My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 234KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439
  1. /**
  2. * Marlin Firmware
  3. *
  4. * Based on Sprinter and grbl.
  5. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  6. *
  7. * This program is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. * About Marlin
  21. *
  22. * This firmware is a mashup between Sprinter and grbl.
  23. * - https://github.com/kliment/Sprinter
  24. * - https://github.com/simen/grbl/tree
  25. *
  26. * It has preliminary support for Matthew Roberts advance algorithm
  27. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  28. */
  29. #include "Marlin.h"
  30. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  31. #include "vector_3.h"
  32. #if ENABLED(AUTO_BED_LEVELING_GRID)
  33. #include "qr_solve.h"
  34. #endif
  35. #endif // AUTO_BED_LEVELING_FEATURE
  36. #if ENABLED(MESH_BED_LEVELING)
  37. #include "mesh_bed_leveling.h"
  38. #endif
  39. #include "ultralcd.h"
  40. #include "planner.h"
  41. #include "stepper.h"
  42. #include "temperature.h"
  43. #include "cardreader.h"
  44. #include "configuration_store.h"
  45. #include "language.h"
  46. #include "pins_arduino.h"
  47. #include "math.h"
  48. #include "buzzer.h"
  49. #if ENABLED(USE_WATCHDOG)
  50. #include "watchdog.h"
  51. #endif
  52. #if ENABLED(BLINKM)
  53. #include "blinkm.h"
  54. #include "Wire.h"
  55. #endif
  56. #if HAS_SERVOS
  57. #include "servo.h"
  58. #endif
  59. #if HAS_DIGIPOTSS
  60. #include <SPI.h>
  61. #endif
  62. /**
  63. * Look here for descriptions of G-codes:
  64. * - http://linuxcnc.org/handbook/gcode/g-code.html
  65. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  66. *
  67. * Help us document these G-codes online:
  68. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  69. * - http://reprap.org/wiki/G-code
  70. *
  71. * -----------------
  72. * Implemented Codes
  73. * -----------------
  74. *
  75. * "G" Codes
  76. *
  77. * G0 -> G1
  78. * G1 - Coordinated Movement X Y Z E
  79. * G2 - CW ARC
  80. * G3 - CCW ARC
  81. * G4 - Dwell S<seconds> or P<milliseconds>
  82. * G10 - retract filament according to settings of M207
  83. * G11 - retract recover filament according to settings of M208
  84. * G28 - Home one or more axes
  85. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  86. * G30 - Single Z probe, probes bed at current XY location.
  87. * G31 - Dock sled (Z_PROBE_SLED only)
  88. * G32 - Undock sled (Z_PROBE_SLED only)
  89. * G90 - Use Absolute Coordinates
  90. * G91 - Use Relative Coordinates
  91. * G92 - Set current position to coordinates given
  92. *
  93. * "M" Codes
  94. *
  95. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  96. * M1 - Same as M0
  97. * M17 - Enable/Power all stepper motors
  98. * M18 - Disable all stepper motors; same as M84
  99. * M20 - List SD card
  100. * M21 - Init SD card
  101. * M22 - Release SD card
  102. * M23 - Select SD file (M23 filename.g)
  103. * M24 - Start/resume SD print
  104. * M25 - Pause SD print
  105. * M26 - Set SD position in bytes (M26 S12345)
  106. * M27 - Report SD print status
  107. * M28 - Start SD write (M28 filename.g)
  108. * M29 - Stop SD write
  109. * M30 - Delete file from SD (M30 filename.g)
  110. * M31 - Output time since last M109 or SD card start to serial
  111. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  112. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  113. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  114. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  115. * M33 - Get the longname version of a path
  116. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  117. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  118. * M80 - Turn on Power Supply
  119. * M81 - Turn off Power Supply
  120. * M82 - Set E codes absolute (default)
  121. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  122. * M84 - Disable steppers until next move,
  123. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  124. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  125. * M92 - Set axis_steps_per_unit - same syntax as G92
  126. * M104 - Set extruder target temp
  127. * M105 - Read current temp
  128. * M106 - Fan on
  129. * M107 - Fan off
  130. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  131. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  132. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  133. * M110 - Set the current line number
  134. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  135. * M112 - Emergency stop
  136. * M114 - Output current position to serial port
  137. * M115 - Capabilities string
  138. * M117 - Display a message on the controller screen
  139. * M119 - Output Endstop status to serial port
  140. * M120 - Enable endstop detection
  141. * M121 - Disable endstop detection
  142. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  143. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  144. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  145. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  146. * M140 - Set bed target temp
  147. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  148. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  149. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  150. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  151. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  152. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  153. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  154. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  155. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  156. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  157. * M206 - Set additional homing offset
  158. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  159. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  160. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  161. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  162. * M220 - Set speed factor override percentage: S<factor in percent>
  163. * M221 - Set extrude factor override percentage: S<factor in percent>
  164. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  165. * M240 - Trigger a camera to take a photograph
  166. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  167. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  168. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  169. * M301 - Set PID parameters P I and D
  170. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  171. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  172. * M304 - Set bed PID parameters P I and D
  173. * M380 - Activate solenoid on active extruder
  174. * M381 - Disable all solenoids
  175. * M400 - Finish all moves
  176. * M401 - Lower Z probe if present
  177. * M402 - Raise Z probe if present
  178. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  179. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  180. * M406 - Turn off Filament Sensor extrusion control
  181. * M407 - Display measured filament diameter
  182. * M410 - Quickstop. Abort all the planned moves
  183. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  184. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  185. * M428 - Set the home_offset logically based on the current_position
  186. * M500 - Store parameters in EEPROM
  187. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  188. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  189. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  190. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  191. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  192. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  193. * M666 - Set delta endstop adjustment
  194. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  195. * M907 - Set digital trimpot motor current using axis codes.
  196. * M908 - Control digital trimpot directly.
  197. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  198. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  199. * M350 - Set microstepping mode.
  200. * M351 - Toggle MS1 MS2 pins directly.
  201. *
  202. * ************ SCARA Specific - This can change to suit future G-code regulations
  203. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  204. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  205. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  206. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  207. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  208. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  209. * ************* SCARA End ***************
  210. *
  211. * ************ Custom codes - This can change to suit future G-code regulations
  212. * M100 - Watch Free Memory (For Debugging Only)
  213. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  214. * M928 - Start SD logging (M928 filename.g) - ended by M29
  215. * M999 - Restart after being stopped by error
  216. *
  217. * "T" Codes
  218. *
  219. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  220. *
  221. */
  222. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  223. void gcode_M100();
  224. #endif
  225. #if ENABLED(SDSUPPORT)
  226. CardReader card;
  227. #endif
  228. bool Running = true;
  229. uint8_t marlin_debug_flags = DEBUG_INFO | DEBUG_ERRORS;
  230. static float feedrate = 1500.0, saved_feedrate;
  231. float current_position[NUM_AXIS] = { 0.0 };
  232. static float destination[NUM_AXIS] = { 0.0 };
  233. bool axis_known_position[3] = { false };
  234. bool axis_homed[3] = { false };
  235. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  236. static char* current_command, *current_command_args;
  237. static int cmd_queue_index_r = 0;
  238. static int cmd_queue_index_w = 0;
  239. static int commands_in_queue = 0;
  240. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  241. const float homing_feedrate[] = HOMING_FEEDRATE;
  242. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  243. int feedrate_multiplier = 100; //100->1 200->2
  244. int saved_feedrate_multiplier;
  245. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  246. bool volumetric_enabled = false;
  247. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  248. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  249. float home_offset[3] = { 0 };
  250. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  251. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  252. #if FAN_COUNT > 0
  253. int fanSpeeds[FAN_COUNT] = { 0 };
  254. #endif
  255. uint8_t active_extruder = 0;
  256. bool cancel_heatup = false;
  257. const char errormagic[] PROGMEM = "Error:";
  258. const char echomagic[] PROGMEM = "echo:";
  259. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  260. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  261. static int serial_count = 0;
  262. static char* seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  263. const char* queued_commands_P = NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  264. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  265. // Inactivity shutdown
  266. millis_t previous_cmd_ms = 0;
  267. static millis_t max_inactive_time = 0;
  268. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000L;
  269. millis_t print_job_start_ms = 0; ///< Print job start time
  270. millis_t print_job_stop_ms = 0; ///< Print job stop time
  271. static uint8_t target_extruder;
  272. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  273. int xy_travel_speed = XY_TRAVEL_SPEED;
  274. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  275. #endif
  276. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  277. float z_endstop_adj = 0;
  278. #endif
  279. // Extruder offsets
  280. #if EXTRUDERS > 1
  281. #ifndef EXTRUDER_OFFSET_X
  282. #define EXTRUDER_OFFSET_X { 0 }
  283. #endif
  284. #ifndef EXTRUDER_OFFSET_Y
  285. #define EXTRUDER_OFFSET_Y { 0 }
  286. #endif
  287. float extruder_offset[][EXTRUDERS] = {
  288. EXTRUDER_OFFSET_X,
  289. EXTRUDER_OFFSET_Y
  290. #if ENABLED(DUAL_X_CARRIAGE)
  291. , { 0 } // supports offsets in XYZ plane
  292. #endif
  293. };
  294. #endif
  295. #if HAS_SERVO_ENDSTOPS
  296. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  297. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  298. #endif
  299. #if ENABLED(BARICUDA)
  300. int ValvePressure = 0;
  301. int EtoPPressure = 0;
  302. #endif
  303. #if ENABLED(FWRETRACT)
  304. bool autoretract_enabled = false;
  305. bool retracted[EXTRUDERS] = { false };
  306. bool retracted_swap[EXTRUDERS] = { false };
  307. float retract_length = RETRACT_LENGTH;
  308. float retract_length_swap = RETRACT_LENGTH_SWAP;
  309. float retract_feedrate = RETRACT_FEEDRATE;
  310. float retract_zlift = RETRACT_ZLIFT;
  311. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  312. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  313. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  314. #endif // FWRETRACT
  315. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  316. bool powersupply =
  317. #if ENABLED(PS_DEFAULT_OFF)
  318. false
  319. #else
  320. true
  321. #endif
  322. ;
  323. #endif
  324. #if ENABLED(DELTA)
  325. #define TOWER_1 X_AXIS
  326. #define TOWER_2 Y_AXIS
  327. #define TOWER_3 Z_AXIS
  328. float delta[3] = { 0 };
  329. #define SIN_60 0.8660254037844386
  330. #define COS_60 0.5
  331. float endstop_adj[3] = { 0 };
  332. // these are the default values, can be overriden with M665
  333. float delta_radius = DELTA_RADIUS;
  334. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  335. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  336. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  337. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  338. float delta_tower3_x = 0; // back middle tower
  339. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  340. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  341. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  342. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  343. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  344. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  345. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  346. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  347. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  348. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  349. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  350. int delta_grid_spacing[2] = { 0, 0 };
  351. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  352. #endif
  353. #else
  354. static bool home_all_axis = true;
  355. #endif
  356. #if ENABLED(SCARA)
  357. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  358. static float delta[3] = { 0 };
  359. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  360. #endif
  361. #if ENABLED(FILAMENT_SENSOR)
  362. //Variables for Filament Sensor input
  363. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  364. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  365. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  366. signed char measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  367. int delay_index1 = 0; //index into ring buffer
  368. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  369. float delay_dist = 0; //delay distance counter
  370. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  371. #endif
  372. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  373. static bool filrunoutEnqueued = false;
  374. #endif
  375. static bool send_ok[BUFSIZE];
  376. #if HAS_SERVOS
  377. Servo servo[NUM_SERVOS];
  378. #endif
  379. #ifdef CHDK
  380. unsigned long chdkHigh = 0;
  381. boolean chdkActive = false;
  382. #endif
  383. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  384. int lpq_len = 20;
  385. #endif
  386. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  387. // States for managing Marlin and host communication
  388. // Marlin sends messages if blocked or busy
  389. enum MarlinBusyState {
  390. NOT_BUSY, // Not in a handler
  391. IN_HANDLER, // Processing a GCode
  392. IN_PROCESS, // Known to be blocking command input (as in G29)
  393. PAUSED_FOR_USER, // Blocking pending any input
  394. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  395. };
  396. static MarlinBusyState busy_state = NOT_BUSY;
  397. static millis_t next_busy_signal_ms = -1;
  398. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  399. #else
  400. #define host_keepalive() ;
  401. #define KEEPALIVE_STATE(n) ;
  402. #endif // HOST_KEEPALIVE_FEATURE
  403. //===========================================================================
  404. //================================ Functions ================================
  405. //===========================================================================
  406. void process_next_command();
  407. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  408. bool setTargetedHotend(int code);
  409. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  410. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  411. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  412. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  413. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  414. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  415. float extrude_min_temp = EXTRUDE_MINTEMP;
  416. #endif
  417. #if ENABLED(SDSUPPORT)
  418. #include "SdFatUtil.h"
  419. int freeMemory() { return SdFatUtil::FreeRam(); }
  420. #else
  421. extern "C" {
  422. extern unsigned int __bss_end;
  423. extern unsigned int __heap_start;
  424. extern void* __brkval;
  425. int freeMemory() {
  426. int free_memory;
  427. if ((int)__brkval == 0)
  428. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  429. else
  430. free_memory = ((int)&free_memory) - ((int)__brkval);
  431. return free_memory;
  432. }
  433. }
  434. #endif //!SDSUPPORT
  435. /**
  436. * Inject the next "immediate" command, when possible.
  437. * Return true if any immediate commands remain to inject.
  438. */
  439. static bool drain_queued_commands_P() {
  440. if (queued_commands_P != NULL) {
  441. // Get the next gcode to run
  442. size_t i = 0;
  443. char c;
  444. while ((c = queued_commands_P[i++]) && c != '\n') { };
  445. if (i > 1) {
  446. char cmd[i];
  447. strncpy_P(cmd, queued_commands_P, i - 1);
  448. cmd[i - 1] = '\0';
  449. if (enqueue_and_echo_command(cmd)) { // buffer was not full (else we will retry later)
  450. if (c)
  451. queued_commands_P += i; // move to next command
  452. else
  453. queued_commands_P = NULL; // no more commands in the sequence
  454. }
  455. }
  456. }
  457. return (queued_commands_P != NULL); // any more left to add?
  458. }
  459. /**
  460. * Record one or many commands to run from program memory.
  461. * Aborts the current queue, if any.
  462. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  463. */
  464. void enqueue_and_echo_commands_P(const char* pgcode) {
  465. queued_commands_P = pgcode;
  466. drain_queued_commands_P(); // first command executed asap (when possible)
  467. }
  468. /**
  469. * Once a new command is in the ring buffer, call this to commit it
  470. */
  471. inline void _commit_command(bool say_ok) {
  472. send_ok[cmd_queue_index_w] = say_ok;
  473. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  474. commands_in_queue++;
  475. }
  476. /**
  477. * Copy a command directly into the main command buffer, from RAM.
  478. * Returns true if successfully adds the command
  479. */
  480. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  481. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  482. strcpy(command_queue[cmd_queue_index_w], cmd);
  483. _commit_command(say_ok);
  484. return true;
  485. }
  486. /**
  487. * Enqueue with Serial Echo
  488. */
  489. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  490. if (_enqueuecommand(cmd, say_ok)) {
  491. SERIAL_ECHO_START;
  492. SERIAL_ECHOPGM(MSG_Enqueueing);
  493. SERIAL_ECHO(cmd);
  494. SERIAL_ECHOLNPGM("\"");
  495. return true;
  496. }
  497. return false;
  498. }
  499. void setup_killpin() {
  500. #if HAS_KILL
  501. SET_INPUT(KILL_PIN);
  502. WRITE(KILL_PIN, HIGH);
  503. #endif
  504. }
  505. void setup_filrunoutpin() {
  506. #if HAS_FILRUNOUT
  507. pinMode(FILRUNOUT_PIN, INPUT);
  508. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  509. WRITE(FILRUNOUT_PIN, HIGH);
  510. #endif
  511. #endif
  512. }
  513. // Set home pin
  514. void setup_homepin(void) {
  515. #if HAS_HOME
  516. SET_INPUT(HOME_PIN);
  517. WRITE(HOME_PIN, HIGH);
  518. #endif
  519. }
  520. void setup_photpin() {
  521. #if HAS_PHOTOGRAPH
  522. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  523. #endif
  524. }
  525. void setup_powerhold() {
  526. #if HAS_SUICIDE
  527. OUT_WRITE(SUICIDE_PIN, HIGH);
  528. #endif
  529. #if HAS_POWER_SWITCH
  530. #if ENABLED(PS_DEFAULT_OFF)
  531. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  532. #else
  533. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  534. #endif
  535. #endif
  536. }
  537. void suicide() {
  538. #if HAS_SUICIDE
  539. OUT_WRITE(SUICIDE_PIN, LOW);
  540. #endif
  541. }
  542. void servo_init() {
  543. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  544. servo[0].attach(SERVO0_PIN);
  545. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  546. #endif
  547. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  548. servo[1].attach(SERVO1_PIN);
  549. servo[1].detach();
  550. #endif
  551. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  552. servo[2].attach(SERVO2_PIN);
  553. servo[2].detach();
  554. #endif
  555. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  556. servo[3].attach(SERVO3_PIN);
  557. servo[3].detach();
  558. #endif
  559. // Set position of Servo Endstops that are defined
  560. #if HAS_SERVO_ENDSTOPS
  561. for (int i = 0; i < 3; i++)
  562. if (servo_endstop_id[i] >= 0)
  563. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  564. #endif
  565. }
  566. /**
  567. * Stepper Reset (RigidBoard, et.al.)
  568. */
  569. #if HAS_STEPPER_RESET
  570. void disableStepperDrivers() {
  571. pinMode(STEPPER_RESET_PIN, OUTPUT);
  572. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  573. }
  574. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  575. #endif
  576. /**
  577. * Marlin entry-point: Set up before the program loop
  578. * - Set up the kill pin, filament runout, power hold
  579. * - Start the serial port
  580. * - Print startup messages and diagnostics
  581. * - Get EEPROM or default settings
  582. * - Initialize managers for:
  583. * • temperature
  584. * • planner
  585. * • watchdog
  586. * • stepper
  587. * • photo pin
  588. * • servos
  589. * • LCD controller
  590. * • Digipot I2C
  591. * • Z probe sled
  592. * • status LEDs
  593. */
  594. void setup() {
  595. #ifdef DISABLE_JTAG
  596. // Disable JTAG on AT90USB chips to free up pins for IO
  597. MCUCR = 0x80;
  598. MCUCR = 0x80;
  599. #endif
  600. setup_killpin();
  601. setup_filrunoutpin();
  602. setup_powerhold();
  603. #if HAS_STEPPER_RESET
  604. disableStepperDrivers();
  605. #endif
  606. MYSERIAL.begin(BAUDRATE);
  607. SERIAL_PROTOCOLLNPGM("start");
  608. SERIAL_ECHO_START;
  609. // Check startup - does nothing if bootloader sets MCUSR to 0
  610. byte mcu = MCUSR;
  611. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  612. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  613. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  614. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  615. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  616. MCUSR = 0;
  617. SERIAL_ECHOPGM(MSG_MARLIN);
  618. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  619. #ifdef STRING_DISTRIBUTION_DATE
  620. #ifdef STRING_CONFIG_H_AUTHOR
  621. SERIAL_ECHO_START;
  622. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  623. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  624. SERIAL_ECHOPGM(MSG_AUTHOR);
  625. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  626. SERIAL_ECHOPGM("Compiled: ");
  627. SERIAL_ECHOLNPGM(__DATE__);
  628. #endif // STRING_CONFIG_H_AUTHOR
  629. #endif // STRING_DISTRIBUTION_DATE
  630. SERIAL_ECHO_START;
  631. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  632. SERIAL_ECHO(freeMemory());
  633. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  634. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  635. // Send "ok" after commands by default
  636. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  637. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  638. Config_RetrieveSettings();
  639. lcd_init();
  640. tp_init(); // Initialize temperature loop
  641. plan_init(); // Initialize planner;
  642. #if ENABLED(USE_WATCHDOG)
  643. watchdog_init();
  644. #endif
  645. st_init(); // Initialize stepper, this enables interrupts!
  646. setup_photpin();
  647. servo_init();
  648. #if HAS_CONTROLLERFAN
  649. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  650. #endif
  651. #if HAS_STEPPER_RESET
  652. enableStepperDrivers();
  653. #endif
  654. #if ENABLED(DIGIPOT_I2C)
  655. digipot_i2c_init();
  656. #endif
  657. #if ENABLED(Z_PROBE_SLED)
  658. pinMode(SLED_PIN, OUTPUT);
  659. digitalWrite(SLED_PIN, LOW); // turn it off
  660. #endif // Z_PROBE_SLED
  661. setup_homepin();
  662. #ifdef STAT_LED_RED
  663. pinMode(STAT_LED_RED, OUTPUT);
  664. digitalWrite(STAT_LED_RED, LOW); // turn it off
  665. #endif
  666. #ifdef STAT_LED_BLUE
  667. pinMode(STAT_LED_BLUE, OUTPUT);
  668. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  669. #endif
  670. }
  671. /**
  672. * The main Marlin program loop
  673. *
  674. * - Save or log commands to SD
  675. * - Process available commands (if not saving)
  676. * - Call heater manager
  677. * - Call inactivity manager
  678. * - Call endstop manager
  679. * - Call LCD update
  680. */
  681. void loop() {
  682. if (commands_in_queue < BUFSIZE) get_command();
  683. #if ENABLED(SDSUPPORT)
  684. card.checkautostart(false);
  685. #endif
  686. if (commands_in_queue) {
  687. #if ENABLED(SDSUPPORT)
  688. if (card.saving) {
  689. char* command = command_queue[cmd_queue_index_r];
  690. if (strstr_P(command, PSTR("M29"))) {
  691. // M29 closes the file
  692. card.closefile();
  693. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  694. ok_to_send();
  695. }
  696. else {
  697. // Write the string from the read buffer to SD
  698. card.write_command(command);
  699. if (card.logging)
  700. process_next_command(); // The card is saving because it's logging
  701. else
  702. ok_to_send();
  703. }
  704. }
  705. else
  706. process_next_command();
  707. #else
  708. process_next_command();
  709. #endif // SDSUPPORT
  710. commands_in_queue--;
  711. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  712. }
  713. checkHitEndstops();
  714. idle();
  715. }
  716. void gcode_line_error(const char* err, bool doFlush = true) {
  717. SERIAL_ERROR_START;
  718. serialprintPGM(err);
  719. SERIAL_ERRORLN(gcode_LastN);
  720. //Serial.println(gcode_N);
  721. if (doFlush) FlushSerialRequestResend();
  722. serial_count = 0;
  723. }
  724. /**
  725. * Add to the circular command queue the next command from:
  726. * - The command-injection queue (queued_commands_P)
  727. * - The active serial input (usually USB)
  728. * - The SD card file being actively printed
  729. */
  730. void get_command() {
  731. static char serial_line_buffer[MAX_CMD_SIZE];
  732. static boolean serial_comment_mode = false;
  733. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  734. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  735. static millis_t last_command_time = 0;
  736. millis_t ms = millis();
  737. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  738. SERIAL_ECHOLNPGM(MSG_WAIT);
  739. last_command_time = ms;
  740. }
  741. #endif
  742. //
  743. // Loop while serial characters are incoming and the queue is not full
  744. //
  745. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  746. char serial_char = MYSERIAL.read();
  747. //
  748. // If the character ends the line
  749. //
  750. if (serial_char == '\n' || serial_char == '\r') {
  751. serial_comment_mode = false; // end of line == end of comment
  752. if (!serial_count) return; // empty lines just exit
  753. serial_line_buffer[serial_count] = 0; // terminate string
  754. serial_count = 0; //reset buffer
  755. char* command = serial_line_buffer;
  756. while (*command == ' ') command++; // skip any leading spaces
  757. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  758. char* apos = strchr(command, '*');
  759. if (npos) {
  760. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  761. if (M110) {
  762. char* n2pos = strchr(command + 4, 'N');
  763. if (n2pos) npos = n2pos;
  764. }
  765. gcode_N = strtol(npos + 1, NULL, 10);
  766. if (gcode_N != gcode_LastN + 1 && !M110) {
  767. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  768. return;
  769. }
  770. if (apos) {
  771. byte checksum = 0, count = 0;
  772. while (command[count] != '*') checksum ^= command[count++];
  773. if (strtol(apos + 1, NULL, 10) != checksum) {
  774. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  775. return;
  776. }
  777. // if no errors, continue parsing
  778. }
  779. else {
  780. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  781. return;
  782. }
  783. gcode_LastN = gcode_N;
  784. // if no errors, continue parsing
  785. }
  786. else if (apos) { // No '*' without 'N'
  787. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  788. return;
  789. }
  790. // Movement commands alert when stopped
  791. if (IsStopped()) {
  792. char* gpos = strchr(command, 'G');
  793. if (gpos) {
  794. int codenum = strtol(gpos + 1, NULL, 10);
  795. switch (codenum) {
  796. case 0:
  797. case 1:
  798. case 2:
  799. case 3:
  800. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  801. LCD_MESSAGEPGM(MSG_STOPPED);
  802. break;
  803. }
  804. }
  805. }
  806. // If command was e-stop process now
  807. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  808. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  809. last_command_time = ms;
  810. #endif
  811. // Add the command to the queue
  812. _enqueuecommand(serial_line_buffer, true);
  813. }
  814. else if (serial_count >= MAX_CMD_SIZE - 1) {
  815. // Keep fetching, but ignore normal characters beyond the max length
  816. // The command will be injected when EOL is reached
  817. }
  818. else if (serial_char == '\\') { // Handle escapes
  819. if (MYSERIAL.available() > 0) {
  820. // if we have one more character, copy it over
  821. serial_char = MYSERIAL.read();
  822. serial_line_buffer[serial_count++] = serial_char;
  823. }
  824. // otherwise do nothing
  825. }
  826. else { // it's not a newline, carriage return or escape char
  827. if (serial_char == ';') serial_comment_mode = true;
  828. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  829. }
  830. } // queue has space, serial has data
  831. #if ENABLED(SDSUPPORT)
  832. static bool stop_buffering = false,
  833. sd_comment_mode = false;
  834. if (!card.sdprinting) return;
  835. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  836. // if it occurs, stop_buffering is triggered and the buffer is run dry.
  837. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  838. if (commands_in_queue == 0) stop_buffering = false;
  839. uint16_t sd_count = 0;
  840. bool card_eof = card.eof();
  841. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  842. int16_t n = card.get();
  843. char sd_char = (char)n;
  844. card_eof = card.eof();
  845. if (card_eof || n == -1
  846. || sd_char == '\n' || sd_char == '\r'
  847. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  848. ) {
  849. if (card_eof) {
  850. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  851. print_job_stop_ms = millis();
  852. char time[30];
  853. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  854. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  855. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  856. SERIAL_ECHO_START;
  857. SERIAL_ECHOLN(time);
  858. lcd_setstatus(time, true);
  859. card.printingHasFinished();
  860. card.checkautostart(true);
  861. }
  862. if (sd_char == '#') stop_buffering = true;
  863. sd_comment_mode = false; //for new command
  864. if (!sd_count) continue; //skip empty lines
  865. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  866. sd_count = 0; //clear buffer
  867. _commit_command(false);
  868. }
  869. else if (sd_count >= MAX_CMD_SIZE - 1) {
  870. // Keep fetching, but ignore normal characters beyond the max length
  871. // The command will be injected when EOL is reached
  872. }
  873. else {
  874. if (sd_char == ';') sd_comment_mode = true;
  875. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  876. }
  877. }
  878. #endif // SDSUPPORT
  879. }
  880. bool code_has_value() {
  881. int i = 1;
  882. char c = seen_pointer[i];
  883. while (c == ' ') c = seen_pointer[++i];
  884. if (c == '-' || c == '+') c = seen_pointer[++i];
  885. if (c == '.') c = seen_pointer[++i];
  886. return (c >= '0' && c <= '9');
  887. }
  888. float code_value() {
  889. float ret;
  890. char* e = strchr(seen_pointer, 'E');
  891. if (e) {
  892. *e = 0;
  893. ret = strtod(seen_pointer + 1, NULL);
  894. *e = 'E';
  895. }
  896. else
  897. ret = strtod(seen_pointer + 1, NULL);
  898. return ret;
  899. }
  900. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  901. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  902. bool code_seen(char code) {
  903. seen_pointer = strchr(current_command_args, code);
  904. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  905. }
  906. #define DEFINE_PGM_READ_ANY(type, reader) \
  907. static inline type pgm_read_any(const type *p) \
  908. { return pgm_read_##reader##_near(p); }
  909. DEFINE_PGM_READ_ANY(float, float);
  910. DEFINE_PGM_READ_ANY(signed char, byte);
  911. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  912. static const PROGMEM type array##_P[3] = \
  913. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  914. static inline type array(int axis) \
  915. { return pgm_read_any(&array##_P[axis]); }
  916. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  917. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  918. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  919. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  920. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  921. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  922. #if ENABLED(DUAL_X_CARRIAGE)
  923. #define DXC_FULL_CONTROL_MODE 0
  924. #define DXC_AUTO_PARK_MODE 1
  925. #define DXC_DUPLICATION_MODE 2
  926. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  927. static float x_home_pos(int extruder) {
  928. if (extruder == 0)
  929. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  930. else
  931. // In dual carriage mode the extruder offset provides an override of the
  932. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  933. // This allow soft recalibration of the second extruder offset position without firmware reflash
  934. // (through the M218 command).
  935. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  936. }
  937. static int x_home_dir(int extruder) {
  938. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  939. }
  940. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  941. static bool active_extruder_parked = false; // used in mode 1 & 2
  942. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  943. static millis_t delayed_move_time = 0; // used in mode 1
  944. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  945. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  946. bool extruder_duplication_enabled = false; // used in mode 2
  947. #endif //DUAL_X_CARRIAGE
  948. #if ENABLED(DEBUG_LEVELING_FEATURE)
  949. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  950. SERIAL_ECHO(prefix);
  951. SERIAL_ECHOPAIR(": (", x);
  952. SERIAL_ECHOPAIR(", ", y);
  953. SERIAL_ECHOPAIR(", ", z);
  954. SERIAL_ECHOLNPGM(")");
  955. }
  956. void print_xyz(const char* prefix, const float xyz[]) {
  957. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  958. }
  959. #endif
  960. static void set_axis_is_at_home(AxisEnum axis) {
  961. #if ENABLED(DUAL_X_CARRIAGE)
  962. if (axis == X_AXIS) {
  963. if (active_extruder != 0) {
  964. current_position[X_AXIS] = x_home_pos(active_extruder);
  965. min_pos[X_AXIS] = X2_MIN_POS;
  966. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  967. return;
  968. }
  969. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  970. float xoff = home_offset[X_AXIS];
  971. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  972. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  973. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  974. return;
  975. }
  976. }
  977. #endif
  978. #if ENABLED(SCARA)
  979. if (axis == X_AXIS || axis == Y_AXIS) {
  980. float homeposition[3];
  981. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  982. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  983. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  984. // Works out real Homeposition angles using inverse kinematics,
  985. // and calculates homing offset using forward kinematics
  986. calculate_delta(homeposition);
  987. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  988. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  989. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  990. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  991. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  992. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  993. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  994. calculate_SCARA_forward_Transform(delta);
  995. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  996. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  997. current_position[axis] = delta[axis];
  998. // SCARA home positions are based on configuration since the actual limits are determined by the
  999. // inverse kinematic transform.
  1000. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1001. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1002. }
  1003. else
  1004. #endif
  1005. {
  1006. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1007. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  1008. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  1009. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1010. if (axis == Z_AXIS) current_position[Z_AXIS] -= zprobe_zoffset;
  1011. #endif
  1012. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1013. if (marlin_debug_flags & DEBUG_LEVELING) {
  1014. SERIAL_ECHOPAIR("set_axis_is_at_home ", (unsigned long)axis);
  1015. SERIAL_ECHOPAIR(" > (home_offset[axis]==", home_offset[axis]);
  1016. print_xyz(") > current_position", current_position);
  1017. }
  1018. #endif
  1019. }
  1020. }
  1021. /**
  1022. * Some planner shorthand inline functions
  1023. */
  1024. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1025. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1026. int hbd = homing_bump_divisor[axis];
  1027. if (hbd < 1) {
  1028. hbd = 10;
  1029. SERIAL_ECHO_START;
  1030. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1031. }
  1032. feedrate = homing_feedrate[axis] / hbd;
  1033. }
  1034. inline void line_to_current_position() {
  1035. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1036. }
  1037. inline void line_to_z(float zPosition) {
  1038. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1039. }
  1040. inline void line_to_destination(float mm_m) {
  1041. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1042. }
  1043. inline void line_to_destination() {
  1044. line_to_destination(feedrate);
  1045. }
  1046. inline void sync_plan_position() {
  1047. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1048. }
  1049. #if ENABLED(DELTA) || ENABLED(SCARA)
  1050. inline void sync_plan_position_delta() {
  1051. calculate_delta(current_position);
  1052. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1053. }
  1054. #endif
  1055. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1056. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1057. static void setup_for_endstop_move() {
  1058. saved_feedrate = feedrate;
  1059. saved_feedrate_multiplier = feedrate_multiplier;
  1060. feedrate_multiplier = 100;
  1061. refresh_cmd_timeout();
  1062. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1063. if (marlin_debug_flags & DEBUG_LEVELING) {
  1064. SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
  1065. }
  1066. #endif
  1067. enable_endstops(true);
  1068. }
  1069. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1070. #if ENABLED(DELTA)
  1071. /**
  1072. * Calculate delta, start a line, and set current_position to destination
  1073. */
  1074. void prepare_move_raw() {
  1075. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1076. if (marlin_debug_flags & DEBUG_LEVELING) {
  1077. print_xyz("prepare_move_raw > destination", destination);
  1078. }
  1079. #endif
  1080. refresh_cmd_timeout();
  1081. calculate_delta(destination);
  1082. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1083. set_current_to_destination();
  1084. }
  1085. #endif
  1086. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1087. #if DISABLED(DELTA)
  1088. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1089. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1090. planeNormal.debug("planeNormal");
  1091. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1092. //bedLevel.debug("bedLevel");
  1093. //plan_bed_level_matrix.debug("bed level before");
  1094. //vector_3 uncorrected_position = plan_get_position_mm();
  1095. //uncorrected_position.debug("position before");
  1096. vector_3 corrected_position = plan_get_position();
  1097. //corrected_position.debug("position after");
  1098. current_position[X_AXIS] = corrected_position.x;
  1099. current_position[Y_AXIS] = corrected_position.y;
  1100. current_position[Z_AXIS] = corrected_position.z;
  1101. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1102. if (marlin_debug_flags & DEBUG_LEVELING) {
  1103. print_xyz("set_bed_level_equation_lsq > current_position", current_position);
  1104. }
  1105. #endif
  1106. sync_plan_position();
  1107. }
  1108. #endif // !DELTA
  1109. #else // !AUTO_BED_LEVELING_GRID
  1110. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1111. plan_bed_level_matrix.set_to_identity();
  1112. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1113. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1114. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1115. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1116. if (planeNormal.z < 0) {
  1117. planeNormal.x = -planeNormal.x;
  1118. planeNormal.y = -planeNormal.y;
  1119. planeNormal.z = -planeNormal.z;
  1120. }
  1121. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1122. vector_3 corrected_position = plan_get_position();
  1123. current_position[X_AXIS] = corrected_position.x;
  1124. current_position[Y_AXIS] = corrected_position.y;
  1125. current_position[Z_AXIS] = corrected_position.z;
  1126. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1127. if (marlin_debug_flags & DEBUG_LEVELING) {
  1128. print_xyz("set_bed_level_equation_3pts > current_position", current_position);
  1129. }
  1130. #endif
  1131. sync_plan_position();
  1132. }
  1133. #endif // !AUTO_BED_LEVELING_GRID
  1134. static void run_z_probe() {
  1135. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1136. #if ENABLED(DELTA)
  1137. float start_z = current_position[Z_AXIS];
  1138. long start_steps = st_get_position(Z_AXIS);
  1139. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1140. if (marlin_debug_flags & DEBUG_LEVELING) {
  1141. SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1142. }
  1143. #endif
  1144. // move down slowly until you find the bed
  1145. feedrate = homing_feedrate[Z_AXIS] / 4;
  1146. destination[Z_AXIS] = -10;
  1147. prepare_move_raw(); // this will also set_current_to_destination
  1148. st_synchronize();
  1149. endstops_hit_on_purpose(); // clear endstop hit flags
  1150. // we have to let the planner know where we are right now as it is not where we said to go.
  1151. long stop_steps = st_get_position(Z_AXIS);
  1152. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1153. current_position[Z_AXIS] = mm;
  1154. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1155. if (marlin_debug_flags & DEBUG_LEVELING) {
  1156. print_xyz("run_z_probe (DELTA) 2 > current_position", current_position);
  1157. }
  1158. #endif
  1159. sync_plan_position_delta();
  1160. #else // !DELTA
  1161. plan_bed_level_matrix.set_to_identity();
  1162. feedrate = homing_feedrate[Z_AXIS];
  1163. // Move down until the Z probe (or endstop?) is triggered
  1164. float zPosition = -(Z_MAX_LENGTH + 10);
  1165. line_to_z(zPosition);
  1166. st_synchronize();
  1167. // Tell the planner where we ended up - Get this from the stepper handler
  1168. zPosition = st_get_axis_position_mm(Z_AXIS);
  1169. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1170. // move up the retract distance
  1171. zPosition += home_bump_mm(Z_AXIS);
  1172. line_to_z(zPosition);
  1173. st_synchronize();
  1174. endstops_hit_on_purpose(); // clear endstop hit flags
  1175. // move back down slowly to find bed
  1176. set_homing_bump_feedrate(Z_AXIS);
  1177. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1178. line_to_z(zPosition);
  1179. st_synchronize();
  1180. endstops_hit_on_purpose(); // clear endstop hit flags
  1181. // Get the current stepper position after bumping an endstop
  1182. current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  1183. sync_plan_position();
  1184. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1185. if (marlin_debug_flags & DEBUG_LEVELING) {
  1186. print_xyz("run_z_probe > current_position", current_position);
  1187. }
  1188. #endif
  1189. #endif // !DELTA
  1190. }
  1191. /**
  1192. * Plan a move to (X, Y, Z) and set the current_position
  1193. * The final current_position may not be the one that was requested
  1194. */
  1195. static void do_blocking_move_to(float x, float y, float z) {
  1196. float oldFeedRate = feedrate;
  1197. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1198. if (marlin_debug_flags & DEBUG_LEVELING) {
  1199. print_xyz("do_blocking_move_to", x, y, z);
  1200. }
  1201. #endif
  1202. #if ENABLED(DELTA)
  1203. feedrate = XY_TRAVEL_SPEED;
  1204. destination[X_AXIS] = x;
  1205. destination[Y_AXIS] = y;
  1206. destination[Z_AXIS] = z;
  1207. prepare_move_raw(); // this will also set_current_to_destination
  1208. st_synchronize();
  1209. #else
  1210. feedrate = homing_feedrate[Z_AXIS];
  1211. current_position[Z_AXIS] = z;
  1212. line_to_current_position();
  1213. st_synchronize();
  1214. feedrate = xy_travel_speed;
  1215. current_position[X_AXIS] = x;
  1216. current_position[Y_AXIS] = y;
  1217. line_to_current_position();
  1218. st_synchronize();
  1219. #endif
  1220. feedrate = oldFeedRate;
  1221. }
  1222. inline void do_blocking_move_to_xy(float x, float y) { do_blocking_move_to(x, y, current_position[Z_AXIS]); }
  1223. inline void do_blocking_move_to_x(float x) { do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]); }
  1224. inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z); }
  1225. inline void raise_z_after_probing() { do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); }
  1226. static void clean_up_after_endstop_move() {
  1227. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  1228. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1229. if (marlin_debug_flags & DEBUG_LEVELING) {
  1230. SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > enable_endstops(false)");
  1231. }
  1232. #endif
  1233. enable_endstops(false);
  1234. #endif
  1235. feedrate = saved_feedrate;
  1236. feedrate_multiplier = saved_feedrate_multiplier;
  1237. refresh_cmd_timeout();
  1238. }
  1239. static void deploy_z_probe() {
  1240. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1241. if (marlin_debug_flags & DEBUG_LEVELING) {
  1242. print_xyz("deploy_z_probe > current_position", current_position);
  1243. }
  1244. #endif
  1245. #if HAS_SERVO_ENDSTOPS
  1246. // Engage Z Servo endstop if enabled
  1247. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1248. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1249. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1250. // If endstop is already false, the Z probe is deployed
  1251. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1252. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1253. if (z_probe_endstop)
  1254. #else
  1255. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1256. if (z_min_endstop)
  1257. #endif
  1258. {
  1259. // Move to the start position to initiate deployment
  1260. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1261. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1262. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1263. prepare_move_raw(); // this will also set_current_to_destination
  1264. // Move to engage deployment
  1265. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1266. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1267. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1268. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1269. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1270. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1271. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1272. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1273. prepare_move_raw();
  1274. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1275. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1276. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1277. // Move to trigger deployment
  1278. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1279. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1280. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1281. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1282. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1283. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1284. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1285. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1286. prepare_move_raw();
  1287. #endif
  1288. }
  1289. // Partially Home X,Y for safety
  1290. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1291. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1292. prepare_move_raw(); // this will also set_current_to_destination
  1293. st_synchronize();
  1294. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1295. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1296. if (z_probe_endstop)
  1297. #else
  1298. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1299. if (z_min_endstop)
  1300. #endif
  1301. {
  1302. if (IsRunning()) {
  1303. SERIAL_ERROR_START;
  1304. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1305. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1306. }
  1307. Stop();
  1308. }
  1309. #endif // Z_PROBE_ALLEN_KEY
  1310. }
  1311. static void stow_z_probe(bool doRaise = true) {
  1312. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1313. if (marlin_debug_flags & DEBUG_LEVELING) {
  1314. print_xyz("stow_z_probe > current_position", current_position);
  1315. }
  1316. #endif
  1317. #if HAS_SERVO_ENDSTOPS
  1318. // Retract Z Servo endstop if enabled
  1319. if (servo_endstop_id[Z_AXIS] >= 0) {
  1320. #if Z_RAISE_AFTER_PROBING > 0
  1321. if (doRaise) {
  1322. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1323. if (marlin_debug_flags & DEBUG_LEVELING) {
  1324. SERIAL_ECHOPAIR("Raise Z (after) by ", (float)Z_RAISE_AFTER_PROBING);
  1325. SERIAL_EOL;
  1326. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1327. SERIAL_EOL;
  1328. }
  1329. #endif
  1330. raise_z_after_probing(); // this also updates current_position
  1331. st_synchronize();
  1332. }
  1333. #endif
  1334. // Change the Z servo angle
  1335. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1336. }
  1337. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1338. // Move up for safety
  1339. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1340. #if Z_RAISE_AFTER_PROBING > 0
  1341. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1342. prepare_move_raw(); // this will also set_current_to_destination
  1343. #endif
  1344. // Move to the start position to initiate retraction
  1345. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1346. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1347. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1348. prepare_move_raw();
  1349. // Move the nozzle down to push the Z probe into retracted position
  1350. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1351. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1352. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1353. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1354. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1355. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1356. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1357. prepare_move_raw();
  1358. // Move up for safety
  1359. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1360. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1361. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1362. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1363. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1364. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1365. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1366. prepare_move_raw();
  1367. // Home XY for safety
  1368. feedrate = homing_feedrate[X_AXIS] / 2;
  1369. destination[X_AXIS] = 0;
  1370. destination[Y_AXIS] = 0;
  1371. prepare_move_raw(); // this will also set_current_to_destination
  1372. st_synchronize();
  1373. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1374. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1375. if (!z_probe_endstop)
  1376. #else
  1377. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1378. if (!z_min_endstop)
  1379. #endif
  1380. {
  1381. if (IsRunning()) {
  1382. SERIAL_ERROR_START;
  1383. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1384. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1385. }
  1386. Stop();
  1387. }
  1388. #endif // Z_PROBE_ALLEN_KEY
  1389. }
  1390. enum ProbeAction {
  1391. ProbeStay = 0,
  1392. ProbeDeploy = _BV(0),
  1393. ProbeStow = _BV(1),
  1394. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1395. };
  1396. // Probe bed height at position (x,y), returns the measured z value
  1397. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1398. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1399. if (marlin_debug_flags & DEBUG_LEVELING) {
  1400. SERIAL_ECHOLNPGM("probe_pt >>>");
  1401. SERIAL_ECHOPAIR("> ProbeAction:", (unsigned long)probe_action);
  1402. SERIAL_EOL;
  1403. print_xyz("> current_position", current_position);
  1404. }
  1405. #endif
  1406. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1407. if (marlin_debug_flags & DEBUG_LEVELING) {
  1408. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1409. SERIAL_EOL;
  1410. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1411. SERIAL_EOL;
  1412. }
  1413. #endif
  1414. // Move Z up to the z_before height, then move the Z probe to the given XY
  1415. do_blocking_move_to_z(z_before); // this also updates current_position
  1416. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1417. if (marlin_debug_flags & DEBUG_LEVELING) {
  1418. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1419. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1420. SERIAL_EOL;
  1421. }
  1422. #endif
  1423. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER)); // this also updates current_position
  1424. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1425. if (probe_action & ProbeDeploy) {
  1426. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1427. if (marlin_debug_flags & DEBUG_LEVELING) {
  1428. SERIAL_ECHOLNPGM("> ProbeDeploy");
  1429. }
  1430. #endif
  1431. deploy_z_probe();
  1432. }
  1433. #endif
  1434. run_z_probe();
  1435. float measured_z = current_position[Z_AXIS];
  1436. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1437. if (probe_action & ProbeStow) {
  1438. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1439. if (marlin_debug_flags & DEBUG_LEVELING) {
  1440. SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1441. }
  1442. #endif
  1443. stow_z_probe();
  1444. }
  1445. #endif
  1446. if (verbose_level > 2) {
  1447. SERIAL_PROTOCOLPGM("Bed X: ");
  1448. SERIAL_PROTOCOL_F(x, 3);
  1449. SERIAL_PROTOCOLPGM(" Y: ");
  1450. SERIAL_PROTOCOL_F(y, 3);
  1451. SERIAL_PROTOCOLPGM(" Z: ");
  1452. SERIAL_PROTOCOL_F(measured_z, 3);
  1453. SERIAL_EOL;
  1454. }
  1455. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1456. if (marlin_debug_flags & DEBUG_LEVELING) {
  1457. SERIAL_ECHOLNPGM("<<< probe_pt");
  1458. }
  1459. #endif
  1460. return measured_z;
  1461. }
  1462. #if ENABLED(DELTA)
  1463. /**
  1464. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1465. */
  1466. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1467. if (bed_level[x][y] != 0.0) {
  1468. return; // Don't overwrite good values.
  1469. }
  1470. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1471. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1472. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1473. float median = c; // Median is robust (ignores outliers).
  1474. if (a < b) {
  1475. if (b < c) median = b;
  1476. if (c < a) median = a;
  1477. }
  1478. else { // b <= a
  1479. if (c < b) median = b;
  1480. if (a < c) median = a;
  1481. }
  1482. bed_level[x][y] = median;
  1483. }
  1484. // Fill in the unprobed points (corners of circular print surface)
  1485. // using linear extrapolation, away from the center.
  1486. static void extrapolate_unprobed_bed_level() {
  1487. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1488. for (int y = 0; y <= half; y++) {
  1489. for (int x = 0; x <= half; x++) {
  1490. if (x + y < 3) continue;
  1491. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1492. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1493. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1494. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1495. }
  1496. }
  1497. }
  1498. // Print calibration results for plotting or manual frame adjustment.
  1499. static void print_bed_level() {
  1500. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1501. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1502. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1503. SERIAL_PROTOCOLCHAR(' ');
  1504. }
  1505. SERIAL_EOL;
  1506. }
  1507. }
  1508. // Reset calibration results to zero.
  1509. void reset_bed_level() {
  1510. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1511. if (marlin_debug_flags & DEBUG_LEVELING) {
  1512. SERIAL_ECHOLNPGM("reset_bed_level");
  1513. }
  1514. #endif
  1515. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1516. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1517. bed_level[x][y] = 0.0;
  1518. }
  1519. }
  1520. }
  1521. #endif // DELTA
  1522. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1523. void raise_z_for_servo() {
  1524. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1525. // The zprobe_zoffset is negative any switch below the nozzle, so
  1526. // multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1527. z_dest += axis_known_position[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1528. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1529. }
  1530. #endif
  1531. #endif // AUTO_BED_LEVELING_FEATURE
  1532. #if ENABLED(Z_PROBE_SLED)
  1533. #ifndef SLED_DOCKING_OFFSET
  1534. #define SLED_DOCKING_OFFSET 0
  1535. #endif
  1536. /**
  1537. * Method to dock/undock a sled designed by Charles Bell.
  1538. *
  1539. * dock[in] If true, move to MAX_X and engage the electromagnet
  1540. * offset[in] The additional distance to move to adjust docking location
  1541. */
  1542. static void dock_sled(bool dock, int offset = 0) {
  1543. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1544. if (marlin_debug_flags & DEBUG_LEVELING) {
  1545. SERIAL_ECHOPAIR("dock_sled", dock);
  1546. SERIAL_EOL;
  1547. }
  1548. #endif
  1549. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1550. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1551. SERIAL_ECHO_START;
  1552. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1553. return;
  1554. }
  1555. float oldXpos = current_position[X_AXIS]; // save x position
  1556. if (dock) {
  1557. #if Z_RAISE_AFTER_PROBING > 0
  1558. raise_z_after_probing(); // raise Z
  1559. #endif
  1560. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1); // Dock sled a bit closer to ensure proper capturing
  1561. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1562. }
  1563. else {
  1564. float z_loc = current_position[Z_AXIS];
  1565. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1566. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1567. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1568. }
  1569. do_blocking_move_to_x(oldXpos); // return to position before docking
  1570. }
  1571. #endif // Z_PROBE_SLED
  1572. /**
  1573. * Home an individual axis
  1574. */
  1575. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1576. static void homeaxis(AxisEnum axis) {
  1577. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1578. if (marlin_debug_flags & DEBUG_LEVELING) {
  1579. SERIAL_ECHOPAIR(">>> homeaxis(", (unsigned long)axis);
  1580. SERIAL_CHAR(')');
  1581. SERIAL_EOL;
  1582. }
  1583. #endif
  1584. #define HOMEAXIS_DO(LETTER) \
  1585. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1586. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1587. int axis_home_dir =
  1588. #if ENABLED(DUAL_X_CARRIAGE)
  1589. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1590. #endif
  1591. home_dir(axis);
  1592. // Set the axis position as setup for the move
  1593. current_position[axis] = 0;
  1594. sync_plan_position();
  1595. #if ENABLED(Z_PROBE_SLED)
  1596. // Get Probe
  1597. if (axis == Z_AXIS) {
  1598. if (axis_home_dir < 0) dock_sled(false);
  1599. }
  1600. #endif
  1601. #if SERVO_LEVELING && DISABLED(Z_PROBE_SLED)
  1602. // Deploy a Z probe if there is one, and homing towards the bed
  1603. if (axis == Z_AXIS) {
  1604. if (axis_home_dir < 0) deploy_z_probe();
  1605. }
  1606. #endif
  1607. #if HAS_SERVO_ENDSTOPS
  1608. // Engage Servo endstop if enabled
  1609. if (axis != Z_AXIS && servo_endstop_id[axis] >= 0)
  1610. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1611. #endif
  1612. // Set a flag for Z motor locking
  1613. #if ENABLED(Z_DUAL_ENDSTOPS)
  1614. if (axis == Z_AXIS) In_Homing_Process(true);
  1615. #endif
  1616. // Move towards the endstop until an endstop is triggered
  1617. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1618. feedrate = homing_feedrate[axis];
  1619. line_to_destination();
  1620. st_synchronize();
  1621. // Set the axis position as setup for the move
  1622. current_position[axis] = 0;
  1623. sync_plan_position();
  1624. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1625. if (marlin_debug_flags & DEBUG_LEVELING) {
  1626. SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1627. }
  1628. #endif
  1629. enable_endstops(false); // Disable endstops while moving away
  1630. // Move away from the endstop by the axis HOME_BUMP_MM
  1631. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1632. line_to_destination();
  1633. st_synchronize();
  1634. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1635. if (marlin_debug_flags & DEBUG_LEVELING) {
  1636. SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1637. }
  1638. #endif
  1639. enable_endstops(true); // Enable endstops for next homing move
  1640. // Slow down the feedrate for the next move
  1641. set_homing_bump_feedrate(axis);
  1642. // Move slowly towards the endstop until triggered
  1643. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1644. line_to_destination();
  1645. st_synchronize();
  1646. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1647. if (marlin_debug_flags & DEBUG_LEVELING) {
  1648. print_xyz("> TRIGGER ENDSTOP > current_position", current_position);
  1649. }
  1650. #endif
  1651. #if ENABLED(Z_DUAL_ENDSTOPS)
  1652. if (axis == Z_AXIS) {
  1653. float adj = fabs(z_endstop_adj);
  1654. bool lockZ1;
  1655. if (axis_home_dir > 0) {
  1656. adj = -adj;
  1657. lockZ1 = (z_endstop_adj > 0);
  1658. }
  1659. else
  1660. lockZ1 = (z_endstop_adj < 0);
  1661. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1662. sync_plan_position();
  1663. // Move to the adjusted endstop height
  1664. feedrate = homing_feedrate[axis];
  1665. destination[Z_AXIS] = adj;
  1666. line_to_destination();
  1667. st_synchronize();
  1668. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1669. In_Homing_Process(false);
  1670. } // Z_AXIS
  1671. #endif
  1672. #if ENABLED(DELTA)
  1673. // retrace by the amount specified in endstop_adj
  1674. if (endstop_adj[axis] * axis_home_dir < 0) {
  1675. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1676. if (marlin_debug_flags & DEBUG_LEVELING) {
  1677. SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1678. }
  1679. #endif
  1680. enable_endstops(false); // Disable endstops while moving away
  1681. sync_plan_position();
  1682. destination[axis] = endstop_adj[axis];
  1683. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1684. if (marlin_debug_flags & DEBUG_LEVELING) {
  1685. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1686. print_xyz(" > destination", destination);
  1687. }
  1688. #endif
  1689. line_to_destination();
  1690. st_synchronize();
  1691. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1692. if (marlin_debug_flags & DEBUG_LEVELING) {
  1693. SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1694. }
  1695. #endif
  1696. enable_endstops(true); // Enable endstops for next homing move
  1697. }
  1698. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1699. else {
  1700. if (marlin_debug_flags & DEBUG_LEVELING) {
  1701. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1702. SERIAL_EOL;
  1703. }
  1704. }
  1705. #endif
  1706. #endif
  1707. // Set the axis position to its home position (plus home offsets)
  1708. set_axis_is_at_home(axis);
  1709. sync_plan_position();
  1710. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1711. if (marlin_debug_flags & DEBUG_LEVELING) {
  1712. print_xyz("> AFTER set_axis_is_at_home > current_position", current_position);
  1713. }
  1714. #endif
  1715. destination[axis] = current_position[axis];
  1716. feedrate = 0.0;
  1717. endstops_hit_on_purpose(); // clear endstop hit flags
  1718. axis_known_position[axis] = true;
  1719. axis_homed[axis] = true;
  1720. #if ENABLED(Z_PROBE_SLED)
  1721. // bring Z probe back
  1722. if (axis == Z_AXIS) {
  1723. if (axis_home_dir < 0) dock_sled(true);
  1724. }
  1725. #endif
  1726. #if SERVO_LEVELING && DISABLED(Z_PROBE_SLED)
  1727. // Deploy a Z probe if there is one, and homing towards the bed
  1728. if (axis == Z_AXIS) {
  1729. if (axis_home_dir < 0) {
  1730. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1731. if (marlin_debug_flags & DEBUG_LEVELING) {
  1732. SERIAL_ECHOLNPGM("> SERVO_LEVELING > stow_z_probe");
  1733. }
  1734. #endif
  1735. stow_z_probe();
  1736. }
  1737. }
  1738. else
  1739. #endif
  1740. {
  1741. #if HAS_SERVO_ENDSTOPS
  1742. // Retract Servo endstop if enabled
  1743. if (servo_endstop_id[axis] >= 0) {
  1744. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1745. if (marlin_debug_flags & DEBUG_LEVELING) {
  1746. SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1747. }
  1748. #endif
  1749. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1750. }
  1751. #endif
  1752. }
  1753. }
  1754. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1755. if (marlin_debug_flags & DEBUG_LEVELING) {
  1756. SERIAL_ECHOPAIR("<<< homeaxis(", (unsigned long)axis);
  1757. SERIAL_CHAR(')');
  1758. SERIAL_EOL;
  1759. }
  1760. #endif
  1761. }
  1762. #if ENABLED(FWRETRACT)
  1763. void retract(bool retracting, bool swapping = false) {
  1764. if (retracting == retracted[active_extruder]) return;
  1765. float oldFeedrate = feedrate;
  1766. set_destination_to_current();
  1767. if (retracting) {
  1768. feedrate = retract_feedrate * 60;
  1769. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1770. plan_set_e_position(current_position[E_AXIS]);
  1771. prepare_move();
  1772. if (retract_zlift > 0.01) {
  1773. current_position[Z_AXIS] -= retract_zlift;
  1774. #if ENABLED(DELTA)
  1775. sync_plan_position_delta();
  1776. #else
  1777. sync_plan_position();
  1778. #endif
  1779. prepare_move();
  1780. }
  1781. }
  1782. else {
  1783. if (retract_zlift > 0.01) {
  1784. current_position[Z_AXIS] += retract_zlift;
  1785. #if ENABLED(DELTA)
  1786. sync_plan_position_delta();
  1787. #else
  1788. sync_plan_position();
  1789. #endif
  1790. //prepare_move();
  1791. }
  1792. feedrate = retract_recover_feedrate * 60;
  1793. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1794. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1795. plan_set_e_position(current_position[E_AXIS]);
  1796. prepare_move();
  1797. }
  1798. feedrate = oldFeedrate;
  1799. retracted[active_extruder] = retracting;
  1800. } // retract()
  1801. #endif // FWRETRACT
  1802. /**
  1803. *
  1804. * G-Code Handler functions
  1805. *
  1806. */
  1807. /**
  1808. * Set XYZE destination and feedrate from the current GCode command
  1809. *
  1810. * - Set destination from included axis codes
  1811. * - Set to current for missing axis codes
  1812. * - Set the feedrate, if included
  1813. */
  1814. void gcode_get_destination() {
  1815. for (int i = 0; i < NUM_AXIS; i++) {
  1816. if (code_seen(axis_codes[i]))
  1817. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1818. else
  1819. destination[i] = current_position[i];
  1820. }
  1821. if (code_seen('F')) {
  1822. float next_feedrate = code_value();
  1823. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1824. }
  1825. }
  1826. void unknown_command_error() {
  1827. SERIAL_ECHO_START;
  1828. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1829. SERIAL_ECHO(current_command);
  1830. SERIAL_ECHOPGM("\"\n");
  1831. }
  1832. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  1833. void host_keepalive() {
  1834. millis_t ms = millis();
  1835. if (busy_state != NOT_BUSY) {
  1836. if (ms < next_busy_signal_ms) return;
  1837. switch (busy_state) {
  1838. case NOT_BUSY:
  1839. break;
  1840. case IN_HANDLER:
  1841. case IN_PROCESS:
  1842. SERIAL_ECHO_START;
  1843. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  1844. break;
  1845. case PAUSED_FOR_USER:
  1846. SERIAL_ECHO_START;
  1847. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  1848. break;
  1849. case PAUSED_FOR_INPUT:
  1850. SERIAL_ECHO_START;
  1851. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  1852. break;
  1853. }
  1854. }
  1855. next_busy_signal_ms = ms + 2000UL;
  1856. }
  1857. #endif //HOST_KEEPALIVE_FEATURE
  1858. /**
  1859. * G0, G1: Coordinated movement of X Y Z E axes
  1860. */
  1861. inline void gcode_G0_G1() {
  1862. if (IsRunning()) {
  1863. gcode_get_destination(); // For X Y Z E F
  1864. #if ENABLED(FWRETRACT)
  1865. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1866. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1867. // Is this move an attempt to retract or recover?
  1868. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1869. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1870. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1871. retract(!retracted[active_extruder]);
  1872. return;
  1873. }
  1874. }
  1875. #endif //FWRETRACT
  1876. prepare_move();
  1877. }
  1878. }
  1879. /**
  1880. * G2: Clockwise Arc
  1881. * G3: Counterclockwise Arc
  1882. */
  1883. inline void gcode_G2_G3(bool clockwise) {
  1884. if (IsRunning()) {
  1885. #if ENABLED(SF_ARC_FIX)
  1886. bool relative_mode_backup = relative_mode;
  1887. relative_mode = true;
  1888. #endif
  1889. gcode_get_destination();
  1890. #if ENABLED(SF_ARC_FIX)
  1891. relative_mode = relative_mode_backup;
  1892. #endif
  1893. // Center of arc as offset from current_position
  1894. float arc_offset[2] = {
  1895. code_seen('I') ? code_value() : 0,
  1896. code_seen('J') ? code_value() : 0
  1897. };
  1898. // Send an arc to the planner
  1899. plan_arc(destination, arc_offset, clockwise);
  1900. refresh_cmd_timeout();
  1901. }
  1902. }
  1903. /**
  1904. * G4: Dwell S<seconds> or P<milliseconds>
  1905. */
  1906. inline void gcode_G4() {
  1907. millis_t codenum = 0;
  1908. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1909. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1910. st_synchronize();
  1911. refresh_cmd_timeout();
  1912. codenum += previous_cmd_ms; // keep track of when we started waiting
  1913. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1914. while (millis() < codenum) idle();
  1915. }
  1916. #if ENABLED(FWRETRACT)
  1917. /**
  1918. * G10 - Retract filament according to settings of M207
  1919. * G11 - Recover filament according to settings of M208
  1920. */
  1921. inline void gcode_G10_G11(bool doRetract=false) {
  1922. #if EXTRUDERS > 1
  1923. if (doRetract) {
  1924. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1925. }
  1926. #endif
  1927. retract(doRetract
  1928. #if EXTRUDERS > 1
  1929. , retracted_swap[active_extruder]
  1930. #endif
  1931. );
  1932. }
  1933. #endif //FWRETRACT
  1934. /**
  1935. * G28: Home all axes according to settings
  1936. *
  1937. * Parameters
  1938. *
  1939. * None Home to all axes with no parameters.
  1940. * With QUICK_HOME enabled XY will home together, then Z.
  1941. *
  1942. * Cartesian parameters
  1943. *
  1944. * X Home to the X endstop
  1945. * Y Home to the Y endstop
  1946. * Z Home to the Z endstop
  1947. *
  1948. */
  1949. inline void gcode_G28() {
  1950. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1951. if (marlin_debug_flags & DEBUG_LEVELING) {
  1952. SERIAL_ECHOLNPGM("gcode_G28 >>>");
  1953. }
  1954. #endif
  1955. // Wait for planner moves to finish!
  1956. st_synchronize();
  1957. // For auto bed leveling, clear the level matrix
  1958. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1959. plan_bed_level_matrix.set_to_identity();
  1960. #if ENABLED(DELTA)
  1961. reset_bed_level();
  1962. #endif
  1963. #endif
  1964. // For manual bed leveling deactivate the matrix temporarily
  1965. #if ENABLED(MESH_BED_LEVELING)
  1966. uint8_t mbl_was_active = mbl.active;
  1967. mbl.active = 0;
  1968. #endif
  1969. setup_for_endstop_move();
  1970. set_destination_to_current(); // Directly after a reset this is all 0. Later we get a hint if we have to raise z or not.
  1971. feedrate = 0.0;
  1972. #if ENABLED(DELTA)
  1973. // A delta can only safely home all axis at the same time
  1974. // all axis have to home at the same time
  1975. // Pretend the current position is 0,0,0
  1976. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1977. sync_plan_position();
  1978. // Move all carriages up together until the first endstop is hit.
  1979. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  1980. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1981. line_to_destination();
  1982. st_synchronize();
  1983. endstops_hit_on_purpose(); // clear endstop hit flags
  1984. // Destination reached
  1985. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1986. // take care of back off and rehome now we are all at the top
  1987. HOMEAXIS(X);
  1988. HOMEAXIS(Y);
  1989. HOMEAXIS(Z);
  1990. sync_plan_position_delta();
  1991. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1992. if (marlin_debug_flags & DEBUG_LEVELING) {
  1993. print_xyz("(DELTA) > current_position", current_position);
  1994. }
  1995. #endif
  1996. #else // NOT DELTA
  1997. bool homeX = code_seen(axis_codes[X_AXIS]),
  1998. homeY = code_seen(axis_codes[Y_AXIS]),
  1999. homeZ = code_seen(axis_codes[Z_AXIS]);
  2000. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2001. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2002. if (home_all_axis || homeZ) {
  2003. HOMEAXIS(Z);
  2004. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2005. if (marlin_debug_flags & DEBUG_LEVELING) {
  2006. print_xyz("> HOMEAXIS(Z) > current_position", current_position);
  2007. }
  2008. #endif
  2009. }
  2010. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2011. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2012. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2013. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2014. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2015. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2016. if (marlin_debug_flags & DEBUG_LEVELING) {
  2017. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (float)(MIN_Z_HEIGHT_FOR_HOMING));
  2018. SERIAL_EOL;
  2019. print_xyz("> (home_all_axis || homeZ) > current_position", current_position);
  2020. print_xyz("> (home_all_axis || homeZ) > destination", destination);
  2021. }
  2022. #endif
  2023. line_to_destination();
  2024. st_synchronize();
  2025. // Update the current Z position even if it currently not real from Z-home
  2026. // otherwise each call to line_to_destination() will want to move Z-axis
  2027. // by MIN_Z_HEIGHT_FOR_HOMING.
  2028. current_position[Z_AXIS] = destination[Z_AXIS];
  2029. }
  2030. #endif
  2031. #if ENABLED(QUICK_HOME)
  2032. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2033. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2034. #if ENABLED(DUAL_X_CARRIAGE)
  2035. int x_axis_home_dir = x_home_dir(active_extruder);
  2036. extruder_duplication_enabled = false;
  2037. #else
  2038. int x_axis_home_dir = home_dir(X_AXIS);
  2039. #endif
  2040. sync_plan_position();
  2041. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2042. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2043. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2044. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2045. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2046. line_to_destination();
  2047. st_synchronize();
  2048. set_axis_is_at_home(X_AXIS);
  2049. set_axis_is_at_home(Y_AXIS);
  2050. sync_plan_position();
  2051. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2052. if (marlin_debug_flags & DEBUG_LEVELING) {
  2053. print_xyz("> QUICK_HOME > current_position 1", current_position);
  2054. }
  2055. #endif
  2056. destination[X_AXIS] = current_position[X_AXIS];
  2057. destination[Y_AXIS] = current_position[Y_AXIS];
  2058. line_to_destination();
  2059. feedrate = 0.0;
  2060. st_synchronize();
  2061. endstops_hit_on_purpose(); // clear endstop hit flags
  2062. current_position[X_AXIS] = destination[X_AXIS];
  2063. current_position[Y_AXIS] = destination[Y_AXIS];
  2064. #if DISABLED(SCARA)
  2065. current_position[Z_AXIS] = destination[Z_AXIS];
  2066. #endif
  2067. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2068. if (marlin_debug_flags & DEBUG_LEVELING) {
  2069. print_xyz("> QUICK_HOME > current_position 2", current_position);
  2070. }
  2071. #endif
  2072. }
  2073. #endif // QUICK_HOME
  2074. #if ENABLED(HOME_Y_BEFORE_X)
  2075. // Home Y
  2076. if (home_all_axis || homeY) HOMEAXIS(Y);
  2077. #endif
  2078. // Home X
  2079. if (home_all_axis || homeX) {
  2080. #if ENABLED(DUAL_X_CARRIAGE)
  2081. int tmp_extruder = active_extruder;
  2082. extruder_duplication_enabled = false;
  2083. active_extruder = !active_extruder;
  2084. HOMEAXIS(X);
  2085. inactive_extruder_x_pos = current_position[X_AXIS];
  2086. active_extruder = tmp_extruder;
  2087. HOMEAXIS(X);
  2088. // reset state used by the different modes
  2089. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2090. delayed_move_time = 0;
  2091. active_extruder_parked = true;
  2092. #else
  2093. HOMEAXIS(X);
  2094. #endif
  2095. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2096. if (marlin_debug_flags & DEBUG_LEVELING) {
  2097. print_xyz("> homeX", current_position);
  2098. }
  2099. #endif
  2100. }
  2101. #if DISABLED(HOME_Y_BEFORE_X)
  2102. // Home Y
  2103. if (home_all_axis || homeY) {
  2104. HOMEAXIS(Y);
  2105. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2106. if (marlin_debug_flags & DEBUG_LEVELING) {
  2107. print_xyz("> homeY", current_position);
  2108. }
  2109. #endif
  2110. }
  2111. #endif
  2112. // Home Z last if homing towards the bed
  2113. #if Z_HOME_DIR < 0
  2114. if (home_all_axis || homeZ) {
  2115. #if ENABLED(Z_SAFE_HOMING)
  2116. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2117. if (marlin_debug_flags & DEBUG_LEVELING) {
  2118. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2119. }
  2120. #endif
  2121. if (home_all_axis) {
  2122. // At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2123. // No need to move Z any more as this height should already be safe
  2124. // enough to reach Z_SAFE_HOMING XY positions.
  2125. // Just make sure the planner is in sync.
  2126. sync_plan_position();
  2127. //
  2128. // Set the Z probe (or just the nozzle) destination to the safe homing point
  2129. //
  2130. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2131. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2132. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2133. feedrate = XY_TRAVEL_SPEED;
  2134. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2135. if (marlin_debug_flags & DEBUG_LEVELING) {
  2136. print_xyz("> Z_SAFE_HOMING > home_all_axis > current_position", current_position);
  2137. print_xyz("> Z_SAFE_HOMING > home_all_axis > destination", destination);
  2138. }
  2139. #endif
  2140. // Move in the XY plane
  2141. line_to_destination();
  2142. st_synchronize();
  2143. // Update the current positions for XY, Z is still at least at
  2144. // MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2145. current_position[X_AXIS] = destination[X_AXIS];
  2146. current_position[Y_AXIS] = destination[Y_AXIS];
  2147. // Home the Z axis
  2148. HOMEAXIS(Z);
  2149. }
  2150. else if (homeZ) { // Don't need to Home Z twice
  2151. // Let's see if X and Y are homed
  2152. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  2153. // Make sure the Z probe is within the physical limits
  2154. // NOTE: This doesn't necessarily ensure the Z probe is also within the bed!
  2155. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2156. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2157. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2158. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2159. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2160. // Home the Z axis
  2161. HOMEAXIS(Z);
  2162. }
  2163. else {
  2164. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2165. SERIAL_ECHO_START;
  2166. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2167. }
  2168. }
  2169. else {
  2170. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2171. SERIAL_ECHO_START;
  2172. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2173. }
  2174. } // !home_all_axes && homeZ
  2175. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2176. if (marlin_debug_flags & DEBUG_LEVELING) {
  2177. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2178. }
  2179. #endif
  2180. #else // !Z_SAFE_HOMING
  2181. HOMEAXIS(Z);
  2182. #endif // !Z_SAFE_HOMING
  2183. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2184. if (marlin_debug_flags & DEBUG_LEVELING) {
  2185. print_xyz("> (home_all_axis || homeZ) > final", current_position);
  2186. }
  2187. #endif
  2188. } // home_all_axis || homeZ
  2189. #endif // Z_HOME_DIR < 0
  2190. sync_plan_position();
  2191. #endif // else DELTA
  2192. #if ENABLED(SCARA)
  2193. sync_plan_position_delta();
  2194. #endif
  2195. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2196. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2197. if (marlin_debug_flags & DEBUG_LEVELING) {
  2198. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
  2199. }
  2200. #endif
  2201. enable_endstops(false);
  2202. #endif
  2203. // For manual leveling move back to 0,0
  2204. #if ENABLED(MESH_BED_LEVELING)
  2205. if (mbl_was_active) {
  2206. current_position[X_AXIS] = mbl.get_x(0);
  2207. current_position[Y_AXIS] = mbl.get_y(0);
  2208. set_destination_to_current();
  2209. feedrate = homing_feedrate[X_AXIS];
  2210. line_to_destination();
  2211. st_synchronize();
  2212. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2213. sync_plan_position();
  2214. mbl.active = 1;
  2215. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2216. if (marlin_debug_flags & DEBUG_LEVELING) {
  2217. print_xyz("mbl_was_active > current_position", current_position);
  2218. }
  2219. #endif
  2220. }
  2221. #endif
  2222. feedrate = saved_feedrate;
  2223. feedrate_multiplier = saved_feedrate_multiplier;
  2224. refresh_cmd_timeout();
  2225. endstops_hit_on_purpose(); // clear endstop hit flags
  2226. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2227. if (marlin_debug_flags & DEBUG_LEVELING) {
  2228. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2229. }
  2230. #endif
  2231. }
  2232. #if ENABLED(MESH_BED_LEVELING)
  2233. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  2234. /**
  2235. * G29: Mesh-based Z probe, probes a grid and produces a
  2236. * mesh to compensate for variable bed height
  2237. *
  2238. * Parameters With MESH_BED_LEVELING:
  2239. *
  2240. * S0 Produce a mesh report
  2241. * S1 Start probing mesh points
  2242. * S2 Probe the next mesh point
  2243. * S3 Xn Yn Zn.nn Manually modify a single point
  2244. *
  2245. * The S0 report the points as below
  2246. *
  2247. * +----> X-axis
  2248. * |
  2249. * |
  2250. * v Y-axis
  2251. *
  2252. */
  2253. inline void gcode_G29() {
  2254. static int probe_point = -1;
  2255. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2256. if (state < 0 || state > 3) {
  2257. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  2258. return;
  2259. }
  2260. int ix, iy;
  2261. float z;
  2262. switch (state) {
  2263. case MeshReport:
  2264. if (mbl.active) {
  2265. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2266. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2267. SERIAL_PROTOCOLCHAR(',');
  2268. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2269. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2270. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2271. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2272. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2273. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2274. SERIAL_PROTOCOLPGM(" ");
  2275. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2276. }
  2277. SERIAL_EOL;
  2278. }
  2279. }
  2280. else
  2281. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2282. break;
  2283. case MeshStart:
  2284. mbl.reset();
  2285. probe_point = 0;
  2286. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2287. break;
  2288. case MeshNext:
  2289. if (probe_point < 0) {
  2290. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2291. return;
  2292. }
  2293. if (probe_point == 0) {
  2294. // Set Z to a positive value before recording the first Z.
  2295. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2296. sync_plan_position();
  2297. }
  2298. else {
  2299. // For others, save the Z of the previous point, then raise Z again.
  2300. ix = (probe_point - 1) % (MESH_NUM_X_POINTS);
  2301. iy = (probe_point - 1) / (MESH_NUM_X_POINTS);
  2302. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2303. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2304. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2305. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2306. st_synchronize();
  2307. }
  2308. // Is there another point to sample? Move there.
  2309. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2310. ix = probe_point % (MESH_NUM_X_POINTS);
  2311. iy = probe_point / (MESH_NUM_X_POINTS);
  2312. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2313. current_position[X_AXIS] = mbl.get_x(ix);
  2314. current_position[Y_AXIS] = mbl.get_y(iy);
  2315. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2316. st_synchronize();
  2317. probe_point++;
  2318. }
  2319. else {
  2320. // After recording the last point, activate the mbl and home
  2321. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2322. probe_point = -1;
  2323. mbl.active = 1;
  2324. enqueue_and_echo_commands_P(PSTR("G28"));
  2325. }
  2326. break;
  2327. case MeshSet:
  2328. if (code_seen('X')) {
  2329. ix = code_value_long() - 1;
  2330. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2331. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2332. return;
  2333. }
  2334. }
  2335. else {
  2336. SERIAL_PROTOCOLPGM("X not entered.\n");
  2337. return;
  2338. }
  2339. if (code_seen('Y')) {
  2340. iy = code_value_long() - 1;
  2341. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2342. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2343. return;
  2344. }
  2345. }
  2346. else {
  2347. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2348. return;
  2349. }
  2350. if (code_seen('Z')) {
  2351. z = code_value();
  2352. }
  2353. else {
  2354. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2355. return;
  2356. }
  2357. mbl.z_values[iy][ix] = z;
  2358. } // switch(state)
  2359. }
  2360. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2361. void out_of_range_error(const char* p_edge) {
  2362. SERIAL_PROTOCOLPGM("?Probe ");
  2363. serialprintPGM(p_edge);
  2364. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2365. }
  2366. /**
  2367. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2368. * Will fail if the printer has not been homed with G28.
  2369. *
  2370. * Enhanced G29 Auto Bed Leveling Probe Routine
  2371. *
  2372. * Parameters With AUTO_BED_LEVELING_GRID:
  2373. *
  2374. * P Set the size of the grid that will be probed (P x P points).
  2375. * Not supported by non-linear delta printer bed leveling.
  2376. * Example: "G29 P4"
  2377. *
  2378. * S Set the XY travel speed between probe points (in mm/min)
  2379. *
  2380. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2381. * or clean the rotation Matrix. Useful to check the topology
  2382. * after a first run of G29.
  2383. *
  2384. * V Set the verbose level (0-4). Example: "G29 V3"
  2385. *
  2386. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2387. * This is useful for manual bed leveling and finding flaws in the bed (to
  2388. * assist with part placement).
  2389. * Not supported by non-linear delta printer bed leveling.
  2390. *
  2391. * F Set the Front limit of the probing grid
  2392. * B Set the Back limit of the probing grid
  2393. * L Set the Left limit of the probing grid
  2394. * R Set the Right limit of the probing grid
  2395. *
  2396. * Global Parameters:
  2397. *
  2398. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2399. * Include "E" to engage/disengage the Z probe for each sample.
  2400. * There's no extra effect if you have a fixed Z probe.
  2401. * Usage: "G29 E" or "G29 e"
  2402. *
  2403. */
  2404. inline void gcode_G29() {
  2405. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2406. if (marlin_debug_flags & DEBUG_LEVELING) {
  2407. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2408. }
  2409. #endif
  2410. // Don't allow auto-leveling without homing first
  2411. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2412. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2413. SERIAL_ECHO_START;
  2414. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2415. return;
  2416. }
  2417. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2418. if (verbose_level < 0 || verbose_level > 4) {
  2419. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2420. return;
  2421. }
  2422. bool dryrun = code_seen('D'),
  2423. deploy_probe_for_each_reading = code_seen('E');
  2424. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2425. #if DISABLED(DELTA)
  2426. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2427. #endif
  2428. if (verbose_level > 0) {
  2429. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2430. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2431. }
  2432. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2433. #if DISABLED(DELTA)
  2434. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2435. if (auto_bed_leveling_grid_points < 2) {
  2436. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2437. return;
  2438. }
  2439. #endif
  2440. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2441. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2442. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2443. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2444. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2445. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2446. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2447. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2448. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2449. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2450. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2451. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2452. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2453. if (left_out || right_out || front_out || back_out) {
  2454. if (left_out) {
  2455. out_of_range_error(PSTR("(L)eft"));
  2456. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2457. }
  2458. if (right_out) {
  2459. out_of_range_error(PSTR("(R)ight"));
  2460. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2461. }
  2462. if (front_out) {
  2463. out_of_range_error(PSTR("(F)ront"));
  2464. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2465. }
  2466. if (back_out) {
  2467. out_of_range_error(PSTR("(B)ack"));
  2468. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2469. }
  2470. return;
  2471. }
  2472. #endif // AUTO_BED_LEVELING_GRID
  2473. #if ENABLED(Z_PROBE_SLED)
  2474. dock_sled(false); // engage (un-dock) the Z probe
  2475. #elif ENABLED(Z_PROBE_ALLEN_KEY) //|| SERVO_LEVELING
  2476. deploy_z_probe();
  2477. #endif
  2478. st_synchronize();
  2479. if (!dryrun) {
  2480. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2481. plan_bed_level_matrix.set_to_identity();
  2482. #if ENABLED(DELTA)
  2483. reset_bed_level();
  2484. #else //!DELTA
  2485. //vector_3 corrected_position = plan_get_position_mm();
  2486. //corrected_position.debug("position before G29");
  2487. vector_3 uncorrected_position = plan_get_position();
  2488. //uncorrected_position.debug("position during G29");
  2489. current_position[X_AXIS] = uncorrected_position.x;
  2490. current_position[Y_AXIS] = uncorrected_position.y;
  2491. current_position[Z_AXIS] = uncorrected_position.z;
  2492. sync_plan_position();
  2493. #endif // !DELTA
  2494. }
  2495. setup_for_endstop_move();
  2496. feedrate = homing_feedrate[Z_AXIS];
  2497. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2498. // probe at the points of a lattice grid
  2499. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2500. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2501. #if ENABLED(DELTA)
  2502. delta_grid_spacing[0] = xGridSpacing;
  2503. delta_grid_spacing[1] = yGridSpacing;
  2504. float z_offset = zprobe_zoffset;
  2505. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2506. #else // !DELTA
  2507. // solve the plane equation ax + by + d = z
  2508. // A is the matrix with rows [x y 1] for all the probed points
  2509. // B is the vector of the Z positions
  2510. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2511. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2512. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2513. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2514. eqnBVector[abl2], // "B" vector of Z points
  2515. mean = 0.0;
  2516. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2517. #endif // !DELTA
  2518. int probePointCounter = 0;
  2519. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2520. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2521. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2522. int xStart, xStop, xInc;
  2523. if (zig) {
  2524. xStart = 0;
  2525. xStop = auto_bed_leveling_grid_points;
  2526. xInc = 1;
  2527. }
  2528. else {
  2529. xStart = auto_bed_leveling_grid_points - 1;
  2530. xStop = -1;
  2531. xInc = -1;
  2532. }
  2533. zig = !zig;
  2534. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2535. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2536. // raise extruder
  2537. float measured_z,
  2538. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2539. if (probePointCounter) {
  2540. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2541. if (marlin_debug_flags & DEBUG_LEVELING) {
  2542. SERIAL_ECHOPAIR("z_before = (between) ", (float)(Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2543. SERIAL_EOL;
  2544. }
  2545. #endif
  2546. }
  2547. else {
  2548. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2549. if (marlin_debug_flags & DEBUG_LEVELING) {
  2550. SERIAL_ECHOPAIR("z_before = (before) ", (float)Z_RAISE_BEFORE_PROBING);
  2551. SERIAL_EOL;
  2552. }
  2553. #endif
  2554. }
  2555. #if ENABLED(DELTA)
  2556. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2557. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2558. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2559. #endif //DELTA
  2560. ProbeAction act;
  2561. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2562. act = ProbeDeployAndStow;
  2563. else if (yCount == 0 && xCount == xStart)
  2564. act = ProbeDeploy;
  2565. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2566. act = ProbeStow;
  2567. else
  2568. act = ProbeStay;
  2569. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2570. #if DISABLED(DELTA)
  2571. mean += measured_z;
  2572. eqnBVector[probePointCounter] = measured_z;
  2573. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2574. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2575. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2576. indexIntoAB[xCount][yCount] = probePointCounter;
  2577. #else
  2578. bed_level[xCount][yCount] = measured_z + z_offset;
  2579. #endif
  2580. probePointCounter++;
  2581. idle();
  2582. } //xProbe
  2583. } //yProbe
  2584. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2585. if (marlin_debug_flags & DEBUG_LEVELING) {
  2586. print_xyz("> probing complete > current_position", current_position);
  2587. }
  2588. #endif
  2589. clean_up_after_endstop_move();
  2590. #if ENABLED(DELTA)
  2591. if (!dryrun) extrapolate_unprobed_bed_level();
  2592. print_bed_level();
  2593. #else // !DELTA
  2594. // solve lsq problem
  2595. double plane_equation_coefficients[3];
  2596. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2597. mean /= abl2;
  2598. if (verbose_level) {
  2599. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2600. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2601. SERIAL_PROTOCOLPGM(" b: ");
  2602. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2603. SERIAL_PROTOCOLPGM(" d: ");
  2604. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2605. SERIAL_EOL;
  2606. if (verbose_level > 2) {
  2607. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2608. SERIAL_PROTOCOL_F(mean, 8);
  2609. SERIAL_EOL;
  2610. }
  2611. }
  2612. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2613. // Show the Topography map if enabled
  2614. if (do_topography_map) {
  2615. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2616. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2617. SERIAL_PROTOCOLPGM(" | |\n");
  2618. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2619. SERIAL_PROTOCOLPGM(" E | | I\n");
  2620. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2621. SERIAL_PROTOCOLPGM(" T | | H\n");
  2622. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2623. SERIAL_PROTOCOLPGM(" | |\n");
  2624. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2625. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2626. float min_diff = 999;
  2627. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2628. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2629. int ind = indexIntoAB[xx][yy];
  2630. float diff = eqnBVector[ind] - mean;
  2631. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2632. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2633. z_tmp = 0;
  2634. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2635. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2636. if (diff >= 0.0)
  2637. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2638. else
  2639. SERIAL_PROTOCOLCHAR(' ');
  2640. SERIAL_PROTOCOL_F(diff, 5);
  2641. } // xx
  2642. SERIAL_EOL;
  2643. } // yy
  2644. SERIAL_EOL;
  2645. if (verbose_level > 3) {
  2646. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2647. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2648. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2649. int ind = indexIntoAB[xx][yy];
  2650. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2651. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2652. z_tmp = 0;
  2653. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2654. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2655. if (diff >= 0.0)
  2656. SERIAL_PROTOCOLPGM(" +");
  2657. // Include + for column alignment
  2658. else
  2659. SERIAL_PROTOCOLCHAR(' ');
  2660. SERIAL_PROTOCOL_F(diff, 5);
  2661. } // xx
  2662. SERIAL_EOL;
  2663. } // yy
  2664. SERIAL_EOL;
  2665. }
  2666. } //do_topography_map
  2667. #endif //!DELTA
  2668. #else // !AUTO_BED_LEVELING_GRID
  2669. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2670. if (marlin_debug_flags & DEBUG_LEVELING) {
  2671. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2672. }
  2673. #endif
  2674. // Actions for each probe
  2675. ProbeAction p1, p2, p3;
  2676. if (deploy_probe_for_each_reading)
  2677. p1 = p2 = p3 = ProbeDeployAndStow;
  2678. else
  2679. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2680. // Probe at 3 arbitrary points
  2681. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2682. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2683. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2684. clean_up_after_endstop_move();
  2685. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2686. #endif // !AUTO_BED_LEVELING_GRID
  2687. #if ENABLED(DELTA)
  2688. // Allen Key Probe for Delta
  2689. #if ENABLED(Z_PROBE_ALLEN_KEY)
  2690. stow_z_probe();
  2691. #elif Z_RAISE_AFTER_PROBING > 0
  2692. raise_z_after_probing();
  2693. #endif
  2694. #else // !DELTA
  2695. if (verbose_level > 0)
  2696. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2697. if (!dryrun) {
  2698. // Correct the Z height difference from Z probe position and nozzle tip position.
  2699. // The Z height on homing is measured by Z probe, but the Z probe is quite far from the nozzle.
  2700. // When the bed is uneven, this height must be corrected.
  2701. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2702. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2703. z_tmp = current_position[Z_AXIS],
  2704. real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2705. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2706. if (marlin_debug_flags & DEBUG_LEVELING) {
  2707. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2708. SERIAL_EOL;
  2709. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2710. SERIAL_EOL;
  2711. }
  2712. #endif
  2713. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the Z probe offset
  2714. // Get the current Z position and send it to the planner.
  2715. //
  2716. // >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z (most recent plan_set_position/sync_plan_position)
  2717. //
  2718. // >> zprobe_zoffset : Z distance from nozzle to Z probe (set by default, M851, EEPROM, or Menu)
  2719. //
  2720. // >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted after the last probe
  2721. //
  2722. // >> Should home_offset[Z_AXIS] be included?
  2723. //
  2724. // Discussion: home_offset[Z_AXIS] was applied in G28 to set the starting Z.
  2725. // If Z is not tweaked in G29 -and- the Z probe in G29 is not actually "homing" Z...
  2726. // then perhaps it should not be included here. The purpose of home_offset[] is to
  2727. // adjust for inaccurate endstops, not for reasonably accurate probes. If it were
  2728. // added here, it could be seen as a compensating factor for the Z probe.
  2729. //
  2730. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2731. if (marlin_debug_flags & DEBUG_LEVELING) {
  2732. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2733. SERIAL_EOL;
  2734. }
  2735. #endif
  2736. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2737. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2738. + Z_RAISE_AFTER_PROBING
  2739. #endif
  2740. ;
  2741. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2742. sync_plan_position();
  2743. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2744. if (marlin_debug_flags & DEBUG_LEVELING) {
  2745. print_xyz("> corrected Z in G29", current_position);
  2746. }
  2747. #endif
  2748. }
  2749. // Sled assembly for Cartesian bots
  2750. #if ENABLED(Z_PROBE_SLED)
  2751. dock_sled(true); // dock the sled
  2752. #elif Z_RAISE_AFTER_PROBING > 0
  2753. // Raise Z axis for non-delta and non servo based probes
  2754. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  2755. raise_z_after_probing();
  2756. #endif
  2757. #endif
  2758. #endif // !DELTA
  2759. #ifdef Z_PROBE_END_SCRIPT
  2760. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2761. if (marlin_debug_flags & DEBUG_LEVELING) {
  2762. SERIAL_ECHO("Z Probe End Script: ");
  2763. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  2764. }
  2765. #endif
  2766. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  2767. st_synchronize();
  2768. #endif
  2769. KEEPALIVE_STATE(IN_HANDLER);
  2770. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2771. if (marlin_debug_flags & DEBUG_LEVELING) {
  2772. SERIAL_ECHOLNPGM("<<< gcode_G29");
  2773. }
  2774. #endif
  2775. }
  2776. #if DISABLED(Z_PROBE_SLED)
  2777. /**
  2778. * G30: Do a single Z probe at the current XY
  2779. */
  2780. inline void gcode_G30() {
  2781. #if HAS_SERVO_ENDSTOPS
  2782. raise_z_for_servo();
  2783. #endif
  2784. deploy_z_probe(); // Engage Z Servo endstop if available
  2785. st_synchronize();
  2786. // TODO: clear the leveling matrix or the planner will be set incorrectly
  2787. setup_for_endstop_move();
  2788. feedrate = homing_feedrate[Z_AXIS];
  2789. run_z_probe();
  2790. SERIAL_PROTOCOLPGM("Bed X: ");
  2791. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2792. SERIAL_PROTOCOLPGM(" Y: ");
  2793. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2794. SERIAL_PROTOCOLPGM(" Z: ");
  2795. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2796. SERIAL_EOL;
  2797. clean_up_after_endstop_move();
  2798. #if HAS_SERVO_ENDSTOPS
  2799. raise_z_for_servo();
  2800. #endif
  2801. stow_z_probe(false); // Retract Z Servo endstop if available
  2802. }
  2803. #endif //!Z_PROBE_SLED
  2804. #endif //AUTO_BED_LEVELING_FEATURE
  2805. /**
  2806. * G92: Set current position to given X Y Z E
  2807. */
  2808. inline void gcode_G92() {
  2809. if (!code_seen(axis_codes[E_AXIS]))
  2810. st_synchronize();
  2811. bool didXYZ = false;
  2812. for (int i = 0; i < NUM_AXIS; i++) {
  2813. if (code_seen(axis_codes[i])) {
  2814. float v = current_position[i] = code_value();
  2815. if (i == E_AXIS)
  2816. plan_set_e_position(v);
  2817. else
  2818. didXYZ = true;
  2819. }
  2820. }
  2821. if (didXYZ) {
  2822. #if ENABLED(DELTA) || ENABLED(SCARA)
  2823. sync_plan_position_delta();
  2824. #else
  2825. sync_plan_position();
  2826. #endif
  2827. }
  2828. }
  2829. #if ENABLED(ULTIPANEL)
  2830. /**
  2831. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2832. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2833. */
  2834. inline void gcode_M0_M1() {
  2835. char* args = current_command_args;
  2836. millis_t codenum = 0;
  2837. bool hasP = false, hasS = false;
  2838. if (code_seen('P')) {
  2839. codenum = code_value_short(); // milliseconds to wait
  2840. hasP = codenum > 0;
  2841. }
  2842. if (code_seen('S')) {
  2843. codenum = code_value() * 1000; // seconds to wait
  2844. hasS = codenum > 0;
  2845. }
  2846. if (!hasP && !hasS && *args != '\0')
  2847. lcd_setstatus(args, true);
  2848. else {
  2849. LCD_MESSAGEPGM(MSG_USERWAIT);
  2850. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2851. dontExpireStatus();
  2852. #endif
  2853. }
  2854. lcd_ignore_click();
  2855. st_synchronize();
  2856. refresh_cmd_timeout();
  2857. if (codenum > 0) {
  2858. codenum += previous_cmd_ms; // wait until this time for a click
  2859. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2860. while (millis() < codenum && !lcd_clicked()) idle();
  2861. KEEPALIVE_STATE(IN_HANDLER);
  2862. lcd_ignore_click(false);
  2863. }
  2864. else {
  2865. if (!lcd_detected()) return;
  2866. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2867. while (!lcd_clicked()) idle();
  2868. KEEPALIVE_STATE(IN_HANDLER);
  2869. }
  2870. if (IS_SD_PRINTING)
  2871. LCD_MESSAGEPGM(MSG_RESUMING);
  2872. else
  2873. LCD_MESSAGEPGM(WELCOME_MSG);
  2874. }
  2875. #endif // ULTIPANEL
  2876. /**
  2877. * M17: Enable power on all stepper motors
  2878. */
  2879. inline void gcode_M17() {
  2880. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2881. enable_all_steppers();
  2882. }
  2883. #if ENABLED(SDSUPPORT)
  2884. /**
  2885. * M20: List SD card to serial output
  2886. */
  2887. inline void gcode_M20() {
  2888. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2889. card.ls();
  2890. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2891. }
  2892. /**
  2893. * M21: Init SD Card
  2894. */
  2895. inline void gcode_M21() {
  2896. card.initsd();
  2897. }
  2898. /**
  2899. * M22: Release SD Card
  2900. */
  2901. inline void gcode_M22() {
  2902. card.release();
  2903. }
  2904. /**
  2905. * M23: Open a file
  2906. */
  2907. inline void gcode_M23() {
  2908. card.openFile(current_command_args, true);
  2909. }
  2910. /**
  2911. * M24: Start SD Print
  2912. */
  2913. inline void gcode_M24() {
  2914. card.startFileprint();
  2915. print_job_start_ms = millis();
  2916. }
  2917. /**
  2918. * M25: Pause SD Print
  2919. */
  2920. inline void gcode_M25() {
  2921. card.pauseSDPrint();
  2922. }
  2923. /**
  2924. * M26: Set SD Card file index
  2925. */
  2926. inline void gcode_M26() {
  2927. if (card.cardOK && code_seen('S'))
  2928. card.setIndex(code_value_short());
  2929. }
  2930. /**
  2931. * M27: Get SD Card status
  2932. */
  2933. inline void gcode_M27() {
  2934. card.getStatus();
  2935. }
  2936. /**
  2937. * M28: Start SD Write
  2938. */
  2939. inline void gcode_M28() {
  2940. card.openFile(current_command_args, false);
  2941. }
  2942. /**
  2943. * M29: Stop SD Write
  2944. * Processed in write to file routine above
  2945. */
  2946. inline void gcode_M29() {
  2947. // card.saving = false;
  2948. }
  2949. /**
  2950. * M30 <filename>: Delete SD Card file
  2951. */
  2952. inline void gcode_M30() {
  2953. if (card.cardOK) {
  2954. card.closefile();
  2955. card.removeFile(current_command_args);
  2956. }
  2957. }
  2958. #endif //SDSUPPORT
  2959. /**
  2960. * M31: Get the time since the start of SD Print (or last M109)
  2961. */
  2962. inline void gcode_M31() {
  2963. print_job_stop_ms = millis();
  2964. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2965. int min = t / 60, sec = t % 60;
  2966. char time[30];
  2967. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2968. SERIAL_ECHO_START;
  2969. SERIAL_ECHOLN(time);
  2970. lcd_setstatus(time);
  2971. autotempShutdown();
  2972. }
  2973. #if ENABLED(SDSUPPORT)
  2974. /**
  2975. * M32: Select file and start SD Print
  2976. */
  2977. inline void gcode_M32() {
  2978. if (card.sdprinting)
  2979. st_synchronize();
  2980. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  2981. if (!namestartpos)
  2982. namestartpos = current_command_args; // Default name position, 4 letters after the M
  2983. else
  2984. namestartpos++; //to skip the '!'
  2985. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  2986. if (card.cardOK) {
  2987. card.openFile(namestartpos, true, !call_procedure);
  2988. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2989. card.setIndex(code_value_short());
  2990. card.startFileprint();
  2991. if (!call_procedure)
  2992. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2993. }
  2994. }
  2995. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  2996. /**
  2997. * M33: Get the long full path of a file or folder
  2998. *
  2999. * Parameters:
  3000. * <dospath> Case-insensitive DOS-style path to a file or folder
  3001. *
  3002. * Example:
  3003. * M33 miscel~1/armchair/armcha~1.gco
  3004. *
  3005. * Output:
  3006. * /Miscellaneous/Armchair/Armchair.gcode
  3007. */
  3008. inline void gcode_M33() {
  3009. card.printLongPath(current_command_args);
  3010. }
  3011. #endif
  3012. /**
  3013. * M928: Start SD Write
  3014. */
  3015. inline void gcode_M928() {
  3016. card.openLogFile(current_command_args);
  3017. }
  3018. #endif // SDSUPPORT
  3019. /**
  3020. * M42: Change pin status via GCode
  3021. *
  3022. * P<pin> Pin number (LED if omitted)
  3023. * S<byte> Pin status from 0 - 255
  3024. */
  3025. inline void gcode_M42() {
  3026. if (code_seen('S')) {
  3027. int pin_status = code_value_short();
  3028. if (pin_status < 0 || pin_status > 255) return;
  3029. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3030. if (pin_number < 0) return;
  3031. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3032. if (pin_number == sensitive_pins[i]) return;
  3033. pinMode(pin_number, OUTPUT);
  3034. digitalWrite(pin_number, pin_status);
  3035. analogWrite(pin_number, pin_status);
  3036. #if FAN_COUNT > 0
  3037. switch (pin_number) {
  3038. #if HAS_FAN0
  3039. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3040. #endif
  3041. #if HAS_FAN1
  3042. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3043. #endif
  3044. #if HAS_FAN2
  3045. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3046. #endif
  3047. }
  3048. #endif
  3049. } // code_seen('S')
  3050. }
  3051. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3052. // This is redundant since the SanityCheck.h already checks for a valid Z_MIN_PROBE_PIN, but here for clarity.
  3053. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3054. #if !HAS_Z_PROBE
  3055. #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
  3056. #endif
  3057. #elif !HAS_Z_MIN
  3058. #error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
  3059. #endif
  3060. /**
  3061. * M48: Z probe repeatability measurement function.
  3062. *
  3063. * Usage:
  3064. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3065. * P = Number of sampled points (4-50, default 10)
  3066. * X = Sample X position
  3067. * Y = Sample Y position
  3068. * V = Verbose level (0-4, default=1)
  3069. * E = Engage Z probe for each reading
  3070. * L = Number of legs of movement before probe
  3071. *
  3072. * This function assumes the bed has been homed. Specifically, that a G28 command
  3073. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3074. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3075. * regenerated.
  3076. */
  3077. inline void gcode_M48() {
  3078. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3079. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  3080. if (code_seen('V')) {
  3081. verbose_level = code_value_short();
  3082. if (verbose_level < 0 || verbose_level > 4) {
  3083. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3084. return;
  3085. }
  3086. }
  3087. if (verbose_level > 0)
  3088. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3089. if (code_seen('P')) {
  3090. n_samples = code_value_short();
  3091. if (n_samples < 4 || n_samples > 50) {
  3092. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3093. return;
  3094. }
  3095. }
  3096. double X_current = st_get_axis_position_mm(X_AXIS),
  3097. Y_current = st_get_axis_position_mm(Y_AXIS),
  3098. Z_current = st_get_axis_position_mm(Z_AXIS),
  3099. E_current = st_get_axis_position_mm(E_AXIS),
  3100. X_probe_location = X_current, Y_probe_location = Y_current,
  3101. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3102. bool deploy_probe_for_each_reading = code_seen('E');
  3103. if (code_seen('X')) {
  3104. X_probe_location = code_value() - (X_PROBE_OFFSET_FROM_EXTRUDER);
  3105. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  3106. out_of_range_error(PSTR("X"));
  3107. return;
  3108. }
  3109. }
  3110. if (code_seen('Y')) {
  3111. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3112. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  3113. out_of_range_error(PSTR("Y"));
  3114. return;
  3115. }
  3116. }
  3117. if (code_seen('L')) {
  3118. n_legs = code_value_short();
  3119. if (n_legs == 1) n_legs = 2;
  3120. if (n_legs < 0 || n_legs > 15) {
  3121. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3122. return;
  3123. }
  3124. }
  3125. //
  3126. // Do all the preliminary setup work. First raise the Z probe.
  3127. //
  3128. st_synchronize();
  3129. plan_bed_level_matrix.set_to_identity();
  3130. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  3131. st_synchronize();
  3132. //
  3133. // Now get everything to the specified probe point So we can safely do a probe to
  3134. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3135. // use that as a starting point for each probe.
  3136. //
  3137. if (verbose_level > 2)
  3138. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3139. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  3140. E_current,
  3141. homing_feedrate[X_AXIS] / 60,
  3142. active_extruder);
  3143. st_synchronize();
  3144. current_position[X_AXIS] = X_current = st_get_axis_position_mm(X_AXIS);
  3145. current_position[Y_AXIS] = Y_current = st_get_axis_position_mm(Y_AXIS);
  3146. current_position[Z_AXIS] = Z_current = st_get_axis_position_mm(Z_AXIS);
  3147. current_position[E_AXIS] = E_current = st_get_axis_position_mm(E_AXIS);
  3148. //
  3149. // OK, do the initial probe to get us close to the bed.
  3150. // Then retrace the right amount and use that in subsequent probes
  3151. //
  3152. deploy_z_probe();
  3153. setup_for_endstop_move();
  3154. run_z_probe();
  3155. Z_current = current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  3156. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3157. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  3158. E_current,
  3159. homing_feedrate[X_AXIS] / 60,
  3160. active_extruder);
  3161. st_synchronize();
  3162. Z_current = current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  3163. if (deploy_probe_for_each_reading) stow_z_probe();
  3164. for (uint8_t n = 0; n < n_samples; n++) {
  3165. // Make sure we are at the probe location
  3166. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  3167. if (n_legs) {
  3168. millis_t ms = millis();
  3169. double radius = ms % ((X_MAX_LENGTH) / 4), // limit how far out to go
  3170. theta = RADIANS(ms % 360L);
  3171. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  3172. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3173. //SERIAL_ECHOPAIR(" theta: ",theta);
  3174. //SERIAL_ECHOPAIR(" direction: ",dir);
  3175. //SERIAL_EOL;
  3176. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3177. ms = millis();
  3178. theta += RADIANS(dir * (ms % 20L));
  3179. radius += (ms % 10L) - 5L;
  3180. if (radius < 0.0) radius = -radius;
  3181. X_current = X_probe_location + cos(theta) * radius;
  3182. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3183. Y_current = Y_probe_location + sin(theta) * radius;
  3184. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3185. if (verbose_level > 3) {
  3186. SERIAL_ECHOPAIR("x: ", X_current);
  3187. SERIAL_ECHOPAIR("y: ", Y_current);
  3188. SERIAL_EOL;
  3189. }
  3190. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  3191. } // n_legs loop
  3192. // Go back to the probe location
  3193. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  3194. } // n_legs
  3195. if (deploy_probe_for_each_reading) {
  3196. deploy_z_probe();
  3197. delay(1000);
  3198. }
  3199. setup_for_endstop_move();
  3200. run_z_probe();
  3201. sample_set[n] = current_position[Z_AXIS];
  3202. //
  3203. // Get the current mean for the data points we have so far
  3204. //
  3205. sum = 0.0;
  3206. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3207. mean = sum / (n + 1);
  3208. //
  3209. // Now, use that mean to calculate the standard deviation for the
  3210. // data points we have so far
  3211. //
  3212. sum = 0.0;
  3213. for (uint8_t j = 0; j <= n; j++) {
  3214. float ss = sample_set[j] - mean;
  3215. sum += ss * ss;
  3216. }
  3217. sigma = sqrt(sum / (n + 1));
  3218. if (verbose_level > 1) {
  3219. SERIAL_PROTOCOL(n + 1);
  3220. SERIAL_PROTOCOLPGM(" of ");
  3221. SERIAL_PROTOCOL((int)n_samples);
  3222. SERIAL_PROTOCOLPGM(" z: ");
  3223. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3224. if (verbose_level > 2) {
  3225. SERIAL_PROTOCOLPGM(" mean: ");
  3226. SERIAL_PROTOCOL_F(mean, 6);
  3227. SERIAL_PROTOCOLPGM(" sigma: ");
  3228. SERIAL_PROTOCOL_F(sigma, 6);
  3229. }
  3230. }
  3231. if (verbose_level > 0) SERIAL_EOL;
  3232. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3233. st_synchronize();
  3234. // Stow between
  3235. if (deploy_probe_for_each_reading) {
  3236. stow_z_probe();
  3237. delay(1000);
  3238. }
  3239. }
  3240. // Stow after
  3241. if (!deploy_probe_for_each_reading) {
  3242. stow_z_probe();
  3243. delay(1000);
  3244. }
  3245. clean_up_after_endstop_move();
  3246. if (verbose_level > 0) {
  3247. SERIAL_PROTOCOLPGM("Mean: ");
  3248. SERIAL_PROTOCOL_F(mean, 6);
  3249. SERIAL_EOL;
  3250. }
  3251. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3252. SERIAL_PROTOCOL_F(sigma, 6);
  3253. SERIAL_EOL; SERIAL_EOL;
  3254. }
  3255. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3256. /**
  3257. * M104: Set hot end temperature
  3258. */
  3259. inline void gcode_M104() {
  3260. if (setTargetedHotend(104)) return;
  3261. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3262. if (code_seen('S')) {
  3263. float temp = code_value();
  3264. setTargetHotend(temp, target_extruder);
  3265. #if ENABLED(DUAL_X_CARRIAGE)
  3266. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3267. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3268. #endif
  3269. }
  3270. }
  3271. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  3272. void print_heaterstates() {
  3273. #if HAS_TEMP_0 || ENABLED(HEATER_0_USES_MAX6675)
  3274. SERIAL_PROTOCOLPGM(" T:");
  3275. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  3276. SERIAL_PROTOCOLPGM(" /");
  3277. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  3278. #endif
  3279. #if HAS_TEMP_BED
  3280. SERIAL_PROTOCOLPGM(" B:");
  3281. SERIAL_PROTOCOL_F(degBed(), 1);
  3282. SERIAL_PROTOCOLPGM(" /");
  3283. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  3284. #endif
  3285. #if EXTRUDERS > 1
  3286. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3287. SERIAL_PROTOCOLPGM(" T");
  3288. SERIAL_PROTOCOL(e);
  3289. SERIAL_PROTOCOLCHAR(':');
  3290. SERIAL_PROTOCOL_F(degHotend(e), 1);
  3291. SERIAL_PROTOCOLPGM(" /");
  3292. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  3293. }
  3294. #endif
  3295. #if HAS_TEMP_BED
  3296. SERIAL_PROTOCOLPGM(" B@:");
  3297. #ifdef BED_WATTS
  3298. SERIAL_PROTOCOL(((BED_WATTS) * getHeaterPower(-1)) / 127);
  3299. SERIAL_PROTOCOLCHAR('W');
  3300. #else
  3301. SERIAL_PROTOCOL(getHeaterPower(-1));
  3302. #endif
  3303. #endif
  3304. SERIAL_PROTOCOLPGM(" @:");
  3305. #ifdef EXTRUDER_WATTS
  3306. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(target_extruder)) / 127);
  3307. SERIAL_PROTOCOLCHAR('W');
  3308. #else
  3309. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  3310. #endif
  3311. #if EXTRUDERS > 1
  3312. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3313. SERIAL_PROTOCOLPGM(" @");
  3314. SERIAL_PROTOCOL(e);
  3315. SERIAL_PROTOCOLCHAR(':');
  3316. #ifdef EXTRUDER_WATTS
  3317. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(e)) / 127);
  3318. SERIAL_PROTOCOLCHAR('W');
  3319. #else
  3320. SERIAL_PROTOCOL(getHeaterPower(e));
  3321. #endif
  3322. }
  3323. #endif
  3324. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3325. #if HAS_TEMP_BED
  3326. SERIAL_PROTOCOLPGM(" ADC B:");
  3327. SERIAL_PROTOCOL_F(degBed(), 1);
  3328. SERIAL_PROTOCOLPGM("C->");
  3329. SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
  3330. #endif
  3331. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3332. SERIAL_PROTOCOLPGM(" T");
  3333. SERIAL_PROTOCOL(cur_extruder);
  3334. SERIAL_PROTOCOLCHAR(':');
  3335. SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
  3336. SERIAL_PROTOCOLPGM("C->");
  3337. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3338. }
  3339. #endif
  3340. }
  3341. #endif
  3342. /**
  3343. * M105: Read hot end and bed temperature
  3344. */
  3345. inline void gcode_M105() {
  3346. if (setTargetedHotend(105)) return;
  3347. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  3348. SERIAL_PROTOCOLPGM(MSG_OK);
  3349. print_heaterstates();
  3350. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  3351. SERIAL_ERROR_START;
  3352. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3353. #endif
  3354. SERIAL_EOL;
  3355. }
  3356. #if FAN_COUNT > 0
  3357. /**
  3358. * M106: Set Fan Speed
  3359. *
  3360. * S<int> Speed between 0-255
  3361. * P<index> Fan index, if more than one fan
  3362. */
  3363. inline void gcode_M106() {
  3364. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3365. p = code_seen('P') ? code_value_short() : 0;
  3366. NOMORE(s, 255);
  3367. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3368. }
  3369. /**
  3370. * M107: Fan Off
  3371. */
  3372. inline void gcode_M107() {
  3373. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3374. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3375. }
  3376. #endif // FAN_COUNT > 0
  3377. /**
  3378. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3379. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3380. */
  3381. inline void gcode_M109() {
  3382. bool no_wait_for_cooling = true;
  3383. if (setTargetedHotend(109)) return;
  3384. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3385. LCD_MESSAGEPGM(MSG_HEATING);
  3386. no_wait_for_cooling = code_seen('S');
  3387. if (no_wait_for_cooling || code_seen('R')) {
  3388. float temp = code_value();
  3389. setTargetHotend(temp, target_extruder);
  3390. #if ENABLED(DUAL_X_CARRIAGE)
  3391. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3392. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3393. #endif
  3394. }
  3395. #if ENABLED(AUTOTEMP)
  3396. autotemp_enabled = code_seen('F');
  3397. if (autotemp_enabled) autotemp_factor = code_value();
  3398. if (code_seen('S')) autotemp_min = code_value();
  3399. if (code_seen('B')) autotemp_max = code_value();
  3400. #endif
  3401. // Exit if the temperature is above target and not waiting for cooling
  3402. if (no_wait_for_cooling && !isHeatingHotend(target_extruder)) return;
  3403. // Prevents a wait-forever situation if R is misused i.e. M109 R0
  3404. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3405. if (degTargetHotend(target_extruder) < (EXTRUDE_MINTEMP/2)) return;
  3406. #ifdef TEMP_RESIDENCY_TIME
  3407. long residency_start_ms = -1;
  3408. // Loop until the temperature has stabilized
  3409. #define TEMP_CONDITIONS (residency_start_ms < 0 || now < residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL)
  3410. #else
  3411. // Loop until the temperature is very close target
  3412. #define TEMP_CONDITIONS (fabs(degHotend(target_extruder) - degTargetHotend(target_extruder)) < 0.75f)
  3413. #endif //TEMP_RESIDENCY_TIME
  3414. cancel_heatup = false;
  3415. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3416. while (!cancel_heatup && TEMP_CONDITIONS) {
  3417. now = millis();
  3418. if (now > next_temp_ms) { //Print temp & remaining time every 1s while waiting
  3419. next_temp_ms = now + 1000UL;
  3420. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  3421. print_heaterstates();
  3422. #endif
  3423. #ifdef TEMP_RESIDENCY_TIME
  3424. SERIAL_PROTOCOLPGM(" W:");
  3425. if (residency_start_ms >= 0) {
  3426. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3427. SERIAL_PROTOCOLLN(rem);
  3428. }
  3429. else {
  3430. SERIAL_PROTOCOLLNPGM("?");
  3431. }
  3432. #else
  3433. SERIAL_EOL;
  3434. #endif
  3435. }
  3436. idle();
  3437. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3438. #ifdef TEMP_RESIDENCY_TIME
  3439. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3440. // Restart the timer whenever the temperature falls outside the hysteresis.
  3441. if (labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > ((residency_start_ms < 0) ? TEMP_WINDOW : TEMP_HYSTERESIS))
  3442. residency_start_ms = millis();
  3443. #endif //TEMP_RESIDENCY_TIME
  3444. } // while(!cancel_heatup && TEMP_CONDITIONS)
  3445. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3446. print_job_start_ms = previous_cmd_ms;
  3447. }
  3448. #if HAS_TEMP_BED
  3449. /**
  3450. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3451. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3452. */
  3453. inline void gcode_M190() {
  3454. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3455. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3456. bool no_wait_for_cooling = code_seen('S');
  3457. if (no_wait_for_cooling || code_seen('R'))
  3458. setTargetBed(code_value());
  3459. // Exit if the temperature is above target and not waiting for cooling
  3460. if (no_wait_for_cooling && !isHeatingBed()) return;
  3461. cancel_heatup = false;
  3462. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3463. while (!cancel_heatup && degTargetBed() != degBed()) {
  3464. millis_t now = millis();
  3465. if (now > next_temp_ms) { //Print Temp Reading every 1 second while heating up.
  3466. next_temp_ms = now + 1000UL;
  3467. print_heaterstates();
  3468. SERIAL_EOL;
  3469. }
  3470. idle();
  3471. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3472. }
  3473. LCD_MESSAGEPGM(MSG_BED_DONE);
  3474. }
  3475. #endif // HAS_TEMP_BED
  3476. /**
  3477. * M110: Set Current Line Number
  3478. */
  3479. inline void gcode_M110() {
  3480. if (code_seen('N')) gcode_N = code_value_long();
  3481. }
  3482. /**
  3483. * M111: Set the debug level
  3484. */
  3485. inline void gcode_M111() {
  3486. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO | DEBUG_COMMUNICATION;
  3487. if (marlin_debug_flags & DEBUG_ECHO) {
  3488. SERIAL_ECHO_START;
  3489. SERIAL_ECHOLNPGM(MSG_DEBUG_ECHO);
  3490. }
  3491. // FOR MOMENT NOT ACTIVE
  3492. //if (marlin_debug_flags & DEBUG_INFO) SERIAL_ECHOLNPGM(MSG_DEBUG_INFO);
  3493. //if (marlin_debug_flags & DEBUG_ERRORS) SERIAL_ECHOLNPGM(MSG_DEBUG_ERRORS);
  3494. if (marlin_debug_flags & DEBUG_DRYRUN) {
  3495. SERIAL_ECHO_START;
  3496. SERIAL_ECHOLNPGM(MSG_DEBUG_DRYRUN);
  3497. disable_all_heaters();
  3498. }
  3499. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3500. if (marlin_debug_flags & DEBUG_LEVELING) {
  3501. SERIAL_ECHO_START;
  3502. SERIAL_ECHOLNPGM(MSG_DEBUG_LEVELING);
  3503. }
  3504. #endif
  3505. }
  3506. /**
  3507. * M112: Emergency Stop
  3508. */
  3509. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3510. #if ENABLED(BARICUDA)
  3511. #if HAS_HEATER_1
  3512. /**
  3513. * M126: Heater 1 valve open
  3514. */
  3515. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3516. /**
  3517. * M127: Heater 1 valve close
  3518. */
  3519. inline void gcode_M127() { ValvePressure = 0; }
  3520. #endif
  3521. #if HAS_HEATER_2
  3522. /**
  3523. * M128: Heater 2 valve open
  3524. */
  3525. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3526. /**
  3527. * M129: Heater 2 valve close
  3528. */
  3529. inline void gcode_M129() { EtoPPressure = 0; }
  3530. #endif
  3531. #endif //BARICUDA
  3532. /**
  3533. * M140: Set bed temperature
  3534. */
  3535. inline void gcode_M140() {
  3536. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3537. if (code_seen('S')) setTargetBed(code_value());
  3538. }
  3539. #if ENABLED(ULTIPANEL)
  3540. /**
  3541. * M145: Set the heatup state for a material in the LCD menu
  3542. * S<material> (0=PLA, 1=ABS)
  3543. * H<hotend temp>
  3544. * B<bed temp>
  3545. * F<fan speed>
  3546. */
  3547. inline void gcode_M145() {
  3548. int8_t material = code_seen('S') ? code_value_short() : 0;
  3549. if (material < 0 || material > 1) {
  3550. SERIAL_ERROR_START;
  3551. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3552. }
  3553. else {
  3554. int v;
  3555. switch (material) {
  3556. case 0:
  3557. if (code_seen('H')) {
  3558. v = code_value_short();
  3559. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3560. }
  3561. if (code_seen('F')) {
  3562. v = code_value_short();
  3563. plaPreheatFanSpeed = constrain(v, 0, 255);
  3564. }
  3565. #if TEMP_SENSOR_BED != 0
  3566. if (code_seen('B')) {
  3567. v = code_value_short();
  3568. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3569. }
  3570. #endif
  3571. break;
  3572. case 1:
  3573. if (code_seen('H')) {
  3574. v = code_value_short();
  3575. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3576. }
  3577. if (code_seen('F')) {
  3578. v = code_value_short();
  3579. absPreheatFanSpeed = constrain(v, 0, 255);
  3580. }
  3581. #if TEMP_SENSOR_BED != 0
  3582. if (code_seen('B')) {
  3583. v = code_value_short();
  3584. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3585. }
  3586. #endif
  3587. break;
  3588. }
  3589. }
  3590. }
  3591. #endif
  3592. #if HAS_POWER_SWITCH
  3593. /**
  3594. * M80: Turn on Power Supply
  3595. */
  3596. inline void gcode_M80() {
  3597. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3598. // If you have a switch on suicide pin, this is useful
  3599. // if you want to start another print with suicide feature after
  3600. // a print without suicide...
  3601. #if HAS_SUICIDE
  3602. OUT_WRITE(SUICIDE_PIN, HIGH);
  3603. #endif
  3604. #if ENABLED(ULTIPANEL)
  3605. powersupply = true;
  3606. LCD_MESSAGEPGM(WELCOME_MSG);
  3607. lcd_update();
  3608. #endif
  3609. }
  3610. #endif // HAS_POWER_SWITCH
  3611. /**
  3612. * M81: Turn off Power, including Power Supply, if there is one.
  3613. *
  3614. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3615. */
  3616. inline void gcode_M81() {
  3617. disable_all_heaters();
  3618. finishAndDisableSteppers();
  3619. #if FAN_COUNT > 0
  3620. #if FAN_COUNT > 1
  3621. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  3622. #else
  3623. fanSpeeds[0] = 0;
  3624. #endif
  3625. #endif
  3626. delay(1000); // Wait 1 second before switching off
  3627. #if HAS_SUICIDE
  3628. st_synchronize();
  3629. suicide();
  3630. #elif HAS_POWER_SWITCH
  3631. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3632. #endif
  3633. #if ENABLED(ULTIPANEL)
  3634. #if HAS_POWER_SWITCH
  3635. powersupply = false;
  3636. #endif
  3637. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3638. lcd_update();
  3639. #endif
  3640. }
  3641. /**
  3642. * M82: Set E codes absolute (default)
  3643. */
  3644. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3645. /**
  3646. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3647. */
  3648. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3649. /**
  3650. * M18, M84: Disable all stepper motors
  3651. */
  3652. inline void gcode_M18_M84() {
  3653. if (code_seen('S')) {
  3654. stepper_inactive_time = code_value() * 1000;
  3655. }
  3656. else {
  3657. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  3658. if (all_axis) {
  3659. finishAndDisableSteppers();
  3660. }
  3661. else {
  3662. st_synchronize();
  3663. if (code_seen('X')) disable_x();
  3664. if (code_seen('Y')) disable_y();
  3665. if (code_seen('Z')) disable_z();
  3666. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3667. if (code_seen('E')) {
  3668. disable_e0();
  3669. disable_e1();
  3670. disable_e2();
  3671. disable_e3();
  3672. }
  3673. #endif
  3674. }
  3675. }
  3676. }
  3677. /**
  3678. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3679. */
  3680. inline void gcode_M85() {
  3681. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3682. }
  3683. /**
  3684. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3685. * (Follows the same syntax as G92)
  3686. */
  3687. inline void gcode_M92() {
  3688. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3689. if (code_seen(axis_codes[i])) {
  3690. if (i == E_AXIS) {
  3691. float value = code_value();
  3692. if (value < 20.0) {
  3693. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3694. max_e_jerk *= factor;
  3695. max_feedrate[i] *= factor;
  3696. axis_steps_per_sqr_second[i] *= factor;
  3697. }
  3698. axis_steps_per_unit[i] = value;
  3699. }
  3700. else {
  3701. axis_steps_per_unit[i] = code_value();
  3702. }
  3703. }
  3704. }
  3705. }
  3706. /**
  3707. * M114: Output current position to serial port
  3708. */
  3709. inline void gcode_M114() {
  3710. SERIAL_PROTOCOLPGM("X:");
  3711. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3712. SERIAL_PROTOCOLPGM(" Y:");
  3713. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3714. SERIAL_PROTOCOLPGM(" Z:");
  3715. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3716. SERIAL_PROTOCOLPGM(" E:");
  3717. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3718. CRITICAL_SECTION_START;
  3719. extern volatile long count_position[NUM_AXIS];
  3720. long xpos = count_position[X_AXIS],
  3721. ypos = count_position[Y_AXIS],
  3722. zpos = count_position[Z_AXIS];
  3723. CRITICAL_SECTION_END;
  3724. #if ENABLED(COREXY) || ENABLED(COREXZ)
  3725. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  3726. #else
  3727. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3728. #endif
  3729. SERIAL_PROTOCOL(xpos);
  3730. #if ENABLED(COREXY)
  3731. SERIAL_PROTOCOLPGM(" B:");
  3732. #else
  3733. SERIAL_PROTOCOLPGM(" Y:");
  3734. #endif
  3735. SERIAL_PROTOCOL(ypos);
  3736. #if ENABLED(COREXZ)
  3737. SERIAL_PROTOCOLPGM(" C:");
  3738. #else
  3739. SERIAL_PROTOCOLPGM(" Z:");
  3740. #endif
  3741. SERIAL_PROTOCOL(zpos);
  3742. SERIAL_EOL;
  3743. #if ENABLED(SCARA)
  3744. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3745. SERIAL_PROTOCOL(delta[X_AXIS]);
  3746. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3747. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3748. SERIAL_EOL;
  3749. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3750. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  3751. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3752. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  3753. SERIAL_EOL;
  3754. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3755. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * axis_steps_per_unit[X_AXIS]);
  3756. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3757. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * axis_steps_per_unit[Y_AXIS]);
  3758. SERIAL_EOL; SERIAL_EOL;
  3759. #endif
  3760. }
  3761. /**
  3762. * M115: Capabilities string
  3763. */
  3764. inline void gcode_M115() {
  3765. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3766. }
  3767. /**
  3768. * M117: Set LCD Status Message
  3769. */
  3770. inline void gcode_M117() {
  3771. lcd_setstatus(current_command_args);
  3772. }
  3773. /**
  3774. * M119: Output endstop states to serial output
  3775. */
  3776. inline void gcode_M119() {
  3777. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3778. #if HAS_X_MIN
  3779. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3780. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3781. #endif
  3782. #if HAS_X_MAX
  3783. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3784. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3785. #endif
  3786. #if HAS_Y_MIN
  3787. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3788. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3789. #endif
  3790. #if HAS_Y_MAX
  3791. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3792. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3793. #endif
  3794. #if HAS_Z_MIN
  3795. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3796. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3797. #endif
  3798. #if HAS_Z_MAX
  3799. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3800. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3801. #endif
  3802. #if HAS_Z2_MAX
  3803. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3804. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3805. #endif
  3806. #if HAS_Z_PROBE
  3807. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3808. SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3809. #endif
  3810. }
  3811. /**
  3812. * M120: Enable endstops
  3813. */
  3814. inline void gcode_M120() { enable_endstops(true); }
  3815. /**
  3816. * M121: Disable endstops
  3817. */
  3818. inline void gcode_M121() { enable_endstops(false); }
  3819. #if ENABLED(BLINKM)
  3820. /**
  3821. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3822. */
  3823. inline void gcode_M150() {
  3824. SendColors(
  3825. code_seen('R') ? (byte)code_value_short() : 0,
  3826. code_seen('U') ? (byte)code_value_short() : 0,
  3827. code_seen('B') ? (byte)code_value_short() : 0
  3828. );
  3829. }
  3830. #endif // BLINKM
  3831. /**
  3832. * M200: Set filament diameter and set E axis units to cubic millimeters
  3833. *
  3834. * T<extruder> - Optional extruder number. Current extruder if omitted.
  3835. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  3836. */
  3837. inline void gcode_M200() {
  3838. if (setTargetedHotend(200)) return;
  3839. if (code_seen('D')) {
  3840. float diameter = code_value();
  3841. // setting any extruder filament size disables volumetric on the assumption that
  3842. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3843. // for all extruders
  3844. volumetric_enabled = (diameter != 0.0);
  3845. if (volumetric_enabled) {
  3846. filament_size[target_extruder] = diameter;
  3847. // make sure all extruders have some sane value for the filament size
  3848. for (int i = 0; i < EXTRUDERS; i++)
  3849. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3850. }
  3851. }
  3852. else {
  3853. //reserved for setting filament diameter via UFID or filament measuring device
  3854. return;
  3855. }
  3856. calculate_volumetric_multipliers();
  3857. }
  3858. /**
  3859. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3860. */
  3861. inline void gcode_M201() {
  3862. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3863. if (code_seen(axis_codes[i])) {
  3864. max_acceleration_units_per_sq_second[i] = code_value();
  3865. }
  3866. }
  3867. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3868. reset_acceleration_rates();
  3869. }
  3870. #if 0 // Not used for Sprinter/grbl gen6
  3871. inline void gcode_M202() {
  3872. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3873. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3874. }
  3875. }
  3876. #endif
  3877. /**
  3878. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3879. */
  3880. inline void gcode_M203() {
  3881. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3882. if (code_seen(axis_codes[i])) {
  3883. max_feedrate[i] = code_value();
  3884. }
  3885. }
  3886. }
  3887. /**
  3888. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3889. *
  3890. * P = Printing moves
  3891. * R = Retract only (no X, Y, Z) moves
  3892. * T = Travel (non printing) moves
  3893. *
  3894. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3895. */
  3896. inline void gcode_M204() {
  3897. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3898. travel_acceleration = acceleration = code_value();
  3899. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  3900. SERIAL_EOL;
  3901. }
  3902. if (code_seen('P')) {
  3903. acceleration = code_value();
  3904. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration);
  3905. SERIAL_EOL;
  3906. }
  3907. if (code_seen('R')) {
  3908. retract_acceleration = code_value();
  3909. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration);
  3910. SERIAL_EOL;
  3911. }
  3912. if (code_seen('T')) {
  3913. travel_acceleration = code_value();
  3914. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration);
  3915. SERIAL_EOL;
  3916. }
  3917. }
  3918. /**
  3919. * M205: Set Advanced Settings
  3920. *
  3921. * S = Min Feed Rate (mm/s)
  3922. * T = Min Travel Feed Rate (mm/s)
  3923. * B = Min Segment Time (µs)
  3924. * X = Max XY Jerk (mm/s/s)
  3925. * Z = Max Z Jerk (mm/s/s)
  3926. * E = Max E Jerk (mm/s/s)
  3927. */
  3928. inline void gcode_M205() {
  3929. if (code_seen('S')) minimumfeedrate = code_value();
  3930. if (code_seen('T')) mintravelfeedrate = code_value();
  3931. if (code_seen('B')) minsegmenttime = code_value();
  3932. if (code_seen('X')) max_xy_jerk = code_value();
  3933. if (code_seen('Z')) max_z_jerk = code_value();
  3934. if (code_seen('E')) max_e_jerk = code_value();
  3935. }
  3936. /**
  3937. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3938. */
  3939. inline void gcode_M206() {
  3940. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3941. if (code_seen(axis_codes[i])) {
  3942. home_offset[i] = code_value();
  3943. }
  3944. }
  3945. #if ENABLED(SCARA)
  3946. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3947. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3948. #endif
  3949. }
  3950. #if ENABLED(DELTA)
  3951. /**
  3952. * M665: Set delta configurations
  3953. *
  3954. * L = diagonal rod
  3955. * R = delta radius
  3956. * S = segments per second
  3957. * A = Alpha (Tower 1) diagonal rod trim
  3958. * B = Beta (Tower 2) diagonal rod trim
  3959. * C = Gamma (Tower 3) diagonal rod trim
  3960. */
  3961. inline void gcode_M665() {
  3962. if (code_seen('L')) delta_diagonal_rod = code_value();
  3963. if (code_seen('R')) delta_radius = code_value();
  3964. if (code_seen('S')) delta_segments_per_second = code_value();
  3965. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  3966. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  3967. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  3968. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3969. }
  3970. /**
  3971. * M666: Set delta endstop adjustment
  3972. */
  3973. inline void gcode_M666() {
  3974. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3975. if (marlin_debug_flags & DEBUG_LEVELING) {
  3976. SERIAL_ECHOLNPGM(">>> gcode_M666");
  3977. }
  3978. #endif
  3979. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3980. if (code_seen(axis_codes[i])) {
  3981. endstop_adj[i] = code_value();
  3982. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3983. if (marlin_debug_flags & DEBUG_LEVELING) {
  3984. SERIAL_ECHOPGM("endstop_adj[");
  3985. SERIAL_ECHO(axis_codes[i]);
  3986. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  3987. SERIAL_EOL;
  3988. }
  3989. #endif
  3990. }
  3991. }
  3992. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3993. if (marlin_debug_flags & DEBUG_LEVELING) {
  3994. SERIAL_ECHOLNPGM("<<< gcode_M666");
  3995. }
  3996. #endif
  3997. }
  3998. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  3999. /**
  4000. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4001. */
  4002. inline void gcode_M666() {
  4003. if (code_seen('Z')) z_endstop_adj = code_value();
  4004. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4005. SERIAL_EOL;
  4006. }
  4007. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4008. #if ENABLED(FWRETRACT)
  4009. /**
  4010. * M207: Set firmware retraction values
  4011. *
  4012. * S[+mm] retract_length
  4013. * W[+mm] retract_length_swap (multi-extruder)
  4014. * F[mm/min] retract_feedrate
  4015. * Z[mm] retract_zlift
  4016. */
  4017. inline void gcode_M207() {
  4018. if (code_seen('S')) retract_length = code_value();
  4019. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4020. if (code_seen('Z')) retract_zlift = code_value();
  4021. #if EXTRUDERS > 1
  4022. if (code_seen('W')) retract_length_swap = code_value();
  4023. #endif
  4024. }
  4025. /**
  4026. * M208: Set firmware un-retraction values
  4027. *
  4028. * S[+mm] retract_recover_length (in addition to M207 S*)
  4029. * W[+mm] retract_recover_length_swap (multi-extruder)
  4030. * F[mm/min] retract_recover_feedrate
  4031. */
  4032. inline void gcode_M208() {
  4033. if (code_seen('S')) retract_recover_length = code_value();
  4034. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4035. #if EXTRUDERS > 1
  4036. if (code_seen('W')) retract_recover_length_swap = code_value();
  4037. #endif
  4038. }
  4039. /**
  4040. * M209: Enable automatic retract (M209 S1)
  4041. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4042. */
  4043. inline void gcode_M209() {
  4044. if (code_seen('S')) {
  4045. int t = code_value_short();
  4046. switch (t) {
  4047. case 0:
  4048. autoretract_enabled = false;
  4049. break;
  4050. case 1:
  4051. autoretract_enabled = true;
  4052. break;
  4053. default:
  4054. unknown_command_error();
  4055. return;
  4056. }
  4057. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4058. }
  4059. }
  4060. #endif // FWRETRACT
  4061. #if EXTRUDERS > 1
  4062. /**
  4063. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4064. */
  4065. inline void gcode_M218() {
  4066. if (setTargetedHotend(218)) return;
  4067. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4068. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4069. #if ENABLED(DUAL_X_CARRIAGE)
  4070. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4071. #endif
  4072. SERIAL_ECHO_START;
  4073. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4074. for (int e = 0; e < EXTRUDERS; e++) {
  4075. SERIAL_CHAR(' ');
  4076. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4077. SERIAL_CHAR(',');
  4078. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4079. #if ENABLED(DUAL_X_CARRIAGE)
  4080. SERIAL_CHAR(',');
  4081. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4082. #endif
  4083. }
  4084. SERIAL_EOL;
  4085. }
  4086. #endif // EXTRUDERS > 1
  4087. /**
  4088. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4089. */
  4090. inline void gcode_M220() {
  4091. if (code_seen('S')) feedrate_multiplier = code_value();
  4092. }
  4093. /**
  4094. * M221: Set extrusion percentage (M221 T0 S95)
  4095. */
  4096. inline void gcode_M221() {
  4097. if (code_seen('S')) {
  4098. int sval = code_value();
  4099. if (setTargetedHotend(221)) return;
  4100. extruder_multiplier[target_extruder] = sval;
  4101. }
  4102. }
  4103. /**
  4104. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4105. */
  4106. inline void gcode_M226() {
  4107. if (code_seen('P')) {
  4108. int pin_number = code_value();
  4109. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4110. if (pin_state >= -1 && pin_state <= 1) {
  4111. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4112. if (sensitive_pins[i] == pin_number) {
  4113. pin_number = -1;
  4114. break;
  4115. }
  4116. }
  4117. if (pin_number > -1) {
  4118. int target = LOW;
  4119. st_synchronize();
  4120. pinMode(pin_number, INPUT);
  4121. switch (pin_state) {
  4122. case 1:
  4123. target = HIGH;
  4124. break;
  4125. case 0:
  4126. target = LOW;
  4127. break;
  4128. case -1:
  4129. target = !digitalRead(pin_number);
  4130. break;
  4131. }
  4132. while (digitalRead(pin_number) != target) idle();
  4133. } // pin_number > -1
  4134. } // pin_state -1 0 1
  4135. } // code_seen('P')
  4136. }
  4137. #if HAS_SERVOS
  4138. /**
  4139. * M280: Get or set servo position. P<index> S<angle>
  4140. */
  4141. inline void gcode_M280() {
  4142. int servo_index = code_seen('P') ? code_value_short() : -1;
  4143. int servo_position = 0;
  4144. if (code_seen('S')) {
  4145. servo_position = code_value_short();
  4146. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4147. servo[servo_index].move(servo_position);
  4148. else {
  4149. SERIAL_ERROR_START;
  4150. SERIAL_ERROR("Servo ");
  4151. SERIAL_ERROR(servo_index);
  4152. SERIAL_ERRORLN(" out of range");
  4153. }
  4154. }
  4155. else if (servo_index >= 0) {
  4156. SERIAL_ECHO_START;
  4157. SERIAL_ECHO(" Servo ");
  4158. SERIAL_ECHO(servo_index);
  4159. SERIAL_ECHO(": ");
  4160. SERIAL_ECHOLN(servo[servo_index].read());
  4161. }
  4162. }
  4163. #endif // HAS_SERVOS
  4164. #if HAS_BUZZER
  4165. /**
  4166. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4167. */
  4168. inline void gcode_M300() {
  4169. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4170. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4171. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4172. buzz(beepP, beepS);
  4173. }
  4174. #endif // HAS_BUZZER
  4175. #if ENABLED(PIDTEMP)
  4176. /**
  4177. * M301: Set PID parameters P I D (and optionally C, L)
  4178. *
  4179. * P[float] Kp term
  4180. * I[float] Ki term (unscaled)
  4181. * D[float] Kd term (unscaled)
  4182. *
  4183. * With PID_ADD_EXTRUSION_RATE:
  4184. *
  4185. * C[float] Kc term
  4186. * L[float] LPQ length
  4187. */
  4188. inline void gcode_M301() {
  4189. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4190. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4191. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4192. if (e < EXTRUDERS) { // catch bad input value
  4193. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4194. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4195. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4196. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4197. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4198. if (code_seen('L')) lpq_len = code_value();
  4199. NOMORE(lpq_len, LPQ_MAX_LEN);
  4200. #endif
  4201. updatePID();
  4202. SERIAL_ECHO_START;
  4203. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4204. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4205. SERIAL_ECHO(e);
  4206. #endif // PID_PARAMS_PER_EXTRUDER
  4207. SERIAL_ECHO(" p:");
  4208. SERIAL_ECHO(PID_PARAM(Kp, e));
  4209. SERIAL_ECHO(" i:");
  4210. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4211. SERIAL_ECHO(" d:");
  4212. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4213. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4214. SERIAL_ECHO(" c:");
  4215. //Kc does not have scaling applied above, or in resetting defaults
  4216. SERIAL_ECHO(PID_PARAM(Kc, e));
  4217. #endif
  4218. SERIAL_EOL;
  4219. }
  4220. else {
  4221. SERIAL_ERROR_START;
  4222. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4223. }
  4224. }
  4225. #endif // PIDTEMP
  4226. #if ENABLED(PIDTEMPBED)
  4227. inline void gcode_M304() {
  4228. if (code_seen('P')) bedKp = code_value();
  4229. if (code_seen('I')) bedKi = scalePID_i(code_value());
  4230. if (code_seen('D')) bedKd = scalePID_d(code_value());
  4231. updatePID();
  4232. SERIAL_ECHO_START;
  4233. SERIAL_ECHO(" p:");
  4234. SERIAL_ECHO(bedKp);
  4235. SERIAL_ECHO(" i:");
  4236. SERIAL_ECHO(unscalePID_i(bedKi));
  4237. SERIAL_ECHO(" d:");
  4238. SERIAL_ECHOLN(unscalePID_d(bedKd));
  4239. }
  4240. #endif // PIDTEMPBED
  4241. #if defined(CHDK) || HAS_PHOTOGRAPH
  4242. /**
  4243. * M240: Trigger a camera by emulating a Canon RC-1
  4244. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4245. */
  4246. inline void gcode_M240() {
  4247. #ifdef CHDK
  4248. OUT_WRITE(CHDK, HIGH);
  4249. chdkHigh = millis();
  4250. chdkActive = true;
  4251. #elif HAS_PHOTOGRAPH
  4252. const uint8_t NUM_PULSES = 16;
  4253. const float PULSE_LENGTH = 0.01524;
  4254. for (int i = 0; i < NUM_PULSES; i++) {
  4255. WRITE(PHOTOGRAPH_PIN, HIGH);
  4256. _delay_ms(PULSE_LENGTH);
  4257. WRITE(PHOTOGRAPH_PIN, LOW);
  4258. _delay_ms(PULSE_LENGTH);
  4259. }
  4260. delay(7.33);
  4261. for (int i = 0; i < NUM_PULSES; i++) {
  4262. WRITE(PHOTOGRAPH_PIN, HIGH);
  4263. _delay_ms(PULSE_LENGTH);
  4264. WRITE(PHOTOGRAPH_PIN, LOW);
  4265. _delay_ms(PULSE_LENGTH);
  4266. }
  4267. #endif // !CHDK && HAS_PHOTOGRAPH
  4268. }
  4269. #endif // CHDK || PHOTOGRAPH_PIN
  4270. #if ENABLED(HAS_LCD_CONTRAST)
  4271. /**
  4272. * M250: Read and optionally set the LCD contrast
  4273. */
  4274. inline void gcode_M250() {
  4275. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4276. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4277. SERIAL_PROTOCOL(lcd_contrast);
  4278. SERIAL_EOL;
  4279. }
  4280. #endif // HAS_LCD_CONTRAST
  4281. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4282. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  4283. /**
  4284. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4285. */
  4286. inline void gcode_M302() {
  4287. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  4288. }
  4289. #endif // PREVENT_DANGEROUS_EXTRUDE
  4290. /**
  4291. * M303: PID relay autotune
  4292. * S<temperature> sets the target temperature. (default target temperature = 150C)
  4293. * E<extruder> (-1 for the bed)
  4294. * C<cycles>
  4295. */
  4296. inline void gcode_M303() {
  4297. int e = code_seen('E') ? code_value_short() : 0;
  4298. int c = code_seen('C') ? code_value_short() : 5;
  4299. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4300. if (e >=0 && e < EXTRUDERS)
  4301. target_extruder = e;
  4302. KEEPALIVE_STATE(NOT_BUSY);
  4303. PID_autotune(temp, e, c);
  4304. }
  4305. #if ENABLED(SCARA)
  4306. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4307. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4308. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4309. if (IsRunning()) {
  4310. //gcode_get_destination(); // For X Y Z E F
  4311. delta[X_AXIS] = delta_x;
  4312. delta[Y_AXIS] = delta_y;
  4313. calculate_SCARA_forward_Transform(delta);
  4314. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4315. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4316. prepare_move();
  4317. //ok_to_send();
  4318. return true;
  4319. }
  4320. return false;
  4321. }
  4322. /**
  4323. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4324. */
  4325. inline bool gcode_M360() {
  4326. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4327. return SCARA_move_to_cal(0, 120);
  4328. }
  4329. /**
  4330. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4331. */
  4332. inline bool gcode_M361() {
  4333. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4334. return SCARA_move_to_cal(90, 130);
  4335. }
  4336. /**
  4337. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4338. */
  4339. inline bool gcode_M362() {
  4340. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4341. return SCARA_move_to_cal(60, 180);
  4342. }
  4343. /**
  4344. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4345. */
  4346. inline bool gcode_M363() {
  4347. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4348. return SCARA_move_to_cal(50, 90);
  4349. }
  4350. /**
  4351. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4352. */
  4353. inline bool gcode_M364() {
  4354. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4355. return SCARA_move_to_cal(45, 135);
  4356. }
  4357. /**
  4358. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4359. */
  4360. inline void gcode_M365() {
  4361. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4362. if (code_seen(axis_codes[i])) {
  4363. axis_scaling[i] = code_value();
  4364. }
  4365. }
  4366. }
  4367. #endif // SCARA
  4368. #if ENABLED(EXT_SOLENOID)
  4369. void enable_solenoid(uint8_t num) {
  4370. switch (num) {
  4371. case 0:
  4372. OUT_WRITE(SOL0_PIN, HIGH);
  4373. break;
  4374. #if HAS_SOLENOID_1
  4375. case 1:
  4376. OUT_WRITE(SOL1_PIN, HIGH);
  4377. break;
  4378. #endif
  4379. #if HAS_SOLENOID_2
  4380. case 2:
  4381. OUT_WRITE(SOL2_PIN, HIGH);
  4382. break;
  4383. #endif
  4384. #if HAS_SOLENOID_3
  4385. case 3:
  4386. OUT_WRITE(SOL3_PIN, HIGH);
  4387. break;
  4388. #endif
  4389. default:
  4390. SERIAL_ECHO_START;
  4391. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4392. break;
  4393. }
  4394. }
  4395. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4396. void disable_all_solenoids() {
  4397. OUT_WRITE(SOL0_PIN, LOW);
  4398. OUT_WRITE(SOL1_PIN, LOW);
  4399. OUT_WRITE(SOL2_PIN, LOW);
  4400. OUT_WRITE(SOL3_PIN, LOW);
  4401. }
  4402. /**
  4403. * M380: Enable solenoid on the active extruder
  4404. */
  4405. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4406. /**
  4407. * M381: Disable all solenoids
  4408. */
  4409. inline void gcode_M381() { disable_all_solenoids(); }
  4410. #endif // EXT_SOLENOID
  4411. /**
  4412. * M400: Finish all moves
  4413. */
  4414. inline void gcode_M400() { st_synchronize(); }
  4415. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4416. /**
  4417. * M401: Engage Z Servo endstop if available
  4418. */
  4419. inline void gcode_M401() {
  4420. #if HAS_SERVO_ENDSTOPS
  4421. raise_z_for_servo();
  4422. #endif
  4423. deploy_z_probe();
  4424. }
  4425. /**
  4426. * M402: Retract Z Servo endstop if enabled
  4427. */
  4428. inline void gcode_M402() {
  4429. #if HAS_SERVO_ENDSTOPS
  4430. raise_z_for_servo();
  4431. #endif
  4432. stow_z_probe(false);
  4433. }
  4434. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4435. #if ENABLED(FILAMENT_SENSOR)
  4436. /**
  4437. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4438. */
  4439. inline void gcode_M404() {
  4440. #if HAS_FILWIDTH
  4441. if (code_seen('W')) {
  4442. filament_width_nominal = code_value();
  4443. }
  4444. else {
  4445. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4446. SERIAL_PROTOCOLLN(filament_width_nominal);
  4447. }
  4448. #endif
  4449. }
  4450. /**
  4451. * M405: Turn on filament sensor for control
  4452. */
  4453. inline void gcode_M405() {
  4454. if (code_seen('D')) meas_delay_cm = code_value();
  4455. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4456. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  4457. int temp_ratio = widthFil_to_size_ratio();
  4458. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  4459. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  4460. delay_index1 = delay_index2 = 0;
  4461. }
  4462. filament_sensor = true;
  4463. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4464. //SERIAL_PROTOCOL(filament_width_meas);
  4465. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4466. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4467. }
  4468. /**
  4469. * M406: Turn off filament sensor for control
  4470. */
  4471. inline void gcode_M406() { filament_sensor = false; }
  4472. /**
  4473. * M407: Get measured filament diameter on serial output
  4474. */
  4475. inline void gcode_M407() {
  4476. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4477. SERIAL_PROTOCOLLN(filament_width_meas);
  4478. }
  4479. #endif // FILAMENT_SENSOR
  4480. /**
  4481. * M410: Quickstop - Abort all planned moves
  4482. *
  4483. * This will stop the carriages mid-move, so most likely they
  4484. * will be out of sync with the stepper position after this.
  4485. */
  4486. inline void gcode_M410() { quickStop(); }
  4487. #if ENABLED(MESH_BED_LEVELING)
  4488. /**
  4489. * M420: Enable/Disable Mesh Bed Leveling
  4490. */
  4491. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4492. /**
  4493. * M421: Set a single Mesh Bed Leveling Z coordinate
  4494. */
  4495. inline void gcode_M421() {
  4496. float x, y, z;
  4497. bool err = false, hasX, hasY, hasZ;
  4498. if ((hasX = code_seen('X'))) x = code_value();
  4499. if ((hasY = code_seen('Y'))) y = code_value();
  4500. if ((hasZ = code_seen('Z'))) z = code_value();
  4501. if (!hasX || !hasY || !hasZ) {
  4502. SERIAL_ERROR_START;
  4503. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4504. err = true;
  4505. }
  4506. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4507. SERIAL_ERROR_START;
  4508. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4509. err = true;
  4510. }
  4511. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4512. }
  4513. #endif
  4514. /**
  4515. * M428: Set home_offset based on the distance between the
  4516. * current_position and the nearest "reference point."
  4517. * If an axis is past center its endstop position
  4518. * is the reference-point. Otherwise it uses 0. This allows
  4519. * the Z offset to be set near the bed when using a max endstop.
  4520. *
  4521. * M428 can't be used more than 2cm away from 0 or an endstop.
  4522. *
  4523. * Use M206 to set these values directly.
  4524. */
  4525. inline void gcode_M428() {
  4526. bool err = false;
  4527. float new_offs[3], new_pos[3];
  4528. memcpy(new_pos, current_position, sizeof(new_pos));
  4529. memcpy(new_offs, home_offset, sizeof(new_offs));
  4530. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4531. if (axis_known_position[i]) {
  4532. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4533. diff = new_pos[i] - base;
  4534. if (diff > -20 && diff < 20) {
  4535. new_offs[i] -= diff;
  4536. new_pos[i] = base;
  4537. }
  4538. else {
  4539. SERIAL_ERROR_START;
  4540. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4541. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4542. #if HAS_BUZZER
  4543. enqueue_and_echo_commands_P(PSTR("M300 S40 P200"));
  4544. #endif
  4545. err = true;
  4546. break;
  4547. }
  4548. }
  4549. }
  4550. if (!err) {
  4551. memcpy(current_position, new_pos, sizeof(new_pos));
  4552. memcpy(home_offset, new_offs, sizeof(new_offs));
  4553. sync_plan_position();
  4554. LCD_ALERTMESSAGEPGM("Offset applied.");
  4555. #if HAS_BUZZER
  4556. enqueue_and_echo_commands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  4557. #endif
  4558. }
  4559. }
  4560. /**
  4561. * M500: Store settings in EEPROM
  4562. */
  4563. inline void gcode_M500() {
  4564. Config_StoreSettings();
  4565. }
  4566. /**
  4567. * M501: Read settings from EEPROM
  4568. */
  4569. inline void gcode_M501() {
  4570. Config_RetrieveSettings();
  4571. }
  4572. /**
  4573. * M502: Revert to default settings
  4574. */
  4575. inline void gcode_M502() {
  4576. Config_ResetDefault();
  4577. }
  4578. /**
  4579. * M503: print settings currently in memory
  4580. */
  4581. inline void gcode_M503() {
  4582. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4583. }
  4584. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  4585. /**
  4586. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4587. */
  4588. inline void gcode_M540() {
  4589. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4590. }
  4591. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4592. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4593. inline void gcode_SET_Z_PROBE_OFFSET() {
  4594. SERIAL_ECHO_START;
  4595. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4596. SERIAL_CHAR(' ');
  4597. if (code_seen('Z')) {
  4598. float value = code_value();
  4599. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4600. zprobe_zoffset = value;
  4601. SERIAL_ECHO(zprobe_zoffset);
  4602. }
  4603. else {
  4604. SERIAL_ECHOPGM(MSG_Z_MIN);
  4605. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4606. SERIAL_ECHOPGM(MSG_Z_MAX);
  4607. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4608. }
  4609. }
  4610. else {
  4611. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  4612. }
  4613. SERIAL_EOL;
  4614. }
  4615. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4616. #if ENABLED(FILAMENTCHANGEENABLE)
  4617. /**
  4618. * M600: Pause for filament change
  4619. *
  4620. * E[distance] - Retract the filament this far (negative value)
  4621. * Z[distance] - Move the Z axis by this distance
  4622. * X[position] - Move to this X position, with Y
  4623. * Y[position] - Move to this Y position, with X
  4624. * L[distance] - Retract distance for removal (manual reload)
  4625. *
  4626. * Default values are used for omitted arguments.
  4627. *
  4628. */
  4629. inline void gcode_M600() {
  4630. if (degHotend(active_extruder) < extrude_min_temp) {
  4631. SERIAL_ERROR_START;
  4632. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4633. return;
  4634. }
  4635. float lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4636. for (int i = 0; i < NUM_AXIS; i++)
  4637. lastpos[i] = destination[i] = current_position[i];
  4638. #if ENABLED(DELTA)
  4639. #define RUNPLAN calculate_delta(destination); \
  4640. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4641. #else
  4642. #define RUNPLAN line_to_destination();
  4643. #endif
  4644. //retract by E
  4645. if (code_seen('E')) destination[E_AXIS] += code_value();
  4646. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4647. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4648. #endif
  4649. RUNPLAN;
  4650. //lift Z
  4651. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4652. #ifdef FILAMENTCHANGE_ZADD
  4653. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4654. #endif
  4655. RUNPLAN;
  4656. //move xy
  4657. if (code_seen('X')) destination[X_AXIS] = code_value();
  4658. #ifdef FILAMENTCHANGE_XPOS
  4659. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4660. #endif
  4661. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4662. #ifdef FILAMENTCHANGE_YPOS
  4663. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4664. #endif
  4665. RUNPLAN;
  4666. if (code_seen('L')) destination[E_AXIS] += code_value();
  4667. #ifdef FILAMENTCHANGE_FINALRETRACT
  4668. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4669. #endif
  4670. RUNPLAN;
  4671. //finish moves
  4672. st_synchronize();
  4673. //disable extruder steppers so filament can be removed
  4674. disable_e0();
  4675. disable_e1();
  4676. disable_e2();
  4677. disable_e3();
  4678. delay(100);
  4679. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4680. millis_t next_tick = 0;
  4681. KEEPALIVE_STATE(WAIT_FOR_USER);
  4682. while (!lcd_clicked()) {
  4683. #if DISABLED(AUTO_FILAMENT_CHANGE)
  4684. millis_t ms = millis();
  4685. if (ms >= next_tick) {
  4686. lcd_quick_feedback();
  4687. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4688. }
  4689. idle(true);
  4690. #else
  4691. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4692. destination[E_AXIS] = current_position[E_AXIS];
  4693. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  4694. st_synchronize();
  4695. #endif
  4696. } // while(!lcd_clicked)
  4697. KEEPALIVE_STATE(IN_HANDLER);
  4698. lcd_quick_feedback(); // click sound feedback
  4699. #if ENABLED(AUTO_FILAMENT_CHANGE)
  4700. current_position[E_AXIS] = 0;
  4701. st_synchronize();
  4702. #endif
  4703. //return to normal
  4704. if (code_seen('L')) destination[E_AXIS] -= code_value();
  4705. #ifdef FILAMENTCHANGE_FINALRETRACT
  4706. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4707. #endif
  4708. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4709. plan_set_e_position(current_position[E_AXIS]);
  4710. RUNPLAN; //should do nothing
  4711. lcd_reset_alert_level();
  4712. #if ENABLED(DELTA)
  4713. // Move XYZ to starting position, then E
  4714. calculate_delta(lastpos);
  4715. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4716. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  4717. #else
  4718. // Move XY to starting position, then Z, then E
  4719. destination[X_AXIS] = lastpos[X_AXIS];
  4720. destination[Y_AXIS] = lastpos[Y_AXIS];
  4721. line_to_destination();
  4722. destination[Z_AXIS] = lastpos[Z_AXIS];
  4723. line_to_destination();
  4724. destination[E_AXIS] = lastpos[E_AXIS];
  4725. line_to_destination();
  4726. #endif
  4727. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4728. filrunoutEnqueued = false;
  4729. #endif
  4730. }
  4731. #endif // FILAMENTCHANGEENABLE
  4732. #if ENABLED(DUAL_X_CARRIAGE)
  4733. /**
  4734. * M605: Set dual x-carriage movement mode
  4735. *
  4736. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4737. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4738. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4739. * millimeters x-offset and an optional differential hotend temperature of
  4740. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4741. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4742. *
  4743. * Note: the X axis should be homed after changing dual x-carriage mode.
  4744. */
  4745. inline void gcode_M605() {
  4746. st_synchronize();
  4747. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4748. switch (dual_x_carriage_mode) {
  4749. case DXC_DUPLICATION_MODE:
  4750. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4751. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4752. SERIAL_ECHO_START;
  4753. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4754. SERIAL_CHAR(' ');
  4755. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4756. SERIAL_CHAR(',');
  4757. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4758. SERIAL_CHAR(' ');
  4759. SERIAL_ECHO(duplicate_extruder_x_offset);
  4760. SERIAL_CHAR(',');
  4761. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4762. break;
  4763. case DXC_FULL_CONTROL_MODE:
  4764. case DXC_AUTO_PARK_MODE:
  4765. break;
  4766. default:
  4767. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4768. break;
  4769. }
  4770. active_extruder_parked = false;
  4771. extruder_duplication_enabled = false;
  4772. delayed_move_time = 0;
  4773. }
  4774. #endif // DUAL_X_CARRIAGE
  4775. /**
  4776. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4777. */
  4778. inline void gcode_M907() {
  4779. #if HAS_DIGIPOTSS
  4780. for (int i = 0; i < NUM_AXIS; i++)
  4781. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4782. if (code_seen('B')) digipot_current(4, code_value());
  4783. if (code_seen('S')) for (int i = 0; i <= 4; i++) digipot_current(i, code_value());
  4784. #endif
  4785. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4786. if (code_seen('X')) digipot_current(0, code_value());
  4787. #endif
  4788. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4789. if (code_seen('Z')) digipot_current(1, code_value());
  4790. #endif
  4791. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4792. if (code_seen('E')) digipot_current(2, code_value());
  4793. #endif
  4794. #if ENABLED(DIGIPOT_I2C)
  4795. // this one uses actual amps in floating point
  4796. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4797. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4798. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  4799. #endif
  4800. #if ENABLED(DAC_STEPPER_CURRENT)
  4801. if (code_seen('S')) {
  4802. float dac_percent = code_value();
  4803. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  4804. }
  4805. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  4806. #endif
  4807. }
  4808. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  4809. /**
  4810. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4811. */
  4812. inline void gcode_M908() {
  4813. digitalPotWrite(
  4814. code_seen('P') ? code_value() : 0,
  4815. code_seen('S') ? code_value() : 0
  4816. );
  4817. #ifdef DAC_STEPPER_CURRENT
  4818. dac_current_raw(
  4819. code_seen('P') ? code_value_long() : -1,
  4820. code_seen('S') ? code_value_short() : 0
  4821. );
  4822. #endif
  4823. }
  4824. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  4825. inline void gcode_M909() { dac_print_values(); }
  4826. inline void gcode_M910() { dac_commit_eeprom(); }
  4827. #endif
  4828. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  4829. #if HAS_MICROSTEPS
  4830. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4831. inline void gcode_M350() {
  4832. if (code_seen('S')) for (int i = 0; i <= 4; i++) microstep_mode(i, code_value());
  4833. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_mode(i, (uint8_t)code_value());
  4834. if (code_seen('B')) microstep_mode(4, code_value());
  4835. microstep_readings();
  4836. }
  4837. /**
  4838. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4839. * S# determines MS1 or MS2, X# sets the pin high/low.
  4840. */
  4841. inline void gcode_M351() {
  4842. if (code_seen('S')) switch (code_value_short()) {
  4843. case 1:
  4844. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4845. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4846. break;
  4847. case 2:
  4848. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4849. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4850. break;
  4851. }
  4852. microstep_readings();
  4853. }
  4854. #endif // HAS_MICROSTEPS
  4855. /**
  4856. * M999: Restart after being stopped
  4857. */
  4858. inline void gcode_M999() {
  4859. Running = true;
  4860. lcd_reset_alert_level();
  4861. // gcode_LastN = Stopped_gcode_LastN;
  4862. FlushSerialRequestResend();
  4863. }
  4864. /**
  4865. * T0-T3: Switch tool, usually switching extruders
  4866. *
  4867. * F[mm/min] Set the movement feedrate
  4868. */
  4869. inline void gcode_T(uint8_t tmp_extruder) {
  4870. if (tmp_extruder >= EXTRUDERS) {
  4871. SERIAL_ECHO_START;
  4872. SERIAL_CHAR('T');
  4873. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  4874. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4875. }
  4876. else {
  4877. target_extruder = tmp_extruder;
  4878. #if EXTRUDERS > 1
  4879. bool make_move = false;
  4880. #endif
  4881. if (code_seen('F')) {
  4882. #if EXTRUDERS > 1
  4883. make_move = true;
  4884. #endif
  4885. float next_feedrate = code_value();
  4886. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4887. }
  4888. #if EXTRUDERS > 1
  4889. if (tmp_extruder != active_extruder) {
  4890. // Save current position to return to after applying extruder offset
  4891. set_destination_to_current();
  4892. #if ENABLED(DUAL_X_CARRIAGE)
  4893. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4894. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4895. // Park old head: 1) raise 2) move to park position 3) lower
  4896. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4897. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4898. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4899. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4900. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4901. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4902. st_synchronize();
  4903. }
  4904. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4905. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  4906. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  4907. active_extruder = tmp_extruder;
  4908. // This function resets the max/min values - the current position may be overwritten below.
  4909. set_axis_is_at_home(X_AXIS);
  4910. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4911. current_position[X_AXIS] = inactive_extruder_x_pos;
  4912. inactive_extruder_x_pos = destination[X_AXIS];
  4913. }
  4914. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4915. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4916. if (active_extruder == 0 || active_extruder_parked)
  4917. current_position[X_AXIS] = inactive_extruder_x_pos;
  4918. else
  4919. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4920. inactive_extruder_x_pos = destination[X_AXIS];
  4921. extruder_duplication_enabled = false;
  4922. }
  4923. else {
  4924. // record raised toolhead position for use by unpark
  4925. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4926. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4927. active_extruder_parked = true;
  4928. delayed_move_time = 0;
  4929. }
  4930. #else // !DUAL_X_CARRIAGE
  4931. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  4932. // Offset extruder, make sure to apply the bed level rotation matrix
  4933. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  4934. extruder_offset[Y_AXIS][tmp_extruder],
  4935. extruder_offset[Z_AXIS][tmp_extruder]),
  4936. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  4937. extruder_offset[Y_AXIS][active_extruder],
  4938. extruder_offset[Z_AXIS][active_extruder]),
  4939. offset_vec = tmp_offset_vec - act_offset_vec;
  4940. offset_vec.apply_rotation(plan_bed_level_matrix.transpose(plan_bed_level_matrix));
  4941. current_position[X_AXIS] += offset_vec.x;
  4942. current_position[Y_AXIS] += offset_vec.y;
  4943. current_position[Z_AXIS] += offset_vec.z;
  4944. #else // !AUTO_BED_LEVELING_FEATURE
  4945. // Offset extruder (only by XY)
  4946. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4947. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4948. #endif // !AUTO_BED_LEVELING_FEATURE
  4949. // Set the new active extruder and position
  4950. active_extruder = tmp_extruder;
  4951. #endif // !DUAL_X_CARRIAGE
  4952. #if ENABLED(DELTA)
  4953. sync_plan_position_delta();
  4954. #else
  4955. sync_plan_position();
  4956. #endif
  4957. // Move to the old position if 'F' was in the parameters
  4958. if (make_move && IsRunning()) prepare_move();
  4959. }
  4960. #if ENABLED(EXT_SOLENOID)
  4961. st_synchronize();
  4962. disable_all_solenoids();
  4963. enable_solenoid_on_active_extruder();
  4964. #endif // EXT_SOLENOID
  4965. #endif // EXTRUDERS > 1
  4966. SERIAL_ECHO_START;
  4967. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4968. SERIAL_PROTOCOLLN((int)active_extruder);
  4969. }
  4970. }
  4971. /**
  4972. * Process a single command and dispatch it to its handler
  4973. * This is called from the main loop()
  4974. */
  4975. void process_next_command() {
  4976. current_command = command_queue[cmd_queue_index_r];
  4977. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4978. SERIAL_ECHO_START;
  4979. SERIAL_ECHOLN(current_command);
  4980. }
  4981. // Sanitize the current command:
  4982. // - Skip leading spaces
  4983. // - Bypass N[-0-9][0-9]*[ ]*
  4984. // - Overwrite * with nul to mark the end
  4985. while (*current_command == ' ') ++current_command;
  4986. if (*current_command == 'N' && ((current_command[1] >= '0' && current_command[1] <= '9') || current_command[1] == '-')) {
  4987. current_command += 2; // skip N[-0-9]
  4988. while (*current_command >= '0' && *current_command <= '9') ++current_command; // skip [0-9]*
  4989. while (*current_command == ' ') ++current_command; // skip [ ]*
  4990. }
  4991. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  4992. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  4993. // Get the command code, which must be G, M, or T
  4994. char command_code = *current_command;
  4995. // Skip the letter-code and spaces to get the numeric part
  4996. current_command_args = current_command + 1;
  4997. while (*current_command_args == ' ') ++current_command_args;
  4998. // The code must have a numeric value
  4999. bool code_is_good = (*current_command_args >= '0' && *current_command_args <= '9');
  5000. int codenum; // define ahead of goto
  5001. // Bail early if there's no code
  5002. if (!code_is_good) goto ExitUnknownCommand;
  5003. // Args pointer optimizes code_seen, especially those taking XYZEF
  5004. // This wastes a little cpu on commands that expect no arguments.
  5005. while (*current_command_args == ' ' || (*current_command_args >= '0' && *current_command_args <= '9')) ++current_command_args;
  5006. // Interpret the code int
  5007. seen_pointer = current_command;
  5008. codenum = code_value_short();
  5009. KEEPALIVE_STATE(IN_HANDLER);
  5010. // Handle a known G, M, or T
  5011. switch (command_code) {
  5012. case 'G': switch (codenum) {
  5013. // G0, G1
  5014. case 0:
  5015. case 1:
  5016. gcode_G0_G1();
  5017. break;
  5018. // G2, G3
  5019. #if DISABLED(SCARA)
  5020. case 2: // G2 - CW ARC
  5021. case 3: // G3 - CCW ARC
  5022. gcode_G2_G3(codenum == 2);
  5023. break;
  5024. #endif
  5025. // G4 Dwell
  5026. case 4:
  5027. gcode_G4();
  5028. break;
  5029. #if ENABLED(FWRETRACT)
  5030. case 10: // G10: retract
  5031. case 11: // G11: retract_recover
  5032. gcode_G10_G11(codenum == 10);
  5033. break;
  5034. #endif //FWRETRACT
  5035. case 28: // G28: Home all axes, one at a time
  5036. gcode_G28();
  5037. break;
  5038. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5039. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5040. gcode_G29();
  5041. break;
  5042. #endif
  5043. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5044. #if DISABLED(Z_PROBE_SLED)
  5045. case 30: // G30 Single Z probe
  5046. gcode_G30();
  5047. break;
  5048. #else // Z_PROBE_SLED
  5049. case 31: // G31: dock the sled
  5050. case 32: // G32: undock the sled
  5051. dock_sled(codenum == 31);
  5052. break;
  5053. #endif // Z_PROBE_SLED
  5054. #endif // AUTO_BED_LEVELING_FEATURE
  5055. case 90: // G90
  5056. relative_mode = false;
  5057. break;
  5058. case 91: // G91
  5059. relative_mode = true;
  5060. break;
  5061. case 92: // G92
  5062. gcode_G92();
  5063. break;
  5064. }
  5065. break;
  5066. case 'M': switch (codenum) {
  5067. #if ENABLED(ULTIPANEL)
  5068. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5069. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5070. gcode_M0_M1();
  5071. break;
  5072. #endif // ULTIPANEL
  5073. case 17:
  5074. gcode_M17();
  5075. break;
  5076. #if ENABLED(SDSUPPORT)
  5077. case 20: // M20 - list SD card
  5078. gcode_M20(); break;
  5079. case 21: // M21 - init SD card
  5080. gcode_M21(); break;
  5081. case 22: //M22 - release SD card
  5082. gcode_M22(); break;
  5083. case 23: //M23 - Select file
  5084. gcode_M23(); break;
  5085. case 24: //M24 - Start SD print
  5086. gcode_M24(); break;
  5087. case 25: //M25 - Pause SD print
  5088. gcode_M25(); break;
  5089. case 26: //M26 - Set SD index
  5090. gcode_M26(); break;
  5091. case 27: //M27 - Get SD status
  5092. gcode_M27(); break;
  5093. case 28: //M28 - Start SD write
  5094. gcode_M28(); break;
  5095. case 29: //M29 - Stop SD write
  5096. gcode_M29(); break;
  5097. case 30: //M30 <filename> Delete File
  5098. gcode_M30(); break;
  5099. case 32: //M32 - Select file and start SD print
  5100. gcode_M32(); break;
  5101. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5102. case 33: //M33 - Get the long full path to a file or folder
  5103. gcode_M33(); break;
  5104. #endif // LONG_FILENAME_HOST_SUPPORT
  5105. case 928: //M928 - Start SD write
  5106. gcode_M928(); break;
  5107. #endif //SDSUPPORT
  5108. case 31: //M31 take time since the start of the SD print or an M109 command
  5109. gcode_M31();
  5110. break;
  5111. case 42: //M42 -Change pin status via gcode
  5112. gcode_M42();
  5113. break;
  5114. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5115. case 48: // M48 Z probe repeatability
  5116. gcode_M48();
  5117. break;
  5118. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5119. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5120. case 100:
  5121. gcode_M100();
  5122. break;
  5123. #endif
  5124. case 104: // M104
  5125. gcode_M104();
  5126. break;
  5127. case 110: // M110: Set Current Line Number
  5128. gcode_M110();
  5129. break;
  5130. case 111: // M111: Set debug level
  5131. gcode_M111();
  5132. break;
  5133. case 112: // M112: Emergency Stop
  5134. gcode_M112();
  5135. break;
  5136. case 140: // M140: Set bed temp
  5137. gcode_M140();
  5138. break;
  5139. case 105: // M105: Read current temperature
  5140. gcode_M105();
  5141. return; // "ok" already printed
  5142. case 109: // M109: Wait for temperature
  5143. gcode_M109();
  5144. break;
  5145. #if HAS_TEMP_BED
  5146. case 190: // M190: Wait for bed heater to reach target
  5147. gcode_M190();
  5148. break;
  5149. #endif // HAS_TEMP_BED
  5150. #if FAN_COUNT > 0
  5151. case 106: // M106: Fan On
  5152. gcode_M106();
  5153. break;
  5154. case 107: // M107: Fan Off
  5155. gcode_M107();
  5156. break;
  5157. #endif // FAN_COUNT > 0
  5158. #if ENABLED(BARICUDA)
  5159. // PWM for HEATER_1_PIN
  5160. #if HAS_HEATER_1
  5161. case 126: // M126: valve open
  5162. gcode_M126();
  5163. break;
  5164. case 127: // M127: valve closed
  5165. gcode_M127();
  5166. break;
  5167. #endif // HAS_HEATER_1
  5168. // PWM for HEATER_2_PIN
  5169. #if HAS_HEATER_2
  5170. case 128: // M128: valve open
  5171. gcode_M128();
  5172. break;
  5173. case 129: // M129: valve closed
  5174. gcode_M129();
  5175. break;
  5176. #endif // HAS_HEATER_2
  5177. #endif // BARICUDA
  5178. #if HAS_POWER_SWITCH
  5179. case 80: // M80: Turn on Power Supply
  5180. gcode_M80();
  5181. break;
  5182. #endif // HAS_POWER_SWITCH
  5183. case 81: // M81: Turn off Power, including Power Supply, if possible
  5184. gcode_M81();
  5185. break;
  5186. case 82:
  5187. gcode_M82();
  5188. break;
  5189. case 83:
  5190. gcode_M83();
  5191. break;
  5192. case 18: // (for compatibility)
  5193. case 84: // M84
  5194. gcode_M18_M84();
  5195. break;
  5196. case 85: // M85
  5197. gcode_M85();
  5198. break;
  5199. case 92: // M92: Set the steps-per-unit for one or more axes
  5200. gcode_M92();
  5201. break;
  5202. case 115: // M115: Report capabilities
  5203. gcode_M115();
  5204. break;
  5205. case 117: // M117: Set LCD message text, if possible
  5206. gcode_M117();
  5207. break;
  5208. case 114: // M114: Report current position
  5209. gcode_M114();
  5210. break;
  5211. case 120: // M120: Enable endstops
  5212. gcode_M120();
  5213. break;
  5214. case 121: // M121: Disable endstops
  5215. gcode_M121();
  5216. break;
  5217. case 119: // M119: Report endstop states
  5218. gcode_M119();
  5219. break;
  5220. #if ENABLED(ULTIPANEL)
  5221. case 145: // M145: Set material heatup parameters
  5222. gcode_M145();
  5223. break;
  5224. #endif
  5225. #if ENABLED(BLINKM)
  5226. case 150: // M150
  5227. gcode_M150();
  5228. break;
  5229. #endif //BLINKM
  5230. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5231. gcode_M200();
  5232. break;
  5233. case 201: // M201
  5234. gcode_M201();
  5235. break;
  5236. #if 0 // Not used for Sprinter/grbl gen6
  5237. case 202: // M202
  5238. gcode_M202();
  5239. break;
  5240. #endif
  5241. case 203: // M203 max feedrate mm/sec
  5242. gcode_M203();
  5243. break;
  5244. case 204: // M204 acclereration S normal moves T filmanent only moves
  5245. gcode_M204();
  5246. break;
  5247. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5248. gcode_M205();
  5249. break;
  5250. case 206: // M206 additional homing offset
  5251. gcode_M206();
  5252. break;
  5253. #if ENABLED(DELTA)
  5254. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5255. gcode_M665();
  5256. break;
  5257. #endif
  5258. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5259. case 666: // M666 set delta / dual endstop adjustment
  5260. gcode_M666();
  5261. break;
  5262. #endif
  5263. #if ENABLED(FWRETRACT)
  5264. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5265. gcode_M207();
  5266. break;
  5267. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5268. gcode_M208();
  5269. break;
  5270. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5271. gcode_M209();
  5272. break;
  5273. #endif // FWRETRACT
  5274. #if EXTRUDERS > 1
  5275. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5276. gcode_M218();
  5277. break;
  5278. #endif
  5279. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5280. gcode_M220();
  5281. break;
  5282. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5283. gcode_M221();
  5284. break;
  5285. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5286. gcode_M226();
  5287. break;
  5288. #if HAS_SERVOS
  5289. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5290. gcode_M280();
  5291. break;
  5292. #endif // HAS_SERVOS
  5293. #if HAS_BUZZER
  5294. case 300: // M300 - Play beep tone
  5295. gcode_M300();
  5296. break;
  5297. #endif // HAS_BUZZER
  5298. #if ENABLED(PIDTEMP)
  5299. case 301: // M301
  5300. gcode_M301();
  5301. break;
  5302. #endif // PIDTEMP
  5303. #if ENABLED(PIDTEMPBED)
  5304. case 304: // M304
  5305. gcode_M304();
  5306. break;
  5307. #endif // PIDTEMPBED
  5308. #if defined(CHDK) || HAS_PHOTOGRAPH
  5309. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5310. gcode_M240();
  5311. break;
  5312. #endif // CHDK || PHOTOGRAPH_PIN
  5313. #if ENABLED(HAS_LCD_CONTRAST)
  5314. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5315. gcode_M250();
  5316. break;
  5317. #endif // HAS_LCD_CONTRAST
  5318. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5319. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5320. gcode_M302();
  5321. break;
  5322. #endif // PREVENT_DANGEROUS_EXTRUDE
  5323. case 303: // M303 PID autotune
  5324. gcode_M303();
  5325. break;
  5326. #if ENABLED(SCARA)
  5327. case 360: // M360 SCARA Theta pos1
  5328. if (gcode_M360()) return;
  5329. break;
  5330. case 361: // M361 SCARA Theta pos2
  5331. if (gcode_M361()) return;
  5332. break;
  5333. case 362: // M362 SCARA Psi pos1
  5334. if (gcode_M362()) return;
  5335. break;
  5336. case 363: // M363 SCARA Psi pos2
  5337. if (gcode_M363()) return;
  5338. break;
  5339. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5340. if (gcode_M364()) return;
  5341. break;
  5342. case 365: // M365 Set SCARA scaling for X Y Z
  5343. gcode_M365();
  5344. break;
  5345. #endif // SCARA
  5346. case 400: // M400 finish all moves
  5347. gcode_M400();
  5348. break;
  5349. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5350. case 401:
  5351. gcode_M401();
  5352. break;
  5353. case 402:
  5354. gcode_M402();
  5355. break;
  5356. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5357. #if ENABLED(FILAMENT_SENSOR)
  5358. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5359. gcode_M404();
  5360. break;
  5361. case 405: //M405 Turn on filament sensor for control
  5362. gcode_M405();
  5363. break;
  5364. case 406: //M406 Turn off filament sensor for control
  5365. gcode_M406();
  5366. break;
  5367. case 407: //M407 Display measured filament diameter
  5368. gcode_M407();
  5369. break;
  5370. #endif // FILAMENT_SENSOR
  5371. case 410: // M410 quickstop - Abort all the planned moves.
  5372. gcode_M410();
  5373. break;
  5374. #if ENABLED(MESH_BED_LEVELING)
  5375. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5376. gcode_M420();
  5377. break;
  5378. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5379. gcode_M421();
  5380. break;
  5381. #endif
  5382. case 428: // M428 Apply current_position to home_offset
  5383. gcode_M428();
  5384. break;
  5385. case 500: // M500 Store settings in EEPROM
  5386. gcode_M500();
  5387. break;
  5388. case 501: // M501 Read settings from EEPROM
  5389. gcode_M501();
  5390. break;
  5391. case 502: // M502 Revert to default settings
  5392. gcode_M502();
  5393. break;
  5394. case 503: // M503 print settings currently in memory
  5395. gcode_M503();
  5396. break;
  5397. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5398. case 540:
  5399. gcode_M540();
  5400. break;
  5401. #endif
  5402. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5403. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5404. gcode_SET_Z_PROBE_OFFSET();
  5405. break;
  5406. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5407. #if ENABLED(FILAMENTCHANGEENABLE)
  5408. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5409. gcode_M600();
  5410. break;
  5411. #endif // FILAMENTCHANGEENABLE
  5412. #if ENABLED(DUAL_X_CARRIAGE)
  5413. case 605:
  5414. gcode_M605();
  5415. break;
  5416. #endif // DUAL_X_CARRIAGE
  5417. case 907: // M907 Set digital trimpot motor current using axis codes.
  5418. gcode_M907();
  5419. break;
  5420. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5421. case 908: // M908 Control digital trimpot directly.
  5422. gcode_M908();
  5423. break;
  5424. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5425. case 909: // M909 Print digipot/DAC current value
  5426. gcode_M909();
  5427. break;
  5428. case 910: // M910 Commit digipot/DAC value to external EEPROM
  5429. gcode_M910();
  5430. break;
  5431. #endif
  5432. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5433. #if HAS_MICROSTEPS
  5434. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5435. gcode_M350();
  5436. break;
  5437. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5438. gcode_M351();
  5439. break;
  5440. #endif // HAS_MICROSTEPS
  5441. case 999: // M999: Restart after being Stopped
  5442. gcode_M999();
  5443. break;
  5444. }
  5445. break;
  5446. case 'T':
  5447. gcode_T(codenum);
  5448. break;
  5449. default: code_is_good = false;
  5450. }
  5451. KEEPALIVE_STATE(NOT_BUSY);
  5452. ExitUnknownCommand:
  5453. // Still unknown command? Throw an error
  5454. if (!code_is_good) unknown_command_error();
  5455. ok_to_send();
  5456. }
  5457. void FlushSerialRequestResend() {
  5458. //char command_queue[cmd_queue_index_r][100]="Resend:";
  5459. MYSERIAL.flush();
  5460. SERIAL_PROTOCOLPGM(MSG_RESEND);
  5461. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5462. ok_to_send();
  5463. }
  5464. void ok_to_send() {
  5465. refresh_cmd_timeout();
  5466. if (!send_ok[cmd_queue_index_r]) return;
  5467. SERIAL_PROTOCOLPGM(MSG_OK);
  5468. #if ENABLED(ADVANCED_OK)
  5469. char* p = command_queue[cmd_queue_index_r];
  5470. if (*p == 'N') {
  5471. SERIAL_PROTOCOL(' ');
  5472. SERIAL_ECHO(*p++);
  5473. while ((*p >= '0' && *p <= '9') || *p == '-')
  5474. SERIAL_ECHO(*p++);
  5475. }
  5476. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  5477. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  5478. #endif
  5479. SERIAL_EOL;
  5480. }
  5481. void clamp_to_software_endstops(float target[3]) {
  5482. if (min_software_endstops) {
  5483. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  5484. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  5485. float negative_z_offset = 0;
  5486. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5487. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  5488. if (home_offset[Z_AXIS] < 0) {
  5489. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5490. if (marlin_debug_flags & DEBUG_LEVELING) {
  5491. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  5492. SERIAL_EOL;
  5493. }
  5494. #endif
  5495. negative_z_offset += home_offset[Z_AXIS];
  5496. }
  5497. #endif
  5498. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  5499. }
  5500. if (max_software_endstops) {
  5501. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  5502. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  5503. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  5504. }
  5505. }
  5506. #if ENABLED(DELTA)
  5507. void recalc_delta_settings(float radius, float diagonal_rod) {
  5508. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  5509. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  5510. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  5511. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  5512. delta_tower3_x = 0.0; // back middle tower
  5513. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  5514. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  5515. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  5516. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  5517. }
  5518. void calculate_delta(float cartesian[3]) {
  5519. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  5520. - sq(delta_tower1_x - cartesian[X_AXIS])
  5521. - sq(delta_tower1_y - cartesian[Y_AXIS])
  5522. ) + cartesian[Z_AXIS];
  5523. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  5524. - sq(delta_tower2_x - cartesian[X_AXIS])
  5525. - sq(delta_tower2_y - cartesian[Y_AXIS])
  5526. ) + cartesian[Z_AXIS];
  5527. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  5528. - sq(delta_tower3_x - cartesian[X_AXIS])
  5529. - sq(delta_tower3_y - cartesian[Y_AXIS])
  5530. ) + cartesian[Z_AXIS];
  5531. /*
  5532. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5533. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5534. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5535. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  5536. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  5537. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  5538. */
  5539. }
  5540. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5541. // Adjust print surface height by linear interpolation over the bed_level array.
  5542. void adjust_delta(float cartesian[3]) {
  5543. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  5544. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  5545. float h1 = 0.001 - half, h2 = half - 0.001,
  5546. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  5547. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  5548. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  5549. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  5550. z1 = bed_level[floor_x + half][floor_y + half],
  5551. z2 = bed_level[floor_x + half][floor_y + half + 1],
  5552. z3 = bed_level[floor_x + half + 1][floor_y + half],
  5553. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  5554. left = (1 - ratio_y) * z1 + ratio_y * z2,
  5555. right = (1 - ratio_y) * z3 + ratio_y * z4,
  5556. offset = (1 - ratio_x) * left + ratio_x * right;
  5557. delta[X_AXIS] += offset;
  5558. delta[Y_AXIS] += offset;
  5559. delta[Z_AXIS] += offset;
  5560. /*
  5561. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  5562. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  5563. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  5564. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  5565. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  5566. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  5567. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  5568. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  5569. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  5570. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  5571. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  5572. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  5573. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  5574. */
  5575. }
  5576. #endif // AUTO_BED_LEVELING_FEATURE
  5577. #endif // DELTA
  5578. #if ENABLED(MESH_BED_LEVELING)
  5579. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  5580. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  5581. if (!mbl.active) {
  5582. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5583. set_current_to_destination();
  5584. return;
  5585. }
  5586. int pix = mbl.select_x_index(current_position[X_AXIS]);
  5587. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  5588. int ix = mbl.select_x_index(x);
  5589. int iy = mbl.select_y_index(y);
  5590. pix = min(pix, MESH_NUM_X_POINTS - 2);
  5591. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  5592. ix = min(ix, MESH_NUM_X_POINTS - 2);
  5593. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  5594. if (pix == ix && piy == iy) {
  5595. // Start and end on same mesh square
  5596. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5597. set_current_to_destination();
  5598. return;
  5599. }
  5600. float nx, ny, nz, ne, normalized_dist;
  5601. if (ix > pix && TEST(x_splits, ix)) {
  5602. nx = mbl.get_x(ix);
  5603. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5604. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5605. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5606. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5607. CBI(x_splits, ix);
  5608. }
  5609. else if (ix < pix && TEST(x_splits, pix)) {
  5610. nx = mbl.get_x(pix);
  5611. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5612. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5613. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5614. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5615. CBI(x_splits, pix);
  5616. }
  5617. else if (iy > piy && TEST(y_splits, iy)) {
  5618. ny = mbl.get_y(iy);
  5619. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5620. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5621. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5622. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5623. CBI(y_splits, iy);
  5624. }
  5625. else if (iy < piy && TEST(y_splits, piy)) {
  5626. ny = mbl.get_y(piy);
  5627. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5628. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5629. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5630. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5631. CBI(y_splits, piy);
  5632. }
  5633. else {
  5634. // Already split on a border
  5635. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5636. set_current_to_destination();
  5637. return;
  5638. }
  5639. // Do the split and look for more borders
  5640. destination[X_AXIS] = nx;
  5641. destination[Y_AXIS] = ny;
  5642. destination[Z_AXIS] = nz;
  5643. destination[E_AXIS] = ne;
  5644. mesh_plan_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  5645. destination[X_AXIS] = x;
  5646. destination[Y_AXIS] = y;
  5647. destination[Z_AXIS] = z;
  5648. destination[E_AXIS] = e;
  5649. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5650. }
  5651. #endif // MESH_BED_LEVELING
  5652. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5653. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  5654. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  5655. float de = dest_e - curr_e;
  5656. if (de) {
  5657. if (degHotend(active_extruder) < extrude_min_temp) {
  5658. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5659. SERIAL_ECHO_START;
  5660. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5661. }
  5662. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  5663. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5664. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5665. SERIAL_ECHO_START;
  5666. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5667. }
  5668. #endif
  5669. }
  5670. }
  5671. #endif // PREVENT_DANGEROUS_EXTRUDE
  5672. #if ENABLED(DELTA) || ENABLED(SCARA)
  5673. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  5674. float difference[NUM_AXIS];
  5675. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  5676. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5677. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5678. if (cartesian_mm < 0.000001) return false;
  5679. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5680. int steps = max(1, int(delta_segments_per_second * seconds));
  5681. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5682. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5683. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5684. for (int s = 1; s <= steps; s++) {
  5685. float fraction = float(s) / float(steps);
  5686. for (int8_t i = 0; i < NUM_AXIS; i++)
  5687. target[i] = current_position[i] + difference[i] * fraction;
  5688. calculate_delta(target);
  5689. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5690. adjust_delta(target);
  5691. #endif
  5692. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  5693. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  5694. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  5695. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5696. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5697. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5698. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
  5699. }
  5700. return true;
  5701. }
  5702. #endif // DELTA || SCARA
  5703. #if ENABLED(SCARA)
  5704. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  5705. #endif
  5706. #if ENABLED(DUAL_X_CARRIAGE)
  5707. inline bool prepare_move_dual_x_carriage() {
  5708. if (active_extruder_parked) {
  5709. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5710. // move duplicate extruder into correct duplication position.
  5711. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5712. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5713. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5714. sync_plan_position();
  5715. st_synchronize();
  5716. extruder_duplication_enabled = true;
  5717. active_extruder_parked = false;
  5718. }
  5719. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5720. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5721. // This is a travel move (with no extrusion)
  5722. // Skip it, but keep track of the current position
  5723. // (so it can be used as the start of the next non-travel move)
  5724. if (delayed_move_time != 0xFFFFFFFFUL) {
  5725. set_current_to_destination();
  5726. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5727. delayed_move_time = millis();
  5728. return false;
  5729. }
  5730. }
  5731. delayed_move_time = 0;
  5732. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5733. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5734. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5735. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5736. active_extruder_parked = false;
  5737. }
  5738. }
  5739. return true;
  5740. }
  5741. #endif // DUAL_X_CARRIAGE
  5742. #if DISABLED(DELTA) && DISABLED(SCARA)
  5743. inline bool prepare_move_cartesian() {
  5744. // Do not use feedrate_multiplier for E or Z only moves
  5745. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5746. line_to_destination();
  5747. }
  5748. else {
  5749. #if ENABLED(MESH_BED_LEVELING)
  5750. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  5751. return false;
  5752. #else
  5753. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5754. #endif
  5755. }
  5756. return true;
  5757. }
  5758. #endif // !DELTA && !SCARA
  5759. /**
  5760. * Prepare a single move and get ready for the next one
  5761. *
  5762. * (This may call plan_buffer_line several times to put
  5763. * smaller moves into the planner for DELTA or SCARA.)
  5764. */
  5765. void prepare_move() {
  5766. clamp_to_software_endstops(destination);
  5767. refresh_cmd_timeout();
  5768. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5769. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5770. #endif
  5771. #if ENABLED(SCARA)
  5772. if (!prepare_move_scara(destination)) return;
  5773. #elif ENABLED(DELTA)
  5774. if (!prepare_move_delta(destination)) return;
  5775. #endif
  5776. #if ENABLED(DUAL_X_CARRIAGE)
  5777. if (!prepare_move_dual_x_carriage()) return;
  5778. #endif
  5779. #if DISABLED(DELTA) && DISABLED(SCARA)
  5780. if (!prepare_move_cartesian()) return;
  5781. #endif
  5782. set_current_to_destination();
  5783. }
  5784. /**
  5785. * Plan an arc in 2 dimensions
  5786. *
  5787. * The arc is approximated by generating many small linear segments.
  5788. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  5789. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  5790. * larger segments will tend to be more efficient. Your slicer should have
  5791. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  5792. */
  5793. void plan_arc(
  5794. float target[NUM_AXIS], // Destination position
  5795. float* offset, // Center of rotation relative to current_position
  5796. uint8_t clockwise // Clockwise?
  5797. ) {
  5798. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  5799. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  5800. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  5801. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  5802. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  5803. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  5804. r_axis1 = -offset[Y_AXIS],
  5805. rt_axis0 = target[X_AXIS] - center_axis0,
  5806. rt_axis1 = target[Y_AXIS] - center_axis1;
  5807. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  5808. float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
  5809. if (angular_travel < 0) angular_travel += RADIANS(360);
  5810. if (clockwise) angular_travel -= RADIANS(360);
  5811. // Make a circle if the angular rotation is 0
  5812. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  5813. angular_travel += RADIANS(360);
  5814. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  5815. if (mm_of_travel < 0.001) return;
  5816. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  5817. if (segments == 0) segments = 1;
  5818. float theta_per_segment = angular_travel / segments;
  5819. float linear_per_segment = linear_travel / segments;
  5820. float extruder_per_segment = extruder_travel / segments;
  5821. /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  5822. and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  5823. r_T = [cos(phi) -sin(phi);
  5824. sin(phi) cos(phi] * r ;
  5825. For arc generation, the center of the circle is the axis of rotation and the radius vector is
  5826. defined from the circle center to the initial position. Each line segment is formed by successive
  5827. vector rotations. This requires only two cos() and sin() computations to form the rotation
  5828. matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  5829. all double numbers are single precision on the Arduino. (True double precision will not have
  5830. round off issues for CNC applications.) Single precision error can accumulate to be greater than
  5831. tool precision in some cases. Therefore, arc path correction is implemented.
  5832. Small angle approximation may be used to reduce computation overhead further. This approximation
  5833. holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  5834. theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  5835. to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  5836. numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  5837. issue for CNC machines with the single precision Arduino calculations.
  5838. This approximation also allows plan_arc to immediately insert a line segment into the planner
  5839. without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  5840. a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  5841. This is important when there are successive arc motions.
  5842. */
  5843. // Vector rotation matrix values
  5844. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  5845. float sin_T = theta_per_segment;
  5846. float arc_target[NUM_AXIS];
  5847. float sin_Ti;
  5848. float cos_Ti;
  5849. float r_axisi;
  5850. uint16_t i;
  5851. int8_t count = 0;
  5852. // Initialize the linear axis
  5853. arc_target[Z_AXIS] = current_position[Z_AXIS];
  5854. // Initialize the extruder axis
  5855. arc_target[E_AXIS] = current_position[E_AXIS];
  5856. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  5857. for (i = 1; i < segments; i++) { // Increment (segments-1)
  5858. if (count < N_ARC_CORRECTION) {
  5859. // Apply vector rotation matrix to previous r_axis0 / 1
  5860. r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
  5861. r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
  5862. r_axis1 = r_axisi;
  5863. count++;
  5864. }
  5865. else {
  5866. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  5867. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  5868. cos_Ti = cos(i * theta_per_segment);
  5869. sin_Ti = sin(i * theta_per_segment);
  5870. r_axis0 = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  5871. r_axis1 = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  5872. count = 0;
  5873. }
  5874. // Update arc_target location
  5875. arc_target[X_AXIS] = center_axis0 + r_axis0;
  5876. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  5877. arc_target[Z_AXIS] += linear_per_segment;
  5878. arc_target[E_AXIS] += extruder_per_segment;
  5879. clamp_to_software_endstops(arc_target);
  5880. #if ENABLED(DELTA) || ENABLED(SCARA)
  5881. calculate_delta(arc_target);
  5882. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5883. adjust_delta(arc_target);
  5884. #endif
  5885. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  5886. #else
  5887. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  5888. #endif
  5889. }
  5890. // Ensure last segment arrives at target location.
  5891. #if ENABLED(DELTA) || ENABLED(SCARA)
  5892. calculate_delta(target);
  5893. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5894. adjust_delta(target);
  5895. #endif
  5896. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  5897. #else
  5898. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  5899. #endif
  5900. // As far as the parser is concerned, the position is now == target. In reality the
  5901. // motion control system might still be processing the action and the real tool position
  5902. // in any intermediate location.
  5903. set_current_to_destination();
  5904. }
  5905. #if HAS_CONTROLLERFAN
  5906. void controllerFan() {
  5907. static millis_t lastMotor = 0; // Last time a motor was turned on
  5908. static millis_t lastMotorCheck = 0; // Last time the state was checked
  5909. millis_t ms = millis();
  5910. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5911. lastMotorCheck = ms;
  5912. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5913. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5914. #if EXTRUDERS > 1
  5915. || E1_ENABLE_READ == E_ENABLE_ON
  5916. #if HAS_X2_ENABLE
  5917. || X2_ENABLE_READ == X_ENABLE_ON
  5918. #endif
  5919. #if EXTRUDERS > 2
  5920. || E2_ENABLE_READ == E_ENABLE_ON
  5921. #if EXTRUDERS > 3
  5922. || E3_ENABLE_READ == E_ENABLE_ON
  5923. #endif
  5924. #endif
  5925. #endif
  5926. ) {
  5927. lastMotor = ms; //... set time to NOW so the fan will turn on
  5928. }
  5929. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + ((CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5930. // allows digital or PWM fan output to be used (see M42 handling)
  5931. digitalWrite(CONTROLLERFAN_PIN, speed);
  5932. analogWrite(CONTROLLERFAN_PIN, speed);
  5933. }
  5934. }
  5935. #endif // HAS_CONTROLLERFAN
  5936. #if ENABLED(SCARA)
  5937. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  5938. // Perform forward kinematics, and place results in delta[3]
  5939. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5940. float x_sin, x_cos, y_sin, y_cos;
  5941. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5942. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5943. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  5944. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  5945. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  5946. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  5947. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5948. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5949. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5950. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5951. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5952. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5953. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5954. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5955. }
  5956. void calculate_delta(float cartesian[3]) {
  5957. //reverse kinematics.
  5958. // Perform reversed kinematics, and place results in delta[3]
  5959. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5960. float SCARA_pos[2];
  5961. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5962. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5963. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5964. #if (Linkage_1 == Linkage_2)
  5965. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  5966. #else
  5967. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  5968. #endif
  5969. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  5970. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5971. SCARA_K2 = Linkage_2 * SCARA_S2;
  5972. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  5973. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  5974. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5975. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5976. delta[Z_AXIS] = cartesian[Z_AXIS];
  5977. /*
  5978. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5979. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5980. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5981. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5982. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5983. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5984. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5985. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5986. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5987. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5988. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5989. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5990. SERIAL_EOL;
  5991. */
  5992. }
  5993. #endif // SCARA
  5994. #if ENABLED(TEMP_STAT_LEDS)
  5995. static bool red_led = false;
  5996. static millis_t next_status_led_update_ms = 0;
  5997. void handle_status_leds(void) {
  5998. float max_temp = 0.0;
  5999. if (millis() > next_status_led_update_ms) {
  6000. next_status_led_update_ms += 500; // Update every 0.5s
  6001. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6002. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  6003. #if HAS_TEMP_BED
  6004. max_temp = max(max(max_temp, degTargetBed()), degBed());
  6005. #endif
  6006. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6007. if (new_led != red_led) {
  6008. red_led = new_led;
  6009. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6010. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6011. }
  6012. }
  6013. }
  6014. #endif
  6015. void enable_all_steppers() {
  6016. enable_x();
  6017. enable_y();
  6018. enable_z();
  6019. enable_e0();
  6020. enable_e1();
  6021. enable_e2();
  6022. enable_e3();
  6023. }
  6024. void disable_all_steppers() {
  6025. disable_x();
  6026. disable_y();
  6027. disable_z();
  6028. disable_e0();
  6029. disable_e1();
  6030. disable_e2();
  6031. disable_e3();
  6032. }
  6033. /**
  6034. * Standard idle routine keeps the machine alive
  6035. */
  6036. void idle(
  6037. #if ENABLED(FILAMENTCHANGEENABLE)
  6038. bool no_stepper_sleep/*=false*/
  6039. #endif
  6040. ) {
  6041. manage_heater();
  6042. manage_inactivity(
  6043. #if ENABLED(FILAMENTCHANGEENABLE)
  6044. no_stepper_sleep
  6045. #endif
  6046. );
  6047. host_keepalive();
  6048. lcd_update();
  6049. }
  6050. /**
  6051. * Manage several activities:
  6052. * - Check for Filament Runout
  6053. * - Keep the command buffer full
  6054. * - Check for maximum inactive time between commands
  6055. * - Check for maximum inactive time between stepper commands
  6056. * - Check if pin CHDK needs to go LOW
  6057. * - Check for KILL button held down
  6058. * - Check for HOME button held down
  6059. * - Check if cooling fan needs to be switched on
  6060. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6061. */
  6062. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6063. #if HAS_FILRUNOUT
  6064. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6065. filrunout();
  6066. #endif
  6067. if (commands_in_queue < BUFSIZE) get_command();
  6068. millis_t ms = millis();
  6069. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  6070. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  6071. && !ignore_stepper_queue && !blocks_queued()) {
  6072. #if ENABLED(DISABLE_INACTIVE_X)
  6073. disable_x();
  6074. #endif
  6075. #if ENABLED(DISABLE_INACTIVE_Y)
  6076. disable_y();
  6077. #endif
  6078. #if ENABLED(DISABLE_INACTIVE_Z)
  6079. disable_z();
  6080. #endif
  6081. #if ENABLED(DISABLE_INACTIVE_E)
  6082. disable_e0();
  6083. disable_e1();
  6084. disable_e2();
  6085. disable_e3();
  6086. #endif
  6087. }
  6088. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6089. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  6090. chdkActive = false;
  6091. WRITE(CHDK, LOW);
  6092. }
  6093. #endif
  6094. #if HAS_KILL
  6095. // Check if the kill button was pressed and wait just in case it was an accidental
  6096. // key kill key press
  6097. // -------------------------------------------------------------------------------
  6098. static int killCount = 0; // make the inactivity button a bit less responsive
  6099. const int KILL_DELAY = 750;
  6100. if (!READ(KILL_PIN))
  6101. killCount++;
  6102. else if (killCount > 0)
  6103. killCount--;
  6104. // Exceeded threshold and we can confirm that it was not accidental
  6105. // KILL the machine
  6106. // ----------------------------------------------------------------
  6107. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6108. #endif
  6109. #if HAS_HOME
  6110. // Check to see if we have to home, use poor man's debouncer
  6111. // ---------------------------------------------------------
  6112. static int homeDebounceCount = 0; // poor man's debouncing count
  6113. const int HOME_DEBOUNCE_DELAY = 2500;
  6114. if (!READ(HOME_PIN)) {
  6115. if (!homeDebounceCount) {
  6116. enqueue_and_echo_commands_P(PSTR("G28"));
  6117. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6118. }
  6119. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6120. homeDebounceCount++;
  6121. else
  6122. homeDebounceCount = 0;
  6123. }
  6124. #endif
  6125. #if HAS_CONTROLLERFAN
  6126. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6127. #endif
  6128. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6129. if (ms > previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000)
  6130. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6131. bool oldstatus;
  6132. switch (active_extruder) {
  6133. case 0:
  6134. oldstatus = E0_ENABLE_READ;
  6135. enable_e0();
  6136. break;
  6137. #if EXTRUDERS > 1
  6138. case 1:
  6139. oldstatus = E1_ENABLE_READ;
  6140. enable_e1();
  6141. break;
  6142. #if EXTRUDERS > 2
  6143. case 2:
  6144. oldstatus = E2_ENABLE_READ;
  6145. enable_e2();
  6146. break;
  6147. #if EXTRUDERS > 3
  6148. case 3:
  6149. oldstatus = E3_ENABLE_READ;
  6150. enable_e3();
  6151. break;
  6152. #endif
  6153. #endif
  6154. #endif
  6155. }
  6156. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6157. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6158. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS],
  6159. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], active_extruder);
  6160. current_position[E_AXIS] = oldepos;
  6161. destination[E_AXIS] = oldedes;
  6162. plan_set_e_position(oldepos);
  6163. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6164. st_synchronize();
  6165. switch (active_extruder) {
  6166. case 0:
  6167. E0_ENABLE_WRITE(oldstatus);
  6168. break;
  6169. #if EXTRUDERS > 1
  6170. case 1:
  6171. E1_ENABLE_WRITE(oldstatus);
  6172. break;
  6173. #if EXTRUDERS > 2
  6174. case 2:
  6175. E2_ENABLE_WRITE(oldstatus);
  6176. break;
  6177. #if EXTRUDERS > 3
  6178. case 3:
  6179. E3_ENABLE_WRITE(oldstatus);
  6180. break;
  6181. #endif
  6182. #endif
  6183. #endif
  6184. }
  6185. }
  6186. #endif
  6187. #if ENABLED(DUAL_X_CARRIAGE)
  6188. // handle delayed move timeout
  6189. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  6190. // travel moves have been received so enact them
  6191. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6192. set_destination_to_current();
  6193. prepare_move();
  6194. }
  6195. #endif
  6196. #if ENABLED(TEMP_STAT_LEDS)
  6197. handle_status_leds();
  6198. #endif
  6199. check_axes_activity();
  6200. }
  6201. void kill(const char* lcd_msg) {
  6202. #if ENABLED(ULTRA_LCD)
  6203. lcd_setalertstatuspgm(lcd_msg);
  6204. #else
  6205. UNUSED(lcd_msg);
  6206. #endif
  6207. cli(); // Stop interrupts
  6208. disable_all_heaters();
  6209. disable_all_steppers();
  6210. #if HAS_POWER_SWITCH
  6211. pinMode(PS_ON_PIN, INPUT);
  6212. #endif
  6213. SERIAL_ERROR_START;
  6214. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6215. // FMC small patch to update the LCD before ending
  6216. sei(); // enable interrupts
  6217. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6218. cli(); // disable interrupts
  6219. suicide();
  6220. while (1) {
  6221. #if ENABLED(USE_WATCHDOG)
  6222. watchdog_reset();
  6223. #endif
  6224. } // Wait for reset
  6225. }
  6226. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6227. void filrunout() {
  6228. if (!filrunoutEnqueued) {
  6229. filrunoutEnqueued = true;
  6230. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6231. st_synchronize();
  6232. }
  6233. }
  6234. #endif // FILAMENT_RUNOUT_SENSOR
  6235. #if ENABLED(FAST_PWM_FAN)
  6236. void setPwmFrequency(uint8_t pin, int val) {
  6237. val &= 0x07;
  6238. switch (digitalPinToTimer(pin)) {
  6239. #if defined(TCCR0A)
  6240. case TIMER0A:
  6241. case TIMER0B:
  6242. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6243. // TCCR0B |= val;
  6244. break;
  6245. #endif
  6246. #if defined(TCCR1A)
  6247. case TIMER1A:
  6248. case TIMER1B:
  6249. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6250. // TCCR1B |= val;
  6251. break;
  6252. #endif
  6253. #if defined(TCCR2)
  6254. case TIMER2:
  6255. case TIMER2:
  6256. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6257. TCCR2 |= val;
  6258. break;
  6259. #endif
  6260. #if defined(TCCR2A)
  6261. case TIMER2A:
  6262. case TIMER2B:
  6263. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6264. TCCR2B |= val;
  6265. break;
  6266. #endif
  6267. #if defined(TCCR3A)
  6268. case TIMER3A:
  6269. case TIMER3B:
  6270. case TIMER3C:
  6271. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6272. TCCR3B |= val;
  6273. break;
  6274. #endif
  6275. #if defined(TCCR4A)
  6276. case TIMER4A:
  6277. case TIMER4B:
  6278. case TIMER4C:
  6279. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6280. TCCR4B |= val;
  6281. break;
  6282. #endif
  6283. #if defined(TCCR5A)
  6284. case TIMER5A:
  6285. case TIMER5B:
  6286. case TIMER5C:
  6287. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6288. TCCR5B |= val;
  6289. break;
  6290. #endif
  6291. }
  6292. }
  6293. #endif // FAST_PWM_FAN
  6294. void Stop() {
  6295. disable_all_heaters();
  6296. if (IsRunning()) {
  6297. Running = false;
  6298. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6299. SERIAL_ERROR_START;
  6300. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6301. LCD_MESSAGEPGM(MSG_STOPPED);
  6302. }
  6303. }
  6304. /**
  6305. * Set target_extruder from the T parameter or the active_extruder
  6306. *
  6307. * Returns TRUE if the target is invalid
  6308. */
  6309. bool setTargetedHotend(int code) {
  6310. target_extruder = active_extruder;
  6311. if (code_seen('T')) {
  6312. target_extruder = code_value_short();
  6313. if (target_extruder >= EXTRUDERS) {
  6314. SERIAL_ECHO_START;
  6315. SERIAL_CHAR('M');
  6316. SERIAL_ECHO(code);
  6317. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  6318. SERIAL_ECHOLN(target_extruder);
  6319. return true;
  6320. }
  6321. }
  6322. return false;
  6323. }
  6324. float calculate_volumetric_multiplier(float diameter) {
  6325. if (!volumetric_enabled || diameter == 0) return 1.0;
  6326. float d2 = diameter * 0.5;
  6327. return 1.0 / (M_PI * d2 * d2);
  6328. }
  6329. void calculate_volumetric_multipliers() {
  6330. for (int i = 0; i < EXTRUDERS; i++)
  6331. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6332. }