braking (at the rate of -'acceleration') if
  307. * you start at 'initial_rate', accelerate (until reaching the point), and want to end at
  308. * 'final_rate' after traveling 'distance'.
  309. *
  310. * This is used to compute the intersection point between acceleration and deceleration
  311. * in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
  312. */
  313. static float intersection_distance(float initial_rate, float final_rate, float accel, float distance) {
  314. if (accel == 0) return 0; // accel was 0, set intersection distance to 0
  315. return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
  316. }
  317. /**
  318. * Calculate the maximum allowable speed at this point, in order
  319. * to reach 'target_velocity' using 'acceleration' within a given
  320. * 'distance'.
  321. */
  322. static float max_allowable_speed(float accel, float target_velocity, float distance) {
  323. return sqrt(sq(target_velocity) - 2 * accel * distance);
  324. }
  325. static void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor);
  326. static void reverse_pass_kernel(block_t* current, block_t* next);
  327. static void forward_pass_kernel(block_t* previous, block_t* current);
  328. static void reverse_pass();
  329. static void forward_pass();
  330. static void recalculate_trapezoids();
  331. static void recalculate();
  332. };
  333. #endif // PLANNER_H