My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 265KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #if ENABLED(USE_WATCHDOG)
  57. #include "watchdog.h"
  58. #endif
  59. #if ENABLED(BLINKM)
  60. #include "blinkm.h"
  61. #include "Wire.h"
  62. #endif
  63. #if HAS_SERVOS
  64. #include "servo.h"
  65. #endif
  66. #if HAS_DIGIPOTSS
  67. #include <SPI.h>
  68. #endif
  69. #if ENABLED(DAC_STEPPER_CURRENT)
  70. #include "stepper_dac.h"
  71. #endif
  72. #if ENABLED(EXPERIMENTAL_I2CBUS)
  73. #include "twibus.h"
  74. #endif
  75. /**
  76. * Look here for descriptions of G-codes:
  77. * - http://linuxcnc.org/handbook/gcode/g-code.html
  78. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  79. *
  80. * Help us document these G-codes online:
  81. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  82. * - http://reprap.org/wiki/G-code
  83. *
  84. * -----------------
  85. * Implemented Codes
  86. * -----------------
  87. *
  88. * "G" Codes
  89. *
  90. * G0 -> G1
  91. * G1 - Coordinated Movement X Y Z E
  92. * G2 - CW ARC
  93. * G3 - CCW ARC
  94. * G4 - Dwell S<seconds> or P<milliseconds>
  95. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  96. * G10 - Retract filament according to settings of M207
  97. * G11 - Retract recover filament according to settings of M208
  98. * G12 - Clean tool
  99. * G20 - Set input units to inches
  100. * G21 - Set input units to millimeters
  101. * G28 - Home one or more axes
  102. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  103. * G30 - Single Z probe, probes bed at current XY location.
  104. * G31 - Dock sled (Z_PROBE_SLED only)
  105. * G32 - Undock sled (Z_PROBE_SLED only)
  106. * G90 - Use Absolute Coordinates
  107. * G91 - Use Relative Coordinates
  108. * G92 - Set current position to coordinates given
  109. *
  110. * "M" Codes
  111. *
  112. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  113. * M1 - Same as M0
  114. * M17 - Enable/Power all stepper motors
  115. * M18 - Disable all stepper motors; same as M84
  116. * M20 - List SD card
  117. * M21 - Init SD card
  118. * M22 - Release SD card
  119. * M23 - Select SD file (M23 filename.g)
  120. * M24 - Start/resume SD print
  121. * M25 - Pause SD print
  122. * M26 - Set SD position in bytes (M26 S12345)
  123. * M27 - Report SD print status
  124. * M28 - Start SD write (M28 filename.g)
  125. * M29 - Stop SD write
  126. * M30 - Delete file from SD (M30 filename.g)
  127. * M31 - Output time since last M109 or SD card start to serial
  128. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  129. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  130. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  131. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  132. * M33 - Get the longname version of a path
  133. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  134. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  135. * M75 - Start the print job timer
  136. * M76 - Pause the print job timer
  137. * M77 - Stop the print job timer
  138. * M78 - Show statistical information about the print jobs
  139. * M80 - Turn on Power Supply
  140. * M81 - Turn off Power Supply
  141. * M82 - Set E codes absolute (default)
  142. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  143. * M84 - Disable steppers until next move,
  144. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  145. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  146. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  147. * M104 - Set extruder target temp
  148. * M105 - Read current temp
  149. * M106 - Fan on
  150. * M107 - Fan off
  151. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  152. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  153. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  154. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  155. * M110 - Set the current line number
  156. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  157. * M112 - Emergency stop
  158. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  159. * M114 - Output current position to serial port
  160. * M115 - Capabilities string
  161. * M117 - Display a message on the controller screen
  162. * M119 - Output Endstop status to serial port
  163. * M120 - Enable endstop detection
  164. * M121 - Disable endstop detection
  165. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  166. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  167. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  168. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  169. * M140 - Set bed target temp
  170. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  171. * M149 - Set temperature units
  172. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  173. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  174. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  175. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  176. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  177. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  178. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  179. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  180. * M205 - Set advanced settings. Current units apply:
  181. S<print> T<travel> minimum speeds
  182. B<minimum segment time>
  183. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  184. * M206 - Set additional homing offset
  185. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  186. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  187. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  188. Every normal extrude-only move will be classified as retract depending on the direction.
  189. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  190. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  191. * M221 - Set Flow Percentage: S<percent>
  192. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  193. * M240 - Trigger a camera to take a photograph
  194. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  195. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  196. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  197. * M301 - Set PID parameters P I and D
  198. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  199. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  200. * M304 - Set bed PID parameters P I and D
  201. * M380 - Activate solenoid on active extruder
  202. * M381 - Disable all solenoids
  203. * M400 - Finish all moves
  204. * M401 - Lower Z probe if present
  205. * M402 - Raise Z probe if present
  206. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  207. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  208. * M406 - Disable Filament Sensor extrusion control
  209. * M407 - Display measured filament diameter in millimeters
  210. * M410 - Quickstop. Abort all the planned moves
  211. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  212. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  213. * M428 - Set the home_offset logically based on the current_position
  214. * M500 - Store parameters in EEPROM
  215. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  216. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  217. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  218. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  219. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  220. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  221. * M666 - Set delta endstop adjustment
  222. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  223. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  224. * M907 - Set digital trimpot motor current using axis codes.
  225. * M908 - Control digital trimpot directly.
  226. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  227. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  228. * M350 - Set microstepping mode.
  229. * M351 - Toggle MS1 MS2 pins directly.
  230. *
  231. * ************ SCARA Specific - This can change to suit future G-code regulations
  232. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  233. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  234. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  235. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  236. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  237. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  238. * ************* SCARA End ***************
  239. *
  240. * ************ Custom codes - This can change to suit future G-code regulations
  241. * M100 - Watch Free Memory (For Debugging Only)
  242. * M928 - Start SD logging (M928 filename.g) - ended by M29
  243. * M999 - Restart after being stopped by error
  244. *
  245. * "T" Codes
  246. *
  247. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  248. *
  249. */
  250. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  251. void gcode_M100();
  252. #endif
  253. #if ENABLED(SDSUPPORT)
  254. CardReader card;
  255. #endif
  256. #if ENABLED(EXPERIMENTAL_I2CBUS)
  257. TWIBus i2c;
  258. #endif
  259. bool Running = true;
  260. uint8_t marlin_debug_flags = DEBUG_NONE;
  261. static float feedrate = 1500.0, saved_feedrate;
  262. float current_position[NUM_AXIS] = { 0.0 };
  263. static float destination[NUM_AXIS] = { 0.0 };
  264. bool axis_known_position[3] = { false };
  265. bool axis_homed[3] = { false };
  266. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  267. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  268. static char* current_command, *current_command_args;
  269. static uint8_t cmd_queue_index_r = 0,
  270. cmd_queue_index_w = 0,
  271. commands_in_queue = 0;
  272. #if ENABLED(INCH_MODE_SUPPORT)
  273. float linear_unit_factor = 1.0;
  274. float volumetric_unit_factor = 1.0;
  275. #endif
  276. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  277. TempUnit input_temp_units = TEMPUNIT_C;
  278. #endif
  279. const float homing_feedrate[] = HOMING_FEEDRATE;
  280. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  281. int feedrate_multiplier = 100; //100->1 200->2
  282. int saved_feedrate_multiplier;
  283. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  284. bool volumetric_enabled = false;
  285. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  286. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  287. // The distance that XYZ has been offset by G92. Reset by G28.
  288. float position_shift[3] = { 0 };
  289. // This offset is added to the configured home position.
  290. // Set by M206, M428, or menu item. Saved to EEPROM.
  291. float home_offset[3] = { 0 };
  292. #define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS])
  293. #define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS))
  294. // Software Endstops. Default to configured limits.
  295. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  296. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  297. #if FAN_COUNT > 0
  298. int fanSpeeds[FAN_COUNT] = { 0 };
  299. #endif
  300. // The active extruder (tool). Set with T<extruder> command.
  301. uint8_t active_extruder = 0;
  302. // Relative Mode. Enable with G91, disable with G90.
  303. static bool relative_mode = false;
  304. volatile bool wait_for_heatup = true;
  305. const char errormagic[] PROGMEM = "Error:";
  306. const char echomagic[] PROGMEM = "echo:";
  307. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  308. static int serial_count = 0;
  309. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  310. static char* seen_pointer;
  311. // Next Immediate GCode Command pointer. NULL if none.
  312. const char* queued_commands_P = NULL;
  313. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  314. // Inactivity shutdown
  315. millis_t previous_cmd_ms = 0;
  316. static millis_t max_inactive_time = 0;
  317. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  318. // Print Job Timer
  319. #if ENABLED(PRINTCOUNTER)
  320. PrintCounter print_job_timer = PrintCounter();
  321. #else
  322. Stopwatch print_job_timer = Stopwatch();
  323. #endif
  324. // Buzzer
  325. #if HAS_BUZZER
  326. #if ENABLED(SPEAKER)
  327. Speaker buzzer;
  328. #else
  329. Buzzer buzzer;
  330. #endif
  331. #endif
  332. static uint8_t target_extruder;
  333. #if HAS_BED_PROBE
  334. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  335. #endif
  336. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]))
  337. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  338. int xy_probe_speed = XY_PROBE_SPEED;
  339. bool bed_leveling_in_progress = false;
  340. #define XY_PROBE_FEEDRATE xy_probe_speed
  341. #elif defined(XY_PROBE_SPEED)
  342. #define XY_PROBE_FEEDRATE XY_PROBE_SPEED
  343. #else
  344. #define XY_PROBE_FEEDRATE (PLANNER_XY_FEEDRATE() * 60)
  345. #endif
  346. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  347. float z_endstop_adj = 0;
  348. #endif
  349. // Extruder offsets
  350. #if HOTENDS > 1
  351. #ifndef HOTEND_OFFSET_X
  352. #define HOTEND_OFFSET_X { 0 } // X offsets for each extruder
  353. #endif
  354. #ifndef HOTEND_OFFSET_Y
  355. #define HOTEND_OFFSET_Y { 0 } // Y offsets for each extruder
  356. #endif
  357. float hotend_offset[][HOTENDS] = {
  358. HOTEND_OFFSET_X,
  359. HOTEND_OFFSET_Y
  360. #if ENABLED(DUAL_X_CARRIAGE)
  361. , { 0 } // Z offsets for each extruder
  362. #endif
  363. };
  364. #endif
  365. #if HAS_Z_SERVO_ENDSTOP
  366. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  367. #endif
  368. #if ENABLED(BARICUDA)
  369. int baricuda_valve_pressure = 0;
  370. int baricuda_e_to_p_pressure = 0;
  371. #endif
  372. #if ENABLED(FWRETRACT)
  373. bool autoretract_enabled = false;
  374. bool retracted[EXTRUDERS] = { false };
  375. bool retracted_swap[EXTRUDERS] = { false };
  376. float retract_length = RETRACT_LENGTH;
  377. float retract_length_swap = RETRACT_LENGTH_SWAP;
  378. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  379. float retract_zlift = RETRACT_ZLIFT;
  380. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  381. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  382. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  383. #endif // FWRETRACT
  384. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  385. bool powersupply =
  386. #if ENABLED(PS_DEFAULT_OFF)
  387. false
  388. #else
  389. true
  390. #endif
  391. ;
  392. #endif
  393. #if ENABLED(DELTA)
  394. #define TOWER_1 X_AXIS
  395. #define TOWER_2 Y_AXIS
  396. #define TOWER_3 Z_AXIS
  397. float delta[3] = { 0 };
  398. #define SIN_60 0.8660254037844386
  399. #define COS_60 0.5
  400. float endstop_adj[3] = { 0 };
  401. // these are the default values, can be overriden with M665
  402. float delta_radius = DELTA_RADIUS;
  403. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  404. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  405. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  406. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  407. float delta_tower3_x = 0; // back middle tower
  408. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  409. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  410. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  411. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  412. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  413. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  414. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  415. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  416. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  417. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  418. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  419. int delta_grid_spacing[2] = { 0, 0 };
  420. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  421. #endif
  422. #else
  423. static bool home_all_axis = true;
  424. #endif
  425. #if ENABLED(SCARA)
  426. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  427. static float delta[3] = { 0 };
  428. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  429. #endif
  430. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  431. //Variables for Filament Sensor input
  432. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  433. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  434. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  435. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  436. int filwidth_delay_index1 = 0; //index into ring buffer
  437. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  438. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  439. #endif
  440. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  441. static bool filament_ran_out = false;
  442. #endif
  443. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  444. FilamentChangeMenuResponse filament_change_menu_response;
  445. #endif
  446. static bool send_ok[BUFSIZE];
  447. #if HAS_SERVOS
  448. Servo servo[NUM_SERVOS];
  449. #define MOVE_SERVO(I, P) servo[I].move(P)
  450. #if HAS_Z_SERVO_ENDSTOP
  451. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  452. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  453. #endif
  454. #endif
  455. #ifdef CHDK
  456. millis_t chdkHigh = 0;
  457. boolean chdkActive = false;
  458. #endif
  459. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  460. int lpq_len = 20;
  461. #endif
  462. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  463. // States for managing Marlin and host communication
  464. // Marlin sends messages if blocked or busy
  465. enum MarlinBusyState {
  466. NOT_BUSY, // Not in a handler
  467. IN_HANDLER, // Processing a GCode
  468. IN_PROCESS, // Known to be blocking command input (as in G29)
  469. PAUSED_FOR_USER, // Blocking pending any input
  470. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  471. };
  472. static MarlinBusyState busy_state = NOT_BUSY;
  473. static millis_t next_busy_signal_ms = 0;
  474. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  475. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  476. #else
  477. #define host_keepalive() ;
  478. #define KEEPALIVE_STATE(n) ;
  479. #endif // HOST_KEEPALIVE_FEATURE
  480. /**
  481. * ***************************************************************************
  482. * ******************************** FUNCTIONS ********************************
  483. * ***************************************************************************
  484. */
  485. void stop();
  486. void get_available_commands();
  487. void process_next_command();
  488. void prepare_move_to_destination();
  489. #if ENABLED(ARC_SUPPORT)
  490. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  491. #endif
  492. #if ENABLED(BEZIER_CURVE_SUPPORT)
  493. void plan_cubic_move(const float offset[4]);
  494. #endif
  495. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  496. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  497. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  498. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  499. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  500. static void report_current_position();
  501. #if ENABLED(DEBUG_LEVELING_FEATURE)
  502. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  503. serialprintPGM(prefix);
  504. SERIAL_ECHOPAIR("(", x);
  505. SERIAL_ECHOPAIR(", ", y);
  506. SERIAL_ECHOPAIR(", ", z);
  507. SERIAL_ECHOPGM(")");
  508. serialprintPGM(suffix);
  509. }
  510. void print_xyz(const char* prefix,const char* suffix, const float xyz[]) {
  511. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  512. }
  513. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  514. void print_xyz(const char* prefix,const char* suffix, const vector_3 &xyz) {
  515. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  516. }
  517. #endif
  518. #define DEBUG_POS(SUFFIX,VAR) do{ print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0)
  519. #endif
  520. #if ENABLED(DELTA) || ENABLED(SCARA)
  521. inline void sync_plan_position_delta() {
  522. #if ENABLED(DEBUG_LEVELING_FEATURE)
  523. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  524. #endif
  525. calculate_delta(current_position);
  526. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  527. }
  528. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
  529. #else
  530. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  531. #endif
  532. #if ENABLED(SDSUPPORT)
  533. #include "SdFatUtil.h"
  534. int freeMemory() { return SdFatUtil::FreeRam(); }
  535. #else
  536. extern "C" {
  537. extern unsigned int __bss_end;
  538. extern unsigned int __heap_start;
  539. extern void* __brkval;
  540. int freeMemory() {
  541. int free_memory;
  542. if ((int)__brkval == 0)
  543. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  544. else
  545. free_memory = ((int)&free_memory) - ((int)__brkval);
  546. return free_memory;
  547. }
  548. }
  549. #endif //!SDSUPPORT
  550. #if ENABLED(DIGIPOT_I2C)
  551. extern void digipot_i2c_set_current(int channel, float current);
  552. extern void digipot_i2c_init();
  553. #endif
  554. /**
  555. * Inject the next "immediate" command, when possible.
  556. * Return true if any immediate commands remain to inject.
  557. */
  558. static bool drain_queued_commands_P() {
  559. if (queued_commands_P != NULL) {
  560. size_t i = 0;
  561. char c, cmd[30];
  562. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  563. cmd[sizeof(cmd) - 1] = '\0';
  564. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  565. cmd[i] = '\0';
  566. if (enqueue_and_echo_command(cmd)) { // success?
  567. if (c) // newline char?
  568. queued_commands_P += i + 1; // advance to the next command
  569. else
  570. queued_commands_P = NULL; // nul char? no more commands
  571. }
  572. }
  573. return (queued_commands_P != NULL); // return whether any more remain
  574. }
  575. /**
  576. * Record one or many commands to run from program memory.
  577. * Aborts the current queue, if any.
  578. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  579. */
  580. void enqueue_and_echo_commands_P(const char* pgcode) {
  581. queued_commands_P = pgcode;
  582. drain_queued_commands_P(); // first command executed asap (when possible)
  583. }
  584. void clear_command_queue() {
  585. cmd_queue_index_r = cmd_queue_index_w;
  586. commands_in_queue = 0;
  587. }
  588. /**
  589. * Once a new command is in the ring buffer, call this to commit it
  590. */
  591. inline void _commit_command(bool say_ok) {
  592. send_ok[cmd_queue_index_w] = say_ok;
  593. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  594. commands_in_queue++;
  595. }
  596. /**
  597. * Copy a command directly into the main command buffer, from RAM.
  598. * Returns true if successfully adds the command
  599. */
  600. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  601. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  602. strcpy(command_queue[cmd_queue_index_w], cmd);
  603. _commit_command(say_ok);
  604. return true;
  605. }
  606. void enqueue_and_echo_command_now(const char* cmd) {
  607. while (!enqueue_and_echo_command(cmd)) idle();
  608. }
  609. /**
  610. * Enqueue with Serial Echo
  611. */
  612. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  613. if (_enqueuecommand(cmd, say_ok)) {
  614. SERIAL_ECHO_START;
  615. SERIAL_ECHOPGM(MSG_Enqueueing);
  616. SERIAL_ECHO(cmd);
  617. SERIAL_ECHOLNPGM("\"");
  618. return true;
  619. }
  620. return false;
  621. }
  622. void setup_killpin() {
  623. #if HAS_KILL
  624. SET_INPUT(KILL_PIN);
  625. WRITE(KILL_PIN, HIGH);
  626. #endif
  627. }
  628. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  629. void setup_filrunoutpin() {
  630. pinMode(FIL_RUNOUT_PIN, INPUT);
  631. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  632. WRITE(FIL_RUNOUT_PIN, HIGH);
  633. #endif
  634. }
  635. #endif
  636. // Set home pin
  637. void setup_homepin(void) {
  638. #if HAS_HOME
  639. SET_INPUT(HOME_PIN);
  640. WRITE(HOME_PIN, HIGH);
  641. #endif
  642. }
  643. void setup_photpin() {
  644. #if HAS_PHOTOGRAPH
  645. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  646. #endif
  647. }
  648. void setup_powerhold() {
  649. #if HAS_SUICIDE
  650. OUT_WRITE(SUICIDE_PIN, HIGH);
  651. #endif
  652. #if HAS_POWER_SWITCH
  653. #if ENABLED(PS_DEFAULT_OFF)
  654. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  655. #else
  656. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  657. #endif
  658. #endif
  659. }
  660. void suicide() {
  661. #if HAS_SUICIDE
  662. OUT_WRITE(SUICIDE_PIN, LOW);
  663. #endif
  664. }
  665. void servo_init() {
  666. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  667. servo[0].attach(SERVO0_PIN);
  668. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  669. #endif
  670. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  671. servo[1].attach(SERVO1_PIN);
  672. servo[1].detach();
  673. #endif
  674. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  675. servo[2].attach(SERVO2_PIN);
  676. servo[2].detach();
  677. #endif
  678. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  679. servo[3].attach(SERVO3_PIN);
  680. servo[3].detach();
  681. #endif
  682. #if HAS_Z_SERVO_ENDSTOP
  683. /**
  684. * Set position of Z Servo Endstop
  685. *
  686. * The servo might be deployed and positioned too low to stow
  687. * when starting up the machine or rebooting the board.
  688. * There's no way to know where the nozzle is positioned until
  689. * homing has been done - no homing with z-probe without init!
  690. *
  691. */
  692. STOW_Z_SERVO();
  693. #endif
  694. #if HAS_BED_PROBE
  695. endstops.enable_z_probe(false);
  696. #endif
  697. }
  698. /**
  699. * Stepper Reset (RigidBoard, et.al.)
  700. */
  701. #if HAS_STEPPER_RESET
  702. void disableStepperDrivers() {
  703. pinMode(STEPPER_RESET_PIN, OUTPUT);
  704. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  705. }
  706. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  707. #endif
  708. /**
  709. * Marlin entry-point: Set up before the program loop
  710. * - Set up the kill pin, filament runout, power hold
  711. * - Start the serial port
  712. * - Print startup messages and diagnostics
  713. * - Get EEPROM or default settings
  714. * - Initialize managers for:
  715. * • temperature
  716. * • planner
  717. * • watchdog
  718. * • stepper
  719. * • photo pin
  720. * • servos
  721. * • LCD controller
  722. * • Digipot I2C
  723. * • Z probe sled
  724. * • status LEDs
  725. */
  726. void setup() {
  727. #ifdef DISABLE_JTAG
  728. // Disable JTAG on AT90USB chips to free up pins for IO
  729. MCUCR = 0x80;
  730. MCUCR = 0x80;
  731. #endif
  732. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  733. setup_filrunoutpin();
  734. #endif
  735. setup_killpin();
  736. setup_powerhold();
  737. #if HAS_STEPPER_RESET
  738. disableStepperDrivers();
  739. #endif
  740. MYSERIAL.begin(BAUDRATE);
  741. SERIAL_PROTOCOLLNPGM("start");
  742. SERIAL_ECHO_START;
  743. // Check startup - does nothing if bootloader sets MCUSR to 0
  744. byte mcu = MCUSR;
  745. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  746. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  747. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  748. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  749. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  750. MCUSR = 0;
  751. SERIAL_ECHOPGM(MSG_MARLIN);
  752. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  753. #ifdef STRING_DISTRIBUTION_DATE
  754. #ifdef STRING_CONFIG_H_AUTHOR
  755. SERIAL_ECHO_START;
  756. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  757. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  758. SERIAL_ECHOPGM(MSG_AUTHOR);
  759. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  760. SERIAL_ECHOPGM("Compiled: ");
  761. SERIAL_ECHOLNPGM(__DATE__);
  762. #endif // STRING_CONFIG_H_AUTHOR
  763. #endif // STRING_DISTRIBUTION_DATE
  764. SERIAL_ECHO_START;
  765. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  766. SERIAL_ECHO(freeMemory());
  767. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  768. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  769. // Send "ok" after commands by default
  770. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  771. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  772. Config_RetrieveSettings();
  773. // Initialize current position based on home_offset
  774. memcpy(current_position, home_offset, sizeof(home_offset));
  775. #if ENABLED(DELTA) || ENABLED(SCARA)
  776. // Vital to init kinematic equivalent for X0 Y0 Z0
  777. SYNC_PLAN_POSITION_KINEMATIC();
  778. #endif
  779. thermalManager.init(); // Initialize temperature loop
  780. #if ENABLED(USE_WATCHDOG)
  781. watchdog_init();
  782. #endif
  783. stepper.init(); // Initialize stepper, this enables interrupts!
  784. setup_photpin();
  785. servo_init();
  786. #if HAS_CONTROLLERFAN
  787. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  788. #endif
  789. #if HAS_STEPPER_RESET
  790. enableStepperDrivers();
  791. #endif
  792. #if ENABLED(DIGIPOT_I2C)
  793. digipot_i2c_init();
  794. #endif
  795. #if ENABLED(DAC_STEPPER_CURRENT)
  796. dac_init();
  797. #endif
  798. #if ENABLED(Z_PROBE_SLED)
  799. pinMode(SLED_PIN, OUTPUT);
  800. digitalWrite(SLED_PIN, LOW); // turn it off
  801. #endif // Z_PROBE_SLED
  802. setup_homepin();
  803. #ifdef STAT_LED_RED
  804. pinMode(STAT_LED_RED, OUTPUT);
  805. digitalWrite(STAT_LED_RED, LOW); // turn it off
  806. #endif
  807. #ifdef STAT_LED_BLUE
  808. pinMode(STAT_LED_BLUE, OUTPUT);
  809. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  810. #endif
  811. lcd_init();
  812. #if ENABLED(SHOW_BOOTSCREEN)
  813. #if ENABLED(DOGLCD)
  814. delay(1000);
  815. #elif ENABLED(ULTRA_LCD)
  816. bootscreen();
  817. lcd_init();
  818. #endif
  819. #endif
  820. }
  821. /**
  822. * The main Marlin program loop
  823. *
  824. * - Save or log commands to SD
  825. * - Process available commands (if not saving)
  826. * - Call heater manager
  827. * - Call inactivity manager
  828. * - Call endstop manager
  829. * - Call LCD update
  830. */
  831. void loop() {
  832. if (commands_in_queue < BUFSIZE) get_available_commands();
  833. #if ENABLED(SDSUPPORT)
  834. card.checkautostart(false);
  835. #endif
  836. if (commands_in_queue) {
  837. #if ENABLED(SDSUPPORT)
  838. if (card.saving) {
  839. char* command = command_queue[cmd_queue_index_r];
  840. if (strstr_P(command, PSTR("M29"))) {
  841. // M29 closes the file
  842. card.closefile();
  843. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  844. ok_to_send();
  845. }
  846. else {
  847. // Write the string from the read buffer to SD
  848. card.write_command(command);
  849. if (card.logging)
  850. process_next_command(); // The card is saving because it's logging
  851. else
  852. ok_to_send();
  853. }
  854. }
  855. else
  856. process_next_command();
  857. #else
  858. process_next_command();
  859. #endif // SDSUPPORT
  860. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  861. if (commands_in_queue) {
  862. --commands_in_queue;
  863. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  864. }
  865. }
  866. endstops.report_state();
  867. idle();
  868. }
  869. void gcode_line_error(const char* err, bool doFlush = true) {
  870. SERIAL_ERROR_START;
  871. serialprintPGM(err);
  872. SERIAL_ERRORLN(gcode_LastN);
  873. //Serial.println(gcode_N);
  874. if (doFlush) FlushSerialRequestResend();
  875. serial_count = 0;
  876. }
  877. inline void get_serial_commands() {
  878. static char serial_line_buffer[MAX_CMD_SIZE];
  879. static boolean serial_comment_mode = false;
  880. // If the command buffer is empty for too long,
  881. // send "wait" to indicate Marlin is still waiting.
  882. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  883. static millis_t last_command_time = 0;
  884. millis_t ms = millis();
  885. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  886. SERIAL_ECHOLNPGM(MSG_WAIT);
  887. last_command_time = ms;
  888. }
  889. #endif
  890. /**
  891. * Loop while serial characters are incoming and the queue is not full
  892. */
  893. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  894. char serial_char = MYSERIAL.read();
  895. /**
  896. * If the character ends the line
  897. */
  898. if (serial_char == '\n' || serial_char == '\r') {
  899. serial_comment_mode = false; // end of line == end of comment
  900. if (!serial_count) continue; // skip empty lines
  901. serial_line_buffer[serial_count] = 0; // terminate string
  902. serial_count = 0; //reset buffer
  903. char* command = serial_line_buffer;
  904. while (*command == ' ') command++; // skip any leading spaces
  905. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  906. char* apos = strchr(command, '*');
  907. if (npos) {
  908. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  909. if (M110) {
  910. char* n2pos = strchr(command + 4, 'N');
  911. if (n2pos) npos = n2pos;
  912. }
  913. gcode_N = strtol(npos + 1, NULL, 10);
  914. if (gcode_N != gcode_LastN + 1 && !M110) {
  915. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  916. return;
  917. }
  918. if (apos) {
  919. byte checksum = 0, count = 0;
  920. while (command[count] != '*') checksum ^= command[count++];
  921. if (strtol(apos + 1, NULL, 10) != checksum) {
  922. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  923. return;
  924. }
  925. // if no errors, continue parsing
  926. }
  927. else {
  928. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  929. return;
  930. }
  931. gcode_LastN = gcode_N;
  932. // if no errors, continue parsing
  933. }
  934. else if (apos) { // No '*' without 'N'
  935. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  936. return;
  937. }
  938. // Movement commands alert when stopped
  939. if (IsStopped()) {
  940. char* gpos = strchr(command, 'G');
  941. if (gpos) {
  942. int codenum = strtol(gpos + 1, NULL, 10);
  943. switch (codenum) {
  944. case 0:
  945. case 1:
  946. case 2:
  947. case 3:
  948. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  949. LCD_MESSAGEPGM(MSG_STOPPED);
  950. break;
  951. }
  952. }
  953. }
  954. #if DISABLED(EMERGENCY_PARSER)
  955. // If command was e-stop process now
  956. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  957. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  958. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  959. #endif
  960. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  961. last_command_time = ms;
  962. #endif
  963. // Add the command to the queue
  964. _enqueuecommand(serial_line_buffer, true);
  965. }
  966. else if (serial_count >= MAX_CMD_SIZE - 1) {
  967. // Keep fetching, but ignore normal characters beyond the max length
  968. // The command will be injected when EOL is reached
  969. }
  970. else if (serial_char == '\\') { // Handle escapes
  971. if (MYSERIAL.available() > 0) {
  972. // if we have one more character, copy it over
  973. serial_char = MYSERIAL.read();
  974. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  975. }
  976. // otherwise do nothing
  977. }
  978. else { // it's not a newline, carriage return or escape char
  979. if (serial_char == ';') serial_comment_mode = true;
  980. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  981. }
  982. } // queue has space, serial has data
  983. }
  984. #if ENABLED(SDSUPPORT)
  985. inline void get_sdcard_commands() {
  986. static bool stop_buffering = false,
  987. sd_comment_mode = false;
  988. if (!card.sdprinting) return;
  989. /**
  990. * '#' stops reading from SD to the buffer prematurely, so procedural
  991. * macro calls are possible. If it occurs, stop_buffering is triggered
  992. * and the buffer is run dry; this character _can_ occur in serial com
  993. * due to checksums, however, no checksums are used in SD printing.
  994. */
  995. if (commands_in_queue == 0) stop_buffering = false;
  996. uint16_t sd_count = 0;
  997. bool card_eof = card.eof();
  998. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  999. int16_t n = card.get();
  1000. char sd_char = (char)n;
  1001. card_eof = card.eof();
  1002. if (card_eof || n == -1
  1003. || sd_char == '\n' || sd_char == '\r'
  1004. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1005. ) {
  1006. if (card_eof) {
  1007. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1008. card.printingHasFinished();
  1009. card.checkautostart(true);
  1010. }
  1011. else if (n == -1) {
  1012. SERIAL_ERROR_START;
  1013. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1014. }
  1015. if (sd_char == '#') stop_buffering = true;
  1016. sd_comment_mode = false; //for new command
  1017. if (!sd_count) continue; //skip empty lines
  1018. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  1019. sd_count = 0; //clear buffer
  1020. _commit_command(false);
  1021. }
  1022. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1023. /**
  1024. * Keep fetching, but ignore normal characters beyond the max length
  1025. * The command will be injected when EOL is reached
  1026. */
  1027. }
  1028. else {
  1029. if (sd_char == ';') sd_comment_mode = true;
  1030. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1031. }
  1032. }
  1033. }
  1034. #endif // SDSUPPORT
  1035. /**
  1036. * Add to the circular command queue the next command from:
  1037. * - The command-injection queue (queued_commands_P)
  1038. * - The active serial input (usually USB)
  1039. * - The SD card file being actively printed
  1040. */
  1041. void get_available_commands() {
  1042. // if any immediate commands remain, don't get other commands yet
  1043. if (drain_queued_commands_P()) return;
  1044. get_serial_commands();
  1045. #if ENABLED(SDSUPPORT)
  1046. get_sdcard_commands();
  1047. #endif
  1048. }
  1049. inline bool code_has_value() {
  1050. int i = 1;
  1051. char c = seen_pointer[i];
  1052. while (c == ' ') c = seen_pointer[++i];
  1053. if (c == '-' || c == '+') c = seen_pointer[++i];
  1054. if (c == '.') c = seen_pointer[++i];
  1055. return NUMERIC(c);
  1056. }
  1057. inline float code_value_float() {
  1058. float ret;
  1059. char* e = strchr(seen_pointer, 'E');
  1060. if (e) {
  1061. *e = 0;
  1062. ret = strtod(seen_pointer + 1, NULL);
  1063. *e = 'E';
  1064. }
  1065. else
  1066. ret = strtod(seen_pointer + 1, NULL);
  1067. return ret;
  1068. }
  1069. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1070. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1071. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1072. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1073. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1074. inline bool code_value_bool() { return code_value_byte() > 0; }
  1075. #if ENABLED(INCH_MODE_SUPPORT)
  1076. inline void set_input_linear_units(LinearUnit units) {
  1077. switch (units) {
  1078. case LINEARUNIT_INCH:
  1079. linear_unit_factor = 25.4;
  1080. break;
  1081. case LINEARUNIT_MM:
  1082. default:
  1083. linear_unit_factor = 1.0;
  1084. break;
  1085. }
  1086. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1087. }
  1088. inline float axis_unit_factor(int axis) {
  1089. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1090. }
  1091. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1092. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1093. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1094. #else
  1095. inline float code_value_linear_units() { return code_value_float(); }
  1096. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1097. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1098. #endif
  1099. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1100. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1101. float code_value_temp_abs() {
  1102. switch (input_temp_units) {
  1103. case TEMPUNIT_C:
  1104. return code_value_float();
  1105. case TEMPUNIT_F:
  1106. return (code_value_float() - 32) / 1.8;
  1107. case TEMPUNIT_K:
  1108. return code_value_float() - 272.15;
  1109. default:
  1110. return code_value_float();
  1111. }
  1112. }
  1113. float code_value_temp_diff() {
  1114. switch (input_temp_units) {
  1115. case TEMPUNIT_C:
  1116. case TEMPUNIT_K:
  1117. return code_value_float();
  1118. case TEMPUNIT_F:
  1119. return code_value_float() / 1.8;
  1120. default:
  1121. return code_value_float();
  1122. }
  1123. }
  1124. #else
  1125. float code_value_temp_abs() { return code_value_float(); }
  1126. float code_value_temp_diff() { return code_value_float(); }
  1127. #endif
  1128. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1129. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1130. bool code_seen(char code) {
  1131. seen_pointer = strchr(current_command_args, code);
  1132. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1133. }
  1134. /**
  1135. * Set target_extruder from the T parameter or the active_extruder
  1136. *
  1137. * Returns TRUE if the target is invalid
  1138. */
  1139. bool get_target_extruder_from_command(int code) {
  1140. if (code_seen('T')) {
  1141. if (code_value_byte() >= EXTRUDERS) {
  1142. SERIAL_ECHO_START;
  1143. SERIAL_CHAR('M');
  1144. SERIAL_ECHO(code);
  1145. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1146. SERIAL_EOL;
  1147. return true;
  1148. }
  1149. target_extruder = code_value_byte();
  1150. }
  1151. else
  1152. target_extruder = active_extruder;
  1153. return false;
  1154. }
  1155. #define DEFINE_PGM_READ_ANY(type, reader) \
  1156. static inline type pgm_read_any(const type *p) \
  1157. { return pgm_read_##reader##_near(p); }
  1158. DEFINE_PGM_READ_ANY(float, float);
  1159. DEFINE_PGM_READ_ANY(signed char, byte);
  1160. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1161. static const PROGMEM type array##_P[3] = \
  1162. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1163. static inline type array(int axis) \
  1164. { return pgm_read_any(&array##_P[axis]); }
  1165. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1166. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1167. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1168. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1169. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1170. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1171. #if ENABLED(DUAL_X_CARRIAGE)
  1172. #define DXC_FULL_CONTROL_MODE 0
  1173. #define DXC_AUTO_PARK_MODE 1
  1174. #define DXC_DUPLICATION_MODE 2
  1175. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1176. static float x_home_pos(int extruder) {
  1177. if (extruder == 0)
  1178. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1179. else
  1180. /**
  1181. * In dual carriage mode the extruder offset provides an override of the
  1182. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1183. * This allow soft recalibration of the second extruder offset position
  1184. * without firmware reflash (through the M218 command).
  1185. */
  1186. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1187. }
  1188. static int x_home_dir(int extruder) {
  1189. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1190. }
  1191. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1192. static bool active_extruder_parked = false; // used in mode 1 & 2
  1193. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1194. static millis_t delayed_move_time = 0; // used in mode 1
  1195. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1196. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1197. bool extruder_duplication_enabled = false; // used in mode 2
  1198. #endif //DUAL_X_CARRIAGE
  1199. /**
  1200. * Software endstops can be used to monitor the open end of
  1201. * an axis that has a hardware endstop on the other end. Or
  1202. * they can prevent axes from moving past endstops and grinding.
  1203. *
  1204. * To keep doing their job as the coordinate system changes,
  1205. * the software endstop positions must be refreshed to remain
  1206. * at the same positions relative to the machine.
  1207. */
  1208. static void update_software_endstops(AxisEnum axis) {
  1209. float offs = home_offset[axis] + position_shift[axis];
  1210. #if ENABLED(DUAL_X_CARRIAGE)
  1211. if (axis == X_AXIS) {
  1212. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1213. if (active_extruder != 0) {
  1214. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1215. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1216. return;
  1217. }
  1218. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1219. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1220. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1221. return;
  1222. }
  1223. }
  1224. else
  1225. #endif
  1226. {
  1227. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1228. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1229. }
  1230. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1231. if (DEBUGGING(LEVELING)) {
  1232. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1233. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1234. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1235. SERIAL_ECHOPAIR("\n sw_endstop_min = ", sw_endstop_min[axis]);
  1236. SERIAL_ECHOPAIR("\n sw_endstop_max = ", sw_endstop_max[axis]);
  1237. SERIAL_EOL;
  1238. }
  1239. #endif
  1240. }
  1241. /**
  1242. * Change the home offset for an axis, update the current
  1243. * position and the software endstops to retain the same
  1244. * relative distance to the new home.
  1245. *
  1246. * Since this changes the current_position, code should
  1247. * call sync_plan_position soon after this.
  1248. */
  1249. static void set_home_offset(AxisEnum axis, float v) {
  1250. current_position[axis] += v - home_offset[axis];
  1251. home_offset[axis] = v;
  1252. update_software_endstops(axis);
  1253. }
  1254. static void set_axis_is_at_home(AxisEnum axis) {
  1255. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1256. if (DEBUGGING(LEVELING)) {
  1257. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis);
  1258. SERIAL_ECHOLNPGM(")");
  1259. }
  1260. #endif
  1261. position_shift[axis] = 0;
  1262. #if ENABLED(DUAL_X_CARRIAGE)
  1263. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1264. if (active_extruder != 0)
  1265. current_position[X_AXIS] = x_home_pos(active_extruder);
  1266. else
  1267. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1268. update_software_endstops(X_AXIS);
  1269. return;
  1270. }
  1271. #endif
  1272. #if ENABLED(SCARA)
  1273. if (axis == X_AXIS || axis == Y_AXIS) {
  1274. float homeposition[3];
  1275. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1276. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1277. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1278. /**
  1279. * Works out real Homeposition angles using inverse kinematics,
  1280. * and calculates homing offset using forward kinematics
  1281. */
  1282. calculate_delta(homeposition);
  1283. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1284. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1285. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1286. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1287. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1288. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1289. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1290. calculate_SCARA_forward_Transform(delta);
  1291. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1292. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1293. current_position[axis] = delta[axis];
  1294. /**
  1295. * SCARA home positions are based on configuration since the actual
  1296. * limits are determined by the inverse kinematic transform.
  1297. */
  1298. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1299. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1300. }
  1301. else
  1302. #endif
  1303. {
  1304. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1305. update_software_endstops(axis);
  1306. #if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP)
  1307. if (axis == Z_AXIS) {
  1308. current_position[Z_AXIS] -= zprobe_zoffset;
  1309. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1310. if (DEBUGGING(LEVELING)) {
  1311. SERIAL_ECHOPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1312. SERIAL_EOL;
  1313. }
  1314. #endif
  1315. }
  1316. #endif
  1317. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1318. if (DEBUGGING(LEVELING)) {
  1319. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1320. SERIAL_ECHOPAIR("] = ", home_offset[axis]);
  1321. SERIAL_EOL;
  1322. DEBUG_POS("", current_position);
  1323. }
  1324. #endif
  1325. }
  1326. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1327. if (DEBUGGING(LEVELING)) {
  1328. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1329. SERIAL_ECHOLNPGM(")");
  1330. }
  1331. #endif
  1332. }
  1333. /**
  1334. * Some planner shorthand inline functions
  1335. */
  1336. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1337. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1338. int hbd = homing_bump_divisor[axis];
  1339. if (hbd < 1) {
  1340. hbd = 10;
  1341. SERIAL_ECHO_START;
  1342. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1343. }
  1344. feedrate = homing_feedrate[axis] / hbd;
  1345. }
  1346. //
  1347. // line_to_current_position
  1348. // Move the planner to the current position from wherever it last moved
  1349. // (or from wherever it has been told it is located).
  1350. //
  1351. inline void line_to_current_position() {
  1352. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1353. }
  1354. inline void line_to_z(float zPosition) {
  1355. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1356. }
  1357. //
  1358. // line_to_destination
  1359. // Move the planner, not necessarily synced with current_position
  1360. //
  1361. inline void line_to_destination(float mm_m) {
  1362. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1363. }
  1364. inline void line_to_destination() { line_to_destination(feedrate); }
  1365. /**
  1366. * sync_plan_position
  1367. * Set planner / stepper positions to the cartesian current_position.
  1368. * The stepper code translates these coordinates into step units.
  1369. * Allows translation between steps and millimeters for cartesian & core robots
  1370. */
  1371. inline void sync_plan_position() {
  1372. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1373. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1374. #endif
  1375. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1376. }
  1377. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  1378. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1379. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1380. #if ENABLED(DELTA)
  1381. /**
  1382. * Calculate delta, start a line, and set current_position to destination
  1383. */
  1384. void prepare_move_to_destination_raw() {
  1385. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1386. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1387. #endif
  1388. refresh_cmd_timeout();
  1389. calculate_delta(destination);
  1390. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1391. set_current_to_destination();
  1392. }
  1393. #endif
  1394. /**
  1395. * Plan a move to (X, Y, Z) and set the current_position
  1396. * The final current_position may not be the one that was requested
  1397. */
  1398. static void do_blocking_move_to(float x, float y, float z, float feed_rate = 0.0) {
  1399. float old_feedrate = feedrate;
  1400. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1401. if (DEBUGGING(LEVELING)) print_xyz(PSTR("do_blocking_move_to"), "", x, y, z);
  1402. #endif
  1403. #if ENABLED(DELTA)
  1404. feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE;
  1405. destination[X_AXIS] = x;
  1406. destination[Y_AXIS] = y;
  1407. destination[Z_AXIS] = z;
  1408. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1409. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1410. else
  1411. prepare_move_to_destination(); // this will also set_current_to_destination
  1412. #else
  1413. // If Z needs to raise, do it before moving XY
  1414. if (current_position[Z_AXIS] < z) {
  1415. feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS];
  1416. current_position[Z_AXIS] = z;
  1417. line_to_current_position();
  1418. }
  1419. feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE;
  1420. current_position[X_AXIS] = x;
  1421. current_position[Y_AXIS] = y;
  1422. line_to_current_position();
  1423. // If Z needs to lower, do it after moving XY
  1424. if (current_position[Z_AXIS] > z) {
  1425. feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS];
  1426. current_position[Z_AXIS] = z;
  1427. line_to_current_position();
  1428. }
  1429. #endif
  1430. stepper.synchronize();
  1431. feedrate = old_feedrate;
  1432. }
  1433. inline void do_blocking_move_to_x(float x, float feed_rate = 0.0) {
  1434. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], feed_rate);
  1435. }
  1436. inline void do_blocking_move_to_y(float y) {
  1437. do_blocking_move_to(current_position[X_AXIS], y, current_position[Z_AXIS]);
  1438. }
  1439. inline void do_blocking_move_to_z(float z, float feed_rate = 0.0) {
  1440. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, feed_rate);
  1441. }
  1442. inline void do_blocking_move_to_xy(float x, float y, float feed_rate = 0.0) {
  1443. do_blocking_move_to(x, y, current_position[Z_AXIS], feed_rate);
  1444. }
  1445. //
  1446. // Prepare to do endstop or probe moves
  1447. // with custom feedrates.
  1448. //
  1449. // - Save current feedrates
  1450. // - Reset the rate multiplier
  1451. // - Reset the command timeout
  1452. // - Enable the endstops (for endstop moves)
  1453. //
  1454. static void setup_for_endstop_or_probe_move() {
  1455. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1456. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1457. #endif
  1458. saved_feedrate = feedrate;
  1459. saved_feedrate_multiplier = feedrate_multiplier;
  1460. feedrate_multiplier = 100;
  1461. refresh_cmd_timeout();
  1462. }
  1463. static void clean_up_after_endstop_or_probe_move() {
  1464. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1465. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1466. #endif
  1467. feedrate = saved_feedrate;
  1468. feedrate_multiplier = saved_feedrate_multiplier;
  1469. refresh_cmd_timeout();
  1470. }
  1471. #if HAS_BED_PROBE
  1472. /**
  1473. * Raise Z to a minimum height to make room for a probe to move
  1474. */
  1475. inline void do_probe_raise(float z_raise) {
  1476. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1477. if (DEBUGGING(LEVELING)) {
  1478. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1479. SERIAL_ECHOLNPGM(")");
  1480. }
  1481. #endif
  1482. float z_dest = home_offset[Z_AXIS] + z_raise;
  1483. if (zprobe_zoffset < 0)
  1484. z_dest -= zprobe_zoffset;
  1485. if (z_dest > current_position[Z_AXIS])
  1486. do_blocking_move_to_z(z_dest);
  1487. }
  1488. #endif //HAS_BED_PROBE
  1489. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1490. const bool xx = x && !axis_homed[X_AXIS],
  1491. yy = y && !axis_homed[Y_AXIS],
  1492. zz = z && !axis_homed[Z_AXIS];
  1493. if (xx || yy || zz) {
  1494. SERIAL_ECHO_START;
  1495. SERIAL_ECHOPGM(MSG_HOME " ");
  1496. if (xx) SERIAL_ECHOPGM(MSG_X);
  1497. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1498. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1499. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1500. #if ENABLED(ULTRA_LCD)
  1501. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1502. strcat_P(message, PSTR(MSG_HOME " "));
  1503. if (xx) strcat_P(message, PSTR(MSG_X));
  1504. if (yy) strcat_P(message, PSTR(MSG_Y));
  1505. if (zz) strcat_P(message, PSTR(MSG_Z));
  1506. strcat_P(message, PSTR(" " MSG_FIRST));
  1507. lcd_setstatus(message);
  1508. #endif
  1509. return true;
  1510. }
  1511. return false;
  1512. }
  1513. #if ENABLED(Z_PROBE_SLED)
  1514. #ifndef SLED_DOCKING_OFFSET
  1515. #define SLED_DOCKING_OFFSET 0
  1516. #endif
  1517. /**
  1518. * Method to dock/undock a sled designed by Charles Bell.
  1519. *
  1520. * stow[in] If false, move to MAX_X and engage the solenoid
  1521. * If true, move to MAX_X and release the solenoid
  1522. */
  1523. static void dock_sled(bool stow) {
  1524. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1525. if (DEBUGGING(LEVELING)) {
  1526. SERIAL_ECHOPAIR("dock_sled(", stow);
  1527. SERIAL_ECHOLNPGM(")");
  1528. }
  1529. #endif
  1530. // Dock sled a bit closer to ensure proper capturing
  1531. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1532. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1533. }
  1534. #endif // Z_PROBE_SLED
  1535. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1536. void run_deploy_moves_script() {
  1537. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1538. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1539. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1540. #endif
  1541. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1542. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1543. #endif
  1544. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1545. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1546. #endif
  1547. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1548. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1549. #endif
  1550. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE);
  1551. #endif
  1552. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1553. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1554. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1555. #endif
  1556. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1557. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1558. #endif
  1559. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1560. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1561. #endif
  1562. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1563. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1564. #endif
  1565. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE);
  1566. #endif
  1567. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1568. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1569. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1570. #endif
  1571. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1572. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1573. #endif
  1574. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1575. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1576. #endif
  1577. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1578. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1579. #endif
  1580. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE);
  1581. #endif
  1582. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1583. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1584. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1585. #endif
  1586. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1587. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1588. #endif
  1589. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1590. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1591. #endif
  1592. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1593. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1594. #endif
  1595. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE);
  1596. #endif
  1597. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1598. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1599. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1600. #endif
  1601. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1602. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1603. #endif
  1604. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1605. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1606. #endif
  1607. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1608. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1609. #endif
  1610. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE);
  1611. #endif
  1612. }
  1613. void run_stow_moves_script() {
  1614. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1615. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1616. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1617. #endif
  1618. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1619. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1620. #endif
  1621. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1622. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1623. #endif
  1624. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1625. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1626. #endif
  1627. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE);
  1628. #endif
  1629. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1630. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1631. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1632. #endif
  1633. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1634. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1635. #endif
  1636. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1637. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1638. #endif
  1639. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1640. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1641. #endif
  1642. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE);
  1643. #endif
  1644. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1645. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1646. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1647. #endif
  1648. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1649. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1650. #endif
  1651. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1652. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1653. #endif
  1654. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1655. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1656. #endif
  1657. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE);
  1658. #endif
  1659. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1660. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1661. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1662. #endif
  1663. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1664. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1665. #endif
  1666. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1667. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1668. #endif
  1669. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1670. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1671. #endif
  1672. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE);
  1673. #endif
  1674. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1675. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1676. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1677. #endif
  1678. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1679. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1680. #endif
  1681. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1682. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1683. #endif
  1684. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1685. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1686. #endif
  1687. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE);
  1688. #endif
  1689. }
  1690. #endif
  1691. #if HAS_BED_PROBE
  1692. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1693. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1694. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1695. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1696. #else
  1697. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1698. #endif
  1699. #endif
  1700. #define DEPLOY_PROBE() set_probe_deployed( true )
  1701. #define STOW_PROBE() set_probe_deployed( false )
  1702. // returns false for ok and true for failure
  1703. static bool set_probe_deployed(bool deploy) {
  1704. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1705. if (DEBUGGING(LEVELING)) {
  1706. DEBUG_POS("set_probe_deployed", current_position);
  1707. SERIAL_ECHOPAIR("deploy: ", deploy);
  1708. }
  1709. #endif
  1710. if (endstops.z_probe_enabled == deploy) return false;
  1711. // Make room for probe
  1712. do_probe_raise(_Z_RAISE_PROBE_DEPLOY_STOW);
  1713. #if ENABLED(Z_PROBE_SLED)
  1714. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1715. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1716. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1717. #endif
  1718. float oldXpos = current_position[X_AXIS]; // save x position
  1719. float oldYpos = current_position[Y_AXIS]; // save y position
  1720. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1721. // If endstop is already false, the Z probe is deployed
  1722. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1723. // Would a goto be less ugly?
  1724. //while (!_TRIGGERED_WHEN_STOWED_TEST) { idle(); // would offer the opportunity
  1725. // for a triggered when stowed manual probe.
  1726. #endif
  1727. #if ENABLED(Z_PROBE_SLED)
  1728. dock_sled(!deploy);
  1729. #elif HAS_Z_SERVO_ENDSTOP
  1730. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[((deploy) ? 0 : 1)]);
  1731. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1732. if (!deploy) run_stow_moves_script();
  1733. else run_deploy_moves_script();
  1734. #else
  1735. // Nothing to be done. Just enable_z_probe below...
  1736. #endif
  1737. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1738. }; // opened before the probe specific actions
  1739. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) {
  1740. if (IsRunning()) {
  1741. SERIAL_ERROR_START;
  1742. SERIAL_ERRORLNPGM("Z-Probe failed");
  1743. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1744. }
  1745. stop();
  1746. return true;
  1747. }
  1748. #endif
  1749. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1750. endstops.enable_z_probe( deploy );
  1751. return false;
  1752. }
  1753. // Do a single Z probe and return with current_position[Z_AXIS]
  1754. // at the height where the probe triggered.
  1755. static float run_z_probe() {
  1756. float old_feedrate = feedrate;
  1757. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1758. refresh_cmd_timeout();
  1759. #if ENABLED(DELTA)
  1760. float start_z = current_position[Z_AXIS];
  1761. long start_steps = stepper.position(Z_AXIS);
  1762. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1763. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 1", current_position);
  1764. #endif
  1765. // move down slowly until you find the bed
  1766. feedrate = homing_feedrate[Z_AXIS] / 4;
  1767. destination[Z_AXIS] = -10;
  1768. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1769. stepper.synchronize();
  1770. endstops.hit_on_purpose(); // clear endstop hit flags
  1771. /**
  1772. * We have to let the planner know where we are right now as it
  1773. * is not where we said to go.
  1774. */
  1775. long stop_steps = stepper.position(Z_AXIS);
  1776. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS];
  1777. current_position[Z_AXIS] = mm;
  1778. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1779. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1780. #endif
  1781. #else // !DELTA
  1782. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1783. planner.bed_level_matrix.set_to_identity();
  1784. #endif
  1785. feedrate = homing_feedrate[Z_AXIS];
  1786. // Move down until the Z probe (or endstop?) is triggered
  1787. float zPosition = -(Z_MAX_LENGTH + 10);
  1788. line_to_z(zPosition);
  1789. stepper.synchronize();
  1790. // Tell the planner where we ended up - Get this from the stepper handler
  1791. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1792. planner.set_position_mm(
  1793. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1794. current_position[E_AXIS]
  1795. );
  1796. // move up the retract distance
  1797. zPosition += home_bump_mm(Z_AXIS);
  1798. line_to_z(zPosition);
  1799. stepper.synchronize();
  1800. endstops.hit_on_purpose(); // clear endstop hit flags
  1801. // move back down slowly to find bed
  1802. set_homing_bump_feedrate(Z_AXIS);
  1803. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1804. line_to_z(zPosition);
  1805. stepper.synchronize();
  1806. endstops.hit_on_purpose(); // clear endstop hit flags
  1807. // Get the current stepper position after bumping an endstop
  1808. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1809. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1810. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1811. #endif
  1812. #endif // !DELTA
  1813. SYNC_PLAN_POSITION_KINEMATIC();
  1814. feedrate = old_feedrate;
  1815. return current_position[Z_AXIS];
  1816. }
  1817. //
  1818. // - Move to the given XY
  1819. // - Deploy the probe, if not already deployed
  1820. // - Probe the bed, get the Z position
  1821. // - Depending on the 'stow' flag
  1822. // - Stow the probe, or
  1823. // - Raise to the BETWEEN height
  1824. // - Return the probed Z position
  1825. //
  1826. static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
  1827. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1828. if (DEBUGGING(LEVELING)) {
  1829. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1830. SERIAL_ECHOPAIR(", ", y);
  1831. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1832. SERIAL_ECHOLNPGM(")");
  1833. DEBUG_POS("", current_position);
  1834. }
  1835. #endif
  1836. float old_feedrate = feedrate;
  1837. // Ensure a minimum height before moving the probe
  1838. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1839. // Move to the XY where we shall probe
  1840. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1841. if (DEBUGGING(LEVELING)) {
  1842. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1843. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1844. SERIAL_ECHOLNPGM(")");
  1845. }
  1846. #endif
  1847. feedrate = XY_PROBE_FEEDRATE;
  1848. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1849. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1850. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1851. #endif
  1852. if (DEPLOY_PROBE()) return NAN;
  1853. float measured_z = run_z_probe();
  1854. if (stow) {
  1855. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1856. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1857. #endif
  1858. if (STOW_PROBE()) return NAN;
  1859. }
  1860. else {
  1861. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1862. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1863. #endif
  1864. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1865. }
  1866. if (verbose_level > 2) {
  1867. SERIAL_PROTOCOLPGM("Bed X: ");
  1868. SERIAL_PROTOCOL_F(x, 3);
  1869. SERIAL_PROTOCOLPGM(" Y: ");
  1870. SERIAL_PROTOCOL_F(y, 3);
  1871. SERIAL_PROTOCOLPGM(" Z: ");
  1872. SERIAL_PROTOCOL_F(measured_z, 3);
  1873. SERIAL_EOL;
  1874. }
  1875. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1876. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1877. #endif
  1878. feedrate = old_feedrate;
  1879. return measured_z;
  1880. }
  1881. #endif // HAS_BED_PROBE
  1882. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1883. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1884. #if DISABLED(DELTA)
  1885. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1886. //planner.bed_level_matrix.debug("bed level before");
  1887. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1888. planner.bed_level_matrix.set_to_identity();
  1889. if (DEBUGGING(LEVELING)) {
  1890. vector_3 uncorrected_position = planner.adjusted_position();
  1891. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1892. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1893. }
  1894. #endif
  1895. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1896. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1897. vector_3 corrected_position = planner.adjusted_position();
  1898. current_position[X_AXIS] = corrected_position.x;
  1899. current_position[Y_AXIS] = corrected_position.y;
  1900. current_position[Z_AXIS] = corrected_position.z;
  1901. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1902. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1903. #endif
  1904. SYNC_PLAN_POSITION_KINEMATIC();
  1905. }
  1906. #endif // !DELTA
  1907. #else // !AUTO_BED_LEVELING_GRID
  1908. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1909. planner.bed_level_matrix.set_to_identity();
  1910. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1911. if (DEBUGGING(LEVELING)) {
  1912. vector_3 uncorrected_position = planner.adjusted_position();
  1913. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1914. }
  1915. #endif
  1916. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1917. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1918. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1919. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1920. if (planeNormal.z < 0) {
  1921. planeNormal.x = -planeNormal.x;
  1922. planeNormal.y = -planeNormal.y;
  1923. planeNormal.z = -planeNormal.z;
  1924. }
  1925. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1926. vector_3 corrected_position = planner.adjusted_position();
  1927. current_position[X_AXIS] = corrected_position.x;
  1928. current_position[Y_AXIS] = corrected_position.y;
  1929. current_position[Z_AXIS] = corrected_position.z;
  1930. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1931. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1932. #endif
  1933. SYNC_PLAN_POSITION_KINEMATIC();
  1934. }
  1935. #endif // !AUTO_BED_LEVELING_GRID
  1936. #if ENABLED(DELTA)
  1937. /**
  1938. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1939. */
  1940. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1941. if (bed_level[x][y] != 0.0) {
  1942. return; // Don't overwrite good values.
  1943. }
  1944. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1945. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1946. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1947. float median = c; // Median is robust (ignores outliers).
  1948. if (a < b) {
  1949. if (b < c) median = b;
  1950. if (c < a) median = a;
  1951. }
  1952. else { // b <= a
  1953. if (c < b) median = b;
  1954. if (a < c) median = a;
  1955. }
  1956. bed_level[x][y] = median;
  1957. }
  1958. /**
  1959. * Fill in the unprobed points (corners of circular print surface)
  1960. * using linear extrapolation, away from the center.
  1961. */
  1962. static void extrapolate_unprobed_bed_level() {
  1963. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1964. for (int y = 0; y <= half; y++) {
  1965. for (int x = 0; x <= half; x++) {
  1966. if (x + y < 3) continue;
  1967. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1968. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1969. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1970. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1971. }
  1972. }
  1973. }
  1974. /**
  1975. * Print calibration results for plotting or manual frame adjustment.
  1976. */
  1977. static void print_bed_level() {
  1978. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1979. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1980. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1981. SERIAL_PROTOCOLCHAR(' ');
  1982. }
  1983. SERIAL_EOL;
  1984. }
  1985. }
  1986. /**
  1987. * Reset calibration results to zero.
  1988. */
  1989. void reset_bed_level() {
  1990. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1991. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1992. #endif
  1993. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1994. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1995. bed_level[x][y] = 0.0;
  1996. }
  1997. }
  1998. }
  1999. #endif // DELTA
  2000. #endif // AUTO_BED_LEVELING_FEATURE
  2001. /**
  2002. * Home an individual axis
  2003. */
  2004. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2005. static void homeaxis(AxisEnum axis) {
  2006. #define HOMEAXIS_DO(LETTER) \
  2007. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  2008. if (!(axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0)) return;
  2009. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2010. if (DEBUGGING(LEVELING)) {
  2011. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  2012. SERIAL_ECHOLNPGM(")");
  2013. }
  2014. #endif
  2015. int axis_home_dir =
  2016. #if ENABLED(DUAL_X_CARRIAGE)
  2017. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2018. #endif
  2019. home_dir(axis);
  2020. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2021. #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2022. if (axis == Z_AXIS && axis_home_dir < 0) {
  2023. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2024. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2025. #endif
  2026. if (DEPLOY_PROBE()) return;
  2027. }
  2028. #endif
  2029. // Set the axis position as setup for the move
  2030. current_position[axis] = 0;
  2031. sync_plan_position();
  2032. // Set a flag for Z motor locking
  2033. #if ENABLED(Z_DUAL_ENDSTOPS)
  2034. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2035. #endif
  2036. // Move towards the endstop until an endstop is triggered
  2037. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2038. feedrate = homing_feedrate[axis];
  2039. line_to_destination();
  2040. stepper.synchronize();
  2041. // Set the axis position as setup for the move
  2042. current_position[axis] = 0;
  2043. sync_plan_position();
  2044. // Move away from the endstop by the axis HOME_BUMP_MM
  2045. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  2046. line_to_destination();
  2047. stepper.synchronize();
  2048. // Slow down the feedrate for the next move
  2049. set_homing_bump_feedrate(axis);
  2050. // Move slowly towards the endstop until triggered
  2051. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  2052. line_to_destination();
  2053. stepper.synchronize();
  2054. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2055. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  2056. #endif
  2057. #if ENABLED(Z_DUAL_ENDSTOPS)
  2058. if (axis == Z_AXIS) {
  2059. float adj = fabs(z_endstop_adj);
  2060. bool lockZ1;
  2061. if (axis_home_dir > 0) {
  2062. adj = -adj;
  2063. lockZ1 = (z_endstop_adj > 0);
  2064. }
  2065. else
  2066. lockZ1 = (z_endstop_adj < 0);
  2067. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2068. sync_plan_position();
  2069. // Move to the adjusted endstop height
  2070. feedrate = homing_feedrate[axis];
  2071. destination[Z_AXIS] = adj;
  2072. line_to_destination();
  2073. stepper.synchronize();
  2074. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2075. stepper.set_homing_flag(false);
  2076. } // Z_AXIS
  2077. #endif
  2078. #if ENABLED(DELTA)
  2079. // retrace by the amount specified in endstop_adj
  2080. if (endstop_adj[axis] * axis_home_dir < 0) {
  2081. sync_plan_position();
  2082. destination[axis] = endstop_adj[axis];
  2083. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2084. if (DEBUGGING(LEVELING)) {
  2085. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  2086. DEBUG_POS("", destination);
  2087. }
  2088. #endif
  2089. line_to_destination();
  2090. stepper.synchronize();
  2091. }
  2092. #endif
  2093. // Set the axis position to its home position (plus home offsets)
  2094. set_axis_is_at_home(axis);
  2095. SYNC_PLAN_POSITION_KINEMATIC();
  2096. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2097. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2098. #endif
  2099. destination[axis] = current_position[axis];
  2100. endstops.hit_on_purpose(); // clear endstop hit flags
  2101. axis_known_position[axis] = true;
  2102. axis_homed[axis] = true;
  2103. // Put away the Z probe
  2104. #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2105. if (axis == Z_AXIS && axis_home_dir < 0) {
  2106. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2107. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2108. #endif
  2109. if (STOW_PROBE()) return;
  2110. }
  2111. #endif
  2112. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2113. if (DEBUGGING(LEVELING)) {
  2114. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  2115. SERIAL_ECHOLNPGM(")");
  2116. }
  2117. #endif
  2118. }
  2119. #if ENABLED(FWRETRACT)
  2120. void retract(bool retracting, bool swapping = false) {
  2121. if (retracting == retracted[active_extruder]) return;
  2122. float old_feedrate = feedrate;
  2123. set_destination_to_current();
  2124. if (retracting) {
  2125. feedrate = retract_feedrate_mm_s * 60;
  2126. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2127. sync_plan_position_e();
  2128. prepare_move_to_destination();
  2129. if (retract_zlift > 0.01) {
  2130. current_position[Z_AXIS] -= retract_zlift;
  2131. SYNC_PLAN_POSITION_KINEMATIC();
  2132. prepare_move_to_destination();
  2133. }
  2134. }
  2135. else {
  2136. if (retract_zlift > 0.01) {
  2137. current_position[Z_AXIS] += retract_zlift;
  2138. SYNC_PLAN_POSITION_KINEMATIC();
  2139. }
  2140. feedrate = retract_recover_feedrate * 60;
  2141. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2142. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2143. sync_plan_position_e();
  2144. prepare_move_to_destination();
  2145. }
  2146. feedrate = old_feedrate;
  2147. retracted[active_extruder] = retracting;
  2148. } // retract()
  2149. #endif // FWRETRACT
  2150. /**
  2151. * ***************************************************************************
  2152. * ***************************** G-CODE HANDLING *****************************
  2153. * ***************************************************************************
  2154. */
  2155. /**
  2156. * Set XYZE destination and feedrate from the current GCode command
  2157. *
  2158. * - Set destination from included axis codes
  2159. * - Set to current for missing axis codes
  2160. * - Set the feedrate, if included
  2161. */
  2162. void gcode_get_destination() {
  2163. for (int i = 0; i < NUM_AXIS; i++) {
  2164. if (code_seen(axis_codes[i]))
  2165. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2166. else
  2167. destination[i] = current_position[i];
  2168. }
  2169. if (code_seen('F') && code_value_linear_units() > 0.0)
  2170. feedrate = code_value_linear_units();
  2171. }
  2172. void unknown_command_error() {
  2173. SERIAL_ECHO_START;
  2174. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2175. SERIAL_ECHO(current_command);
  2176. SERIAL_ECHOLNPGM("\"");
  2177. }
  2178. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2179. /**
  2180. * Output a "busy" message at regular intervals
  2181. * while the machine is not accepting commands.
  2182. */
  2183. void host_keepalive() {
  2184. millis_t ms = millis();
  2185. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2186. if (PENDING(ms, next_busy_signal_ms)) return;
  2187. switch (busy_state) {
  2188. case IN_HANDLER:
  2189. case IN_PROCESS:
  2190. SERIAL_ECHO_START;
  2191. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2192. break;
  2193. case PAUSED_FOR_USER:
  2194. SERIAL_ECHO_START;
  2195. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2196. break;
  2197. case PAUSED_FOR_INPUT:
  2198. SERIAL_ECHO_START;
  2199. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2200. break;
  2201. default:
  2202. break;
  2203. }
  2204. }
  2205. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2206. }
  2207. #endif //HOST_KEEPALIVE_FEATURE
  2208. /**
  2209. * G0, G1: Coordinated movement of X Y Z E axes
  2210. */
  2211. inline void gcode_G0_G1() {
  2212. if (IsRunning()) {
  2213. gcode_get_destination(); // For X Y Z E F
  2214. #if ENABLED(FWRETRACT)
  2215. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2216. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2217. // Is this move an attempt to retract or recover?
  2218. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2219. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2220. sync_plan_position_e(); // AND from the planner
  2221. retract(!retracted[active_extruder]);
  2222. return;
  2223. }
  2224. }
  2225. #endif //FWRETRACT
  2226. prepare_move_to_destination();
  2227. }
  2228. }
  2229. /**
  2230. * G2: Clockwise Arc
  2231. * G3: Counterclockwise Arc
  2232. */
  2233. #if ENABLED(ARC_SUPPORT)
  2234. inline void gcode_G2_G3(bool clockwise) {
  2235. if (IsRunning()) {
  2236. #if ENABLED(SF_ARC_FIX)
  2237. bool relative_mode_backup = relative_mode;
  2238. relative_mode = true;
  2239. #endif
  2240. gcode_get_destination();
  2241. #if ENABLED(SF_ARC_FIX)
  2242. relative_mode = relative_mode_backup;
  2243. #endif
  2244. // Center of arc as offset from current_position
  2245. float arc_offset[2] = {
  2246. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2247. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2248. };
  2249. // Send an arc to the planner
  2250. plan_arc(destination, arc_offset, clockwise);
  2251. refresh_cmd_timeout();
  2252. }
  2253. }
  2254. #endif
  2255. /**
  2256. * G4: Dwell S<seconds> or P<milliseconds>
  2257. */
  2258. inline void gcode_G4() {
  2259. millis_t codenum = 0;
  2260. if (code_seen('P')) codenum = code_value_millis(); // milliseconds to wait
  2261. if (code_seen('S')) codenum = code_value_millis_from_seconds(); // seconds to wait
  2262. stepper.synchronize();
  2263. refresh_cmd_timeout();
  2264. codenum += previous_cmd_ms; // keep track of when we started waiting
  2265. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2266. while (PENDING(millis(), codenum)) idle();
  2267. }
  2268. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2269. /**
  2270. * Parameters interpreted according to:
  2271. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2272. * However I, J omission is not supported at this point; all
  2273. * parameters can be omitted and default to zero.
  2274. */
  2275. /**
  2276. * G5: Cubic B-spline
  2277. */
  2278. inline void gcode_G5() {
  2279. if (IsRunning()) {
  2280. gcode_get_destination();
  2281. float offset[] = {
  2282. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2283. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2284. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2285. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2286. };
  2287. plan_cubic_move(offset);
  2288. }
  2289. }
  2290. #endif // BEZIER_CURVE_SUPPORT
  2291. #if ENABLED(FWRETRACT)
  2292. /**
  2293. * G10 - Retract filament according to settings of M207
  2294. * G11 - Recover filament according to settings of M208
  2295. */
  2296. inline void gcode_G10_G11(bool doRetract=false) {
  2297. #if EXTRUDERS > 1
  2298. if (doRetract) {
  2299. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2300. }
  2301. #endif
  2302. retract(doRetract
  2303. #if EXTRUDERS > 1
  2304. , retracted_swap[active_extruder]
  2305. #endif
  2306. );
  2307. }
  2308. #endif //FWRETRACT
  2309. #if ENABLED(NOZZLE_CLEAN_FEATURE) && ENABLED(AUTO_BED_LEVELING_FEATURE)
  2310. #include "nozzle.h"
  2311. inline void gcode_G12() {
  2312. // Don't allow nozzle cleaning without homing first
  2313. if (axis_unhomed_error(true, true, true)) { return; }
  2314. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2315. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2316. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2317. Nozzle::clean(pattern, strokes, objects);
  2318. }
  2319. #endif
  2320. #if ENABLED(INCH_MODE_SUPPORT)
  2321. /**
  2322. * G20: Set input mode to inches
  2323. */
  2324. inline void gcode_G20() {
  2325. set_input_linear_units(LINEARUNIT_INCH);
  2326. }
  2327. /**
  2328. * G21: Set input mode to millimeters
  2329. */
  2330. inline void gcode_G21() {
  2331. set_input_linear_units(LINEARUNIT_MM);
  2332. }
  2333. #endif
  2334. #if ENABLED(QUICK_HOME)
  2335. static void quick_home_xy() {
  2336. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2337. #if ENABLED(DUAL_X_CARRIAGE)
  2338. int x_axis_home_dir = x_home_dir(active_extruder);
  2339. extruder_duplication_enabled = false;
  2340. #else
  2341. int x_axis_home_dir = home_dir(X_AXIS);
  2342. #endif
  2343. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2344. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2345. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2346. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2347. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2348. line_to_destination();
  2349. stepper.synchronize();
  2350. endstops.hit_on_purpose(); // clear endstop hit flags
  2351. destination[X_AXIS] = destination[Y_AXIS] = 0;
  2352. }
  2353. #endif // QUICK_HOME
  2354. /**
  2355. * G28: Home all axes according to settings
  2356. *
  2357. * Parameters
  2358. *
  2359. * None Home to all axes with no parameters.
  2360. * With QUICK_HOME enabled XY will home together, then Z.
  2361. *
  2362. * Cartesian parameters
  2363. *
  2364. * X Home to the X endstop
  2365. * Y Home to the Y endstop
  2366. * Z Home to the Z endstop
  2367. *
  2368. */
  2369. inline void gcode_G28() {
  2370. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2371. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(">>> gcode_G28");
  2372. #endif
  2373. // Wait for planner moves to finish!
  2374. stepper.synchronize();
  2375. // For auto bed leveling, clear the level matrix
  2376. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2377. planner.bed_level_matrix.set_to_identity();
  2378. #if ENABLED(DELTA)
  2379. reset_bed_level();
  2380. #endif
  2381. #endif
  2382. /**
  2383. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2384. * on again when homing all axis
  2385. */
  2386. #if ENABLED(MESH_BED_LEVELING)
  2387. float pre_home_z = MESH_HOME_SEARCH_Z;
  2388. if (mbl.active()) {
  2389. // Save known Z position if already homed
  2390. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2391. pre_home_z = current_position[Z_AXIS];
  2392. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2393. }
  2394. mbl.set_active(false);
  2395. current_position[Z_AXIS] = pre_home_z;
  2396. }
  2397. #endif
  2398. setup_for_endstop_or_probe_move();
  2399. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2400. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2401. #endif
  2402. endstops.enable(true); // Enable endstops for next homing move
  2403. #if ENABLED(DELTA)
  2404. /**
  2405. * A delta can only safely home all axes at the same time
  2406. */
  2407. // Pretend the current position is 0,0,0
  2408. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2409. sync_plan_position();
  2410. // Move all carriages up together until the first endstop is hit.
  2411. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2412. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2413. line_to_destination();
  2414. stepper.synchronize();
  2415. endstops.hit_on_purpose(); // clear endstop hit flags
  2416. // Destination reached
  2417. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2418. // take care of back off and rehome now we are all at the top
  2419. HOMEAXIS(X);
  2420. HOMEAXIS(Y);
  2421. HOMEAXIS(Z);
  2422. SYNC_PLAN_POSITION_KINEMATIC();
  2423. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2424. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2425. #endif
  2426. #else // NOT DELTA
  2427. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2428. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2429. set_destination_to_current();
  2430. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2431. if (home_all_axis || homeZ) {
  2432. HOMEAXIS(Z);
  2433. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2434. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2435. #endif
  2436. }
  2437. #else
  2438. if (home_all_axis || homeX || homeY) {
  2439. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2440. float z_dest = home_offset[Z_AXIS] + MIN_Z_HEIGHT_FOR_HOMING;
  2441. if (z_dest > current_position[Z_AXIS]) {
  2442. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2443. if (DEBUGGING(LEVELING)) {
  2444. SERIAL_ECHOPAIR("Raise Z (before homing) to ", z_dest);
  2445. SERIAL_EOL;
  2446. }
  2447. #endif
  2448. feedrate = homing_feedrate[Z_AXIS];
  2449. line_to_z(z_dest);
  2450. stepper.synchronize();
  2451. destination[Z_AXIS] = current_position[Z_AXIS] = z_dest;
  2452. }
  2453. }
  2454. #endif
  2455. #if ENABLED(QUICK_HOME)
  2456. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2457. #endif
  2458. #if ENABLED(HOME_Y_BEFORE_X)
  2459. // Home Y
  2460. if (home_all_axis || homeY) {
  2461. HOMEAXIS(Y);
  2462. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2463. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2464. #endif
  2465. }
  2466. #endif
  2467. // Home X
  2468. if (home_all_axis || homeX) {
  2469. #if ENABLED(DUAL_X_CARRIAGE)
  2470. int tmp_extruder = active_extruder;
  2471. extruder_duplication_enabled = false;
  2472. active_extruder = !active_extruder;
  2473. HOMEAXIS(X);
  2474. inactive_extruder_x_pos = current_position[X_AXIS];
  2475. active_extruder = tmp_extruder;
  2476. HOMEAXIS(X);
  2477. // reset state used by the different modes
  2478. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2479. delayed_move_time = 0;
  2480. active_extruder_parked = true;
  2481. #else
  2482. HOMEAXIS(X);
  2483. #endif
  2484. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2485. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2486. #endif
  2487. }
  2488. #if DISABLED(HOME_Y_BEFORE_X)
  2489. // Home Y
  2490. if (home_all_axis || homeY) {
  2491. HOMEAXIS(Y);
  2492. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2493. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2494. #endif
  2495. }
  2496. #endif
  2497. // Home Z last if homing towards the bed
  2498. #if Z_HOME_DIR < 0
  2499. if (home_all_axis || homeZ) {
  2500. #if ENABLED(Z_SAFE_HOMING)
  2501. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2502. if (DEBUGGING(LEVELING)) {
  2503. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2504. }
  2505. #endif
  2506. if (home_all_axis) {
  2507. /**
  2508. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2509. * No need to move Z any more as this height should already be safe
  2510. * enough to reach Z_SAFE_HOMING XY positions.
  2511. * Just make sure the planner is in sync.
  2512. */
  2513. SYNC_PLAN_POSITION_KINEMATIC();
  2514. /**
  2515. * Set the Z probe (or just the nozzle) destination to the safe
  2516. * homing point
  2517. */
  2518. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2519. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2520. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2521. feedrate = XY_PROBE_FEEDRATE;
  2522. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2523. if (DEBUGGING(LEVELING)) {
  2524. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2525. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2526. }
  2527. #endif
  2528. // Move in the XY plane
  2529. line_to_destination();
  2530. stepper.synchronize();
  2531. /**
  2532. * Update the current positions for XY, Z is still at least at
  2533. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2534. */
  2535. current_position[X_AXIS] = destination[X_AXIS];
  2536. current_position[Y_AXIS] = destination[Y_AXIS];
  2537. }
  2538. // Let's see if X and Y are homed
  2539. if (axis_unhomed_error(true, true, false)) return;
  2540. /**
  2541. * Make sure the Z probe is within the physical limits
  2542. * NOTE: This doesn't necessarily ensure the Z probe is also
  2543. * within the bed!
  2544. */
  2545. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2546. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2547. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2548. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2549. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2550. // Home the Z axis
  2551. HOMEAXIS(Z);
  2552. }
  2553. else {
  2554. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2555. SERIAL_ECHO_START;
  2556. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2557. }
  2558. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2559. if (DEBUGGING(LEVELING)) {
  2560. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2561. }
  2562. #endif
  2563. #else // !Z_SAFE_HOMING
  2564. HOMEAXIS(Z);
  2565. #endif // !Z_SAFE_HOMING
  2566. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2567. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2568. #endif
  2569. } // home_all_axis || homeZ
  2570. #endif // Z_HOME_DIR < 0
  2571. SYNC_PLAN_POSITION_KINEMATIC();
  2572. #endif // !DELTA (gcode_G28)
  2573. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2574. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.not_homing()");
  2575. #endif
  2576. endstops.not_homing();
  2577. endstops.hit_on_purpose(); // clear endstop hit flags
  2578. // Enable mesh leveling again
  2579. #if ENABLED(MESH_BED_LEVELING)
  2580. if (mbl.has_mesh()) {
  2581. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2582. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2583. #if Z_HOME_DIR > 0
  2584. + Z_MAX_POS
  2585. #endif
  2586. ;
  2587. SYNC_PLAN_POSITION_KINEMATIC();
  2588. mbl.set_active(true);
  2589. #if ENABLED(MESH_G28_REST_ORIGIN)
  2590. current_position[Z_AXIS] = 0.0;
  2591. set_destination_to_current();
  2592. feedrate = homing_feedrate[Z_AXIS];
  2593. line_to_destination();
  2594. stepper.synchronize();
  2595. #else
  2596. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2597. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2598. #if Z_HOME_DIR > 0
  2599. + Z_MAX_POS
  2600. #endif
  2601. ;
  2602. #endif
  2603. }
  2604. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2605. current_position[Z_AXIS] = pre_home_z;
  2606. SYNC_PLAN_POSITION_KINEMATIC();
  2607. mbl.set_active(true);
  2608. current_position[Z_AXIS] = pre_home_z -
  2609. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2610. }
  2611. }
  2612. #endif
  2613. clean_up_after_endstop_or_probe_move();
  2614. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2615. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2616. #endif
  2617. report_current_position();
  2618. }
  2619. #if HAS_PROBING_PROCEDURE
  2620. void out_of_range_error(const char* p_edge) {
  2621. SERIAL_PROTOCOLPGM("?Probe ");
  2622. serialprintPGM(p_edge);
  2623. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2624. }
  2625. #endif
  2626. #if ENABLED(MESH_BED_LEVELING)
  2627. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset, MeshReset };
  2628. inline void _mbl_goto_xy(float x, float y) {
  2629. float old_feedrate = feedrate;
  2630. feedrate = homing_feedrate[X_AXIS];
  2631. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2632. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2633. + Z_RAISE_BETWEEN_PROBINGS
  2634. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2635. + MIN_Z_HEIGHT_FOR_HOMING
  2636. #endif
  2637. ;
  2638. line_to_current_position();
  2639. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2640. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2641. line_to_current_position();
  2642. #if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0
  2643. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2644. line_to_current_position();
  2645. #endif
  2646. feedrate = old_feedrate;
  2647. stepper.synchronize();
  2648. }
  2649. /**
  2650. * G29: Mesh-based Z probe, probes a grid and produces a
  2651. * mesh to compensate for variable bed height
  2652. *
  2653. * Parameters With MESH_BED_LEVELING:
  2654. *
  2655. * S0 Produce a mesh report
  2656. * S1 Start probing mesh points
  2657. * S2 Probe the next mesh point
  2658. * S3 Xn Yn Zn.nn Manually modify a single point
  2659. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2660. * S5 Reset and disable mesh
  2661. *
  2662. * The S0 report the points as below
  2663. *
  2664. * +----> X-axis 1-n
  2665. * |
  2666. * |
  2667. * v Y-axis 1-n
  2668. *
  2669. */
  2670. inline void gcode_G29() {
  2671. static int probe_point = -1;
  2672. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2673. if (state < 0 || state > 5) {
  2674. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2675. return;
  2676. }
  2677. int8_t px, py;
  2678. switch (state) {
  2679. case MeshReport:
  2680. if (mbl.has_mesh()) {
  2681. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? "On" : "Off");
  2682. SERIAL_PROTOCOLPAIR("\nNum X,Y: ", MESH_NUM_X_POINTS);
  2683. SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2684. SERIAL_PROTOCOLPAIR("\nZ search height: ", MESH_HOME_SEARCH_Z);
  2685. SERIAL_PROTOCOLPGM("\nZ offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2686. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2687. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2688. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2689. SERIAL_PROTOCOLPGM(" ");
  2690. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2691. }
  2692. SERIAL_EOL;
  2693. }
  2694. }
  2695. else
  2696. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2697. break;
  2698. case MeshStart:
  2699. mbl.reset();
  2700. probe_point = 0;
  2701. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2702. break;
  2703. case MeshNext:
  2704. if (probe_point < 0) {
  2705. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2706. return;
  2707. }
  2708. // For each G29 S2...
  2709. if (probe_point == 0) {
  2710. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2711. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2712. #if Z_HOME_DIR > 0
  2713. + Z_MAX_POS
  2714. #endif
  2715. ;
  2716. SYNC_PLAN_POSITION_KINEMATIC();
  2717. }
  2718. else {
  2719. // For G29 S2 after adjusting Z.
  2720. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2721. }
  2722. // If there's another point to sample, move there with optional lift.
  2723. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2724. mbl.zigzag(probe_point, px, py);
  2725. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2726. probe_point++;
  2727. }
  2728. else {
  2729. // One last "return to the bed" (as originally coded) at completion
  2730. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2731. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2732. + Z_RAISE_BETWEEN_PROBINGS
  2733. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2734. + MIN_Z_HEIGHT_FOR_HOMING
  2735. #endif
  2736. ;
  2737. line_to_current_position();
  2738. stepper.synchronize();
  2739. // After recording the last point, activate the mbl and home
  2740. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2741. probe_point = -1;
  2742. mbl.set_has_mesh(true);
  2743. enqueue_and_echo_commands_P(PSTR("G28"));
  2744. }
  2745. break;
  2746. case MeshSet:
  2747. if (code_seen('X')) {
  2748. px = code_value_int() - 1;
  2749. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2750. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2751. return;
  2752. }
  2753. }
  2754. else {
  2755. SERIAL_PROTOCOLLNPGM("X not entered.");
  2756. return;
  2757. }
  2758. if (code_seen('Y')) {
  2759. py = code_value_int() - 1;
  2760. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2761. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2762. return;
  2763. }
  2764. }
  2765. else {
  2766. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2767. return;
  2768. }
  2769. if (code_seen('Z')) {
  2770. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2771. }
  2772. else {
  2773. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2774. return;
  2775. }
  2776. break;
  2777. case MeshSetZOffset:
  2778. if (code_seen('Z')) {
  2779. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2780. }
  2781. else {
  2782. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2783. return;
  2784. }
  2785. break;
  2786. case MeshReset:
  2787. if (mbl.active()) {
  2788. current_position[Z_AXIS] +=
  2789. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2790. mbl.reset();
  2791. SYNC_PLAN_POSITION_KINEMATIC();
  2792. }
  2793. else
  2794. mbl.reset();
  2795. } // switch(state)
  2796. report_current_position();
  2797. }
  2798. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2799. /**
  2800. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2801. * Will fail if the printer has not been homed with G28.
  2802. *
  2803. * Enhanced G29 Auto Bed Leveling Probe Routine
  2804. *
  2805. * Parameters With AUTO_BED_LEVELING_GRID:
  2806. *
  2807. * P Set the size of the grid that will be probed (P x P points).
  2808. * Not supported by non-linear delta printer bed leveling.
  2809. * Example: "G29 P4"
  2810. *
  2811. * S Set the XY travel speed between probe points (in units/min)
  2812. *
  2813. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2814. * or clean the rotation Matrix. Useful to check the topology
  2815. * after a first run of G29.
  2816. *
  2817. * V Set the verbose level (0-4). Example: "G29 V3"
  2818. *
  2819. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2820. * This is useful for manual bed leveling and finding flaws in the bed (to
  2821. * assist with part placement).
  2822. * Not supported by non-linear delta printer bed leveling.
  2823. *
  2824. * F Set the Front limit of the probing grid
  2825. * B Set the Back limit of the probing grid
  2826. * L Set the Left limit of the probing grid
  2827. * R Set the Right limit of the probing grid
  2828. *
  2829. * Global Parameters:
  2830. *
  2831. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2832. * Include "E" to engage/disengage the Z probe for each sample.
  2833. * There's no extra effect if you have a fixed Z probe.
  2834. * Usage: "G29 E" or "G29 e"
  2835. *
  2836. */
  2837. inline void gcode_G29() {
  2838. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2839. if (DEBUGGING(LEVELING)) {
  2840. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2841. DEBUG_POS("", current_position);
  2842. }
  2843. #endif
  2844. // Don't allow auto-leveling without homing first
  2845. if (axis_unhomed_error(true, true, true)) return;
  2846. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2847. if (verbose_level < 0 || verbose_level > 4) {
  2848. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2849. return;
  2850. }
  2851. bool dryrun = code_seen('D');
  2852. bool stow_probe_after_each = code_seen('E');
  2853. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2854. #if DISABLED(DELTA)
  2855. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2856. #endif
  2857. if (verbose_level > 0) {
  2858. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2859. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2860. }
  2861. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2862. #if DISABLED(DELTA)
  2863. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2864. if (auto_bed_leveling_grid_points < 2) {
  2865. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2866. return;
  2867. }
  2868. #endif
  2869. xy_probe_speed = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
  2870. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
  2871. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
  2872. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION,
  2873. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION;
  2874. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2875. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2876. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2877. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2878. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2879. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2880. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2881. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2882. if (left_out || right_out || front_out || back_out) {
  2883. if (left_out) {
  2884. out_of_range_error(PSTR("(L)eft"));
  2885. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2886. }
  2887. if (right_out) {
  2888. out_of_range_error(PSTR("(R)ight"));
  2889. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2890. }
  2891. if (front_out) {
  2892. out_of_range_error(PSTR("(F)ront"));
  2893. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2894. }
  2895. if (back_out) {
  2896. out_of_range_error(PSTR("(B)ack"));
  2897. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2898. }
  2899. return;
  2900. }
  2901. #endif // AUTO_BED_LEVELING_GRID
  2902. if (!dryrun) {
  2903. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2904. if (DEBUGGING(LEVELING)) {
  2905. vector_3 corrected_position = planner.adjusted_position();
  2906. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2907. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2908. }
  2909. #endif
  2910. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2911. planner.bed_level_matrix.set_to_identity();
  2912. #if ENABLED(DELTA)
  2913. reset_bed_level();
  2914. #else //!DELTA
  2915. //vector_3 corrected_position = planner.adjusted_position();
  2916. //corrected_position.debug("position before G29");
  2917. vector_3 uncorrected_position = planner.adjusted_position();
  2918. //uncorrected_position.debug("position during G29");
  2919. current_position[X_AXIS] = uncorrected_position.x;
  2920. current_position[Y_AXIS] = uncorrected_position.y;
  2921. current_position[Z_AXIS] = uncorrected_position.z;
  2922. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2923. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2924. #endif
  2925. SYNC_PLAN_POSITION_KINEMATIC();
  2926. #endif // !DELTA
  2927. }
  2928. stepper.synchronize();
  2929. setup_for_endstop_or_probe_move();
  2930. // Deploy the probe. Probe will raise if needed.
  2931. if (DEPLOY_PROBE()) return;
  2932. bed_leveling_in_progress = true;
  2933. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2934. // probe at the points of a lattice grid
  2935. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2936. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2937. #if ENABLED(DELTA)
  2938. delta_grid_spacing[0] = xGridSpacing;
  2939. delta_grid_spacing[1] = yGridSpacing;
  2940. float zoffset = zprobe_zoffset;
  2941. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  2942. #else // !DELTA
  2943. /**
  2944. * solve the plane equation ax + by + d = z
  2945. * A is the matrix with rows [x y 1] for all the probed points
  2946. * B is the vector of the Z positions
  2947. * the normal vector to the plane is formed by the coefficients of the
  2948. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2949. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2950. */
  2951. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2952. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2953. eqnBVector[abl2], // "B" vector of Z points
  2954. mean = 0.0;
  2955. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2956. #endif // !DELTA
  2957. int probePointCounter = 0;
  2958. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2959. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2960. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2961. int xStart, xStop, xInc;
  2962. if (zig) {
  2963. xStart = 0;
  2964. xStop = auto_bed_leveling_grid_points;
  2965. xInc = 1;
  2966. }
  2967. else {
  2968. xStart = auto_bed_leveling_grid_points - 1;
  2969. xStop = -1;
  2970. xInc = -1;
  2971. }
  2972. zig = !zig;
  2973. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2974. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2975. #if ENABLED(DELTA)
  2976. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2977. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2978. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2979. #endif //DELTA
  2980. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  2981. #if DISABLED(DELTA)
  2982. mean += measured_z;
  2983. eqnBVector[probePointCounter] = measured_z;
  2984. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2985. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2986. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2987. indexIntoAB[xCount][yCount] = probePointCounter;
  2988. #else
  2989. bed_level[xCount][yCount] = measured_z + zoffset;
  2990. #endif
  2991. probePointCounter++;
  2992. idle();
  2993. } //xProbe
  2994. } //yProbe
  2995. #else // !AUTO_BED_LEVELING_GRID
  2996. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2997. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  2998. #endif
  2999. // Probe at 3 arbitrary points
  3000. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  3001. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  3002. stow_probe_after_each, verbose_level),
  3003. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  3004. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  3005. stow_probe_after_each, verbose_level),
  3006. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  3007. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  3008. stow_probe_after_each, verbose_level);
  3009. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3010. #endif // !AUTO_BED_LEVELING_GRID
  3011. // Raise to _Z_RAISE_PROBE_DEPLOY_STOW. Stow the probe.
  3012. if (STOW_PROBE()) return;
  3013. // Restore state after probing
  3014. clean_up_after_endstop_or_probe_move();
  3015. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3016. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3017. #endif
  3018. // Calculate leveling, print reports, correct the position
  3019. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3020. #if ENABLED(DELTA)
  3021. if (!dryrun) extrapolate_unprobed_bed_level();
  3022. print_bed_level();
  3023. #else // !DELTA
  3024. // solve lsq problem
  3025. double plane_equation_coefficients[3];
  3026. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3027. mean /= abl2;
  3028. if (verbose_level) {
  3029. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3030. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3031. SERIAL_PROTOCOLPGM(" b: ");
  3032. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3033. SERIAL_PROTOCOLPGM(" d: ");
  3034. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3035. SERIAL_EOL;
  3036. if (verbose_level > 2) {
  3037. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3038. SERIAL_PROTOCOL_F(mean, 8);
  3039. SERIAL_EOL;
  3040. }
  3041. }
  3042. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3043. // Show the Topography map if enabled
  3044. if (do_topography_map) {
  3045. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3046. " +--- BACK --+\n"
  3047. " | |\n"
  3048. " L | (+) | R\n"
  3049. " E | | I\n"
  3050. " F | (-) N (+) | G\n"
  3051. " T | | H\n"
  3052. " | (-) | T\n"
  3053. " | |\n"
  3054. " O-- FRONT --+\n"
  3055. " (0,0)");
  3056. float min_diff = 999;
  3057. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3058. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3059. int ind = indexIntoAB[xx][yy];
  3060. float diff = eqnBVector[ind] - mean;
  3061. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3062. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3063. z_tmp = 0;
  3064. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3065. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3066. if (diff >= 0.0)
  3067. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3068. else
  3069. SERIAL_PROTOCOLCHAR(' ');
  3070. SERIAL_PROTOCOL_F(diff, 5);
  3071. } // xx
  3072. SERIAL_EOL;
  3073. } // yy
  3074. SERIAL_EOL;
  3075. if (verbose_level > 3) {
  3076. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3077. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3078. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3079. int ind = indexIntoAB[xx][yy];
  3080. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3081. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3082. z_tmp = 0;
  3083. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3084. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3085. if (diff >= 0.0)
  3086. SERIAL_PROTOCOLPGM(" +");
  3087. // Include + for column alignment
  3088. else
  3089. SERIAL_PROTOCOLCHAR(' ');
  3090. SERIAL_PROTOCOL_F(diff, 5);
  3091. } // xx
  3092. SERIAL_EOL;
  3093. } // yy
  3094. SERIAL_EOL;
  3095. }
  3096. } //do_topography_map
  3097. #endif //!DELTA
  3098. #endif // AUTO_BED_LEVELING_GRID
  3099. #if DISABLED(DELTA)
  3100. if (verbose_level > 0)
  3101. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3102. if (!dryrun) {
  3103. /**
  3104. * Correct the Z height difference from Z probe position and nozzle tip position.
  3105. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3106. * from the nozzle. When the bed is uneven, this height must be corrected.
  3107. */
  3108. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3109. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3110. z_tmp = current_position[Z_AXIS],
  3111. stepper_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3112. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3113. if (DEBUGGING(LEVELING)) {
  3114. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z);
  3115. SERIAL_ECHOPAIR(" ... z_tmp = ", z_tmp);
  3116. SERIAL_EOL;
  3117. }
  3118. #endif
  3119. // Apply the correction sending the Z probe offset
  3120. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3121. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3122. if (DEBUGGING(LEVELING)) {
  3123. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3124. SERIAL_EOL;
  3125. }
  3126. #endif
  3127. // Adjust the current Z and send it to the planner.
  3128. current_position[Z_AXIS] += z_tmp - stepper_z;
  3129. SYNC_PLAN_POSITION_KINEMATIC();
  3130. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3131. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3132. #endif
  3133. }
  3134. #endif // !DELTA
  3135. #ifdef Z_PROBE_END_SCRIPT
  3136. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3137. if (DEBUGGING(LEVELING)) {
  3138. SERIAL_ECHOPGM("Z Probe End Script: ");
  3139. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3140. }
  3141. #endif
  3142. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3143. stepper.synchronize();
  3144. #endif
  3145. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3146. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3147. #endif
  3148. bed_leveling_in_progress = false;
  3149. report_current_position();
  3150. KEEPALIVE_STATE(IN_HANDLER);
  3151. }
  3152. #endif //AUTO_BED_LEVELING_FEATURE
  3153. #if HAS_BED_PROBE
  3154. /**
  3155. * G30: Do a single Z probe at the current XY
  3156. */
  3157. inline void gcode_G30() {
  3158. setup_for_endstop_or_probe_move();
  3159. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3160. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3161. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3162. true, 1);
  3163. SERIAL_PROTOCOLPGM("Bed X: ");
  3164. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3165. SERIAL_PROTOCOLPGM(" Y: ");
  3166. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3167. SERIAL_PROTOCOLPGM(" Z: ");
  3168. SERIAL_PROTOCOL(measured_z + 0.0001);
  3169. SERIAL_EOL;
  3170. clean_up_after_endstop_or_probe_move();
  3171. report_current_position();
  3172. }
  3173. #if ENABLED(Z_PROBE_SLED)
  3174. /**
  3175. * G31: Deploy the Z probe
  3176. */
  3177. inline void gcode_G31() { DEPLOY_PROBE(); }
  3178. /**
  3179. * G32: Stow the Z probe
  3180. */
  3181. inline void gcode_G32() { STOW_PROBE(); }
  3182. #endif // Z_PROBE_SLED
  3183. #endif // HAS_BED_PROBE
  3184. /**
  3185. * G92: Set current position to given X Y Z E
  3186. */
  3187. inline void gcode_G92() {
  3188. bool didE = code_seen('E');
  3189. if (!didE) stepper.synchronize();
  3190. bool didXYZ = false;
  3191. for (int i = 0; i < NUM_AXIS; i++) {
  3192. if (code_seen(axis_codes[i])) {
  3193. float p = current_position[i],
  3194. v = code_value_axis_units(i);
  3195. current_position[i] = v;
  3196. if (i != E_AXIS) {
  3197. position_shift[i] += v - p; // Offset the coordinate space
  3198. update_software_endstops((AxisEnum)i);
  3199. didXYZ = true;
  3200. }
  3201. }
  3202. }
  3203. if (didXYZ)
  3204. SYNC_PLAN_POSITION_KINEMATIC();
  3205. else if (didE)
  3206. sync_plan_position_e();
  3207. }
  3208. #if ENABLED(ULTIPANEL)
  3209. /**
  3210. * M0: Unconditional stop - Wait for user button press on LCD
  3211. * M1: Conditional stop - Wait for user button press on LCD
  3212. */
  3213. inline void gcode_M0_M1() {
  3214. char* args = current_command_args;
  3215. millis_t codenum = 0;
  3216. bool hasP = false, hasS = false;
  3217. if (code_seen('P')) {
  3218. codenum = code_value_millis(); // milliseconds to wait
  3219. hasP = codenum > 0;
  3220. }
  3221. if (code_seen('S')) {
  3222. codenum = code_value_millis_from_seconds(); // seconds to wait
  3223. hasS = codenum > 0;
  3224. }
  3225. if (!hasP && !hasS && *args != '\0')
  3226. lcd_setstatus(args, true);
  3227. else {
  3228. LCD_MESSAGEPGM(MSG_USERWAIT);
  3229. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3230. dontExpireStatus();
  3231. #endif
  3232. }
  3233. lcd_ignore_click();
  3234. stepper.synchronize();
  3235. refresh_cmd_timeout();
  3236. if (codenum > 0) {
  3237. codenum += previous_cmd_ms; // wait until this time for a click
  3238. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3239. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3240. KEEPALIVE_STATE(IN_HANDLER);
  3241. lcd_ignore_click(false);
  3242. }
  3243. else {
  3244. if (!lcd_detected()) return;
  3245. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3246. while (!lcd_clicked()) idle();
  3247. KEEPALIVE_STATE(IN_HANDLER);
  3248. }
  3249. if (IS_SD_PRINTING)
  3250. LCD_MESSAGEPGM(MSG_RESUMING);
  3251. else
  3252. LCD_MESSAGEPGM(WELCOME_MSG);
  3253. }
  3254. #endif // ULTIPANEL
  3255. /**
  3256. * M17: Enable power on all stepper motors
  3257. */
  3258. inline void gcode_M17() {
  3259. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3260. enable_all_steppers();
  3261. }
  3262. #if ENABLED(SDSUPPORT)
  3263. /**
  3264. * M20: List SD card to serial output
  3265. */
  3266. inline void gcode_M20() {
  3267. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3268. card.ls();
  3269. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3270. }
  3271. /**
  3272. * M21: Init SD Card
  3273. */
  3274. inline void gcode_M21() {
  3275. card.initsd();
  3276. }
  3277. /**
  3278. * M22: Release SD Card
  3279. */
  3280. inline void gcode_M22() {
  3281. card.release();
  3282. }
  3283. /**
  3284. * M23: Open a file
  3285. */
  3286. inline void gcode_M23() {
  3287. card.openFile(current_command_args, true);
  3288. }
  3289. /**
  3290. * M24: Start SD Print
  3291. */
  3292. inline void gcode_M24() {
  3293. card.startFileprint();
  3294. print_job_timer.start();
  3295. }
  3296. /**
  3297. * M25: Pause SD Print
  3298. */
  3299. inline void gcode_M25() {
  3300. card.pauseSDPrint();
  3301. }
  3302. /**
  3303. * M26: Set SD Card file index
  3304. */
  3305. inline void gcode_M26() {
  3306. if (card.cardOK && code_seen('S'))
  3307. card.setIndex(code_value_long());
  3308. }
  3309. /**
  3310. * M27: Get SD Card status
  3311. */
  3312. inline void gcode_M27() {
  3313. card.getStatus();
  3314. }
  3315. /**
  3316. * M28: Start SD Write
  3317. */
  3318. inline void gcode_M28() {
  3319. card.openFile(current_command_args, false);
  3320. }
  3321. /**
  3322. * M29: Stop SD Write
  3323. * Processed in write to file routine above
  3324. */
  3325. inline void gcode_M29() {
  3326. // card.saving = false;
  3327. }
  3328. /**
  3329. * M30 <filename>: Delete SD Card file
  3330. */
  3331. inline void gcode_M30() {
  3332. if (card.cardOK) {
  3333. card.closefile();
  3334. card.removeFile(current_command_args);
  3335. }
  3336. }
  3337. #endif //SDSUPPORT
  3338. /**
  3339. * M31: Get the time since the start of SD Print (or last M109)
  3340. */
  3341. inline void gcode_M31() {
  3342. millis_t t = print_job_timer.duration();
  3343. int d = int(t / 60 / 60 / 24),
  3344. h = int(t / 60 / 60) % 60,
  3345. m = int(t / 60) % 60,
  3346. s = int(t % 60);
  3347. char time[18]; // 123456789012345678
  3348. if (d)
  3349. sprintf_P(time, PSTR("%id %ih %im %is"), d, h, m, s); // 99d 23h 59m 59s
  3350. else
  3351. sprintf_P(time, PSTR("%ih %im %is"), h, m, s); // 23h 59m 59s
  3352. lcd_setstatus(time);
  3353. SERIAL_ECHO_START;
  3354. SERIAL_ECHOPGM(MSG_PRINT_TIME " ");
  3355. SERIAL_ECHOLN(time);
  3356. thermalManager.autotempShutdown();
  3357. }
  3358. #if ENABLED(SDSUPPORT)
  3359. /**
  3360. * M32: Select file and start SD Print
  3361. */
  3362. inline void gcode_M32() {
  3363. if (card.sdprinting)
  3364. stepper.synchronize();
  3365. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3366. if (!namestartpos)
  3367. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3368. else
  3369. namestartpos++; //to skip the '!'
  3370. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3371. if (card.cardOK) {
  3372. card.openFile(namestartpos, true, call_procedure);
  3373. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3374. card.setIndex(code_value_long());
  3375. card.startFileprint();
  3376. // Procedure calls count as normal print time.
  3377. if (!call_procedure) print_job_timer.start();
  3378. }
  3379. }
  3380. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3381. /**
  3382. * M33: Get the long full path of a file or folder
  3383. *
  3384. * Parameters:
  3385. * <dospath> Case-insensitive DOS-style path to a file or folder
  3386. *
  3387. * Example:
  3388. * M33 miscel~1/armchair/armcha~1.gco
  3389. *
  3390. * Output:
  3391. * /Miscellaneous/Armchair/Armchair.gcode
  3392. */
  3393. inline void gcode_M33() {
  3394. card.printLongPath(current_command_args);
  3395. }
  3396. #endif
  3397. /**
  3398. * M928: Start SD Write
  3399. */
  3400. inline void gcode_M928() {
  3401. card.openLogFile(current_command_args);
  3402. }
  3403. #endif // SDSUPPORT
  3404. /**
  3405. * M42: Change pin status via GCode
  3406. *
  3407. * P<pin> Pin number (LED if omitted)
  3408. * S<byte> Pin status from 0 - 255
  3409. */
  3410. inline void gcode_M42() {
  3411. if (!code_seen('S')) return;
  3412. int pin_status = code_value_int();
  3413. if (pin_status < 0 || pin_status > 255) return;
  3414. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3415. if (pin_number < 0) return;
  3416. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3417. if (pin_number == sensitive_pins[i]) return;
  3418. pinMode(pin_number, OUTPUT);
  3419. digitalWrite(pin_number, pin_status);
  3420. analogWrite(pin_number, pin_status);
  3421. #if FAN_COUNT > 0
  3422. switch (pin_number) {
  3423. #if HAS_FAN0
  3424. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3425. #endif
  3426. #if HAS_FAN1
  3427. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3428. #endif
  3429. #if HAS_FAN2
  3430. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3431. #endif
  3432. }
  3433. #endif
  3434. }
  3435. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3436. /**
  3437. * M48: Z probe repeatability measurement function.
  3438. *
  3439. * Usage:
  3440. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3441. * P = Number of sampled points (4-50, default 10)
  3442. * X = Sample X position
  3443. * Y = Sample Y position
  3444. * V = Verbose level (0-4, default=1)
  3445. * E = Engage Z probe for each reading
  3446. * L = Number of legs of movement before probe
  3447. * S = Schizoid (Or Star if you prefer)
  3448. *
  3449. * This function assumes the bed has been homed. Specifically, that a G28 command
  3450. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3451. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3452. * regenerated.
  3453. */
  3454. inline void gcode_M48() {
  3455. if (axis_unhomed_error(true, true, true)) return;
  3456. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3457. if (verbose_level < 0 || verbose_level > 4) {
  3458. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3459. return;
  3460. }
  3461. if (verbose_level > 0)
  3462. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3463. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3464. if (n_samples < 4 || n_samples > 50) {
  3465. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3466. return;
  3467. }
  3468. float X_current = current_position[X_AXIS],
  3469. Y_current = current_position[Y_AXIS];
  3470. bool stow_probe_after_each = code_seen('E');
  3471. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3472. #if DISABLED(DELTA)
  3473. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3474. out_of_range_error(PSTR("X"));
  3475. return;
  3476. }
  3477. #endif
  3478. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3479. #if DISABLED(DELTA)
  3480. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3481. out_of_range_error(PSTR("Y"));
  3482. return;
  3483. }
  3484. #else
  3485. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3486. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3487. return;
  3488. }
  3489. #endif
  3490. bool seen_L = code_seen('L');
  3491. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3492. if (n_legs > 15) {
  3493. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3494. return;
  3495. }
  3496. if (n_legs == 1) n_legs = 2;
  3497. bool schizoid_flag = code_seen('S');
  3498. if (schizoid_flag && !seen_L) n_legs = 7;
  3499. /**
  3500. * Now get everything to the specified probe point So we can safely do a
  3501. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3502. * we don't want to use that as a starting point for each probe.
  3503. */
  3504. if (verbose_level > 2)
  3505. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3506. #if ENABLED(DELTA)
  3507. // we don't do bed level correction in M48 because we want the raw data when we probe
  3508. reset_bed_level();
  3509. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  3510. // we don't do bed level correction in M48 because we want the raw data when we probe
  3511. planner.bed_level_matrix.set_to_identity();
  3512. #endif
  3513. setup_for_endstop_or_probe_move();
  3514. // Move to the first point, deploy, and probe
  3515. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3516. randomSeed(millis());
  3517. double mean = 0, sigma = 0, sample_set[n_samples];
  3518. for (uint8_t n = 0; n < n_samples; n++) {
  3519. if (n_legs) {
  3520. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3521. float angle = random(0.0, 360.0),
  3522. radius = random(
  3523. #if ENABLED(DELTA)
  3524. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3525. #else
  3526. 5, X_MAX_LENGTH / 8
  3527. #endif
  3528. );
  3529. if (verbose_level > 3) {
  3530. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3531. SERIAL_ECHOPAIR(" angle: ", angle);
  3532. SERIAL_ECHOPGM(" Direction: ");
  3533. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3534. SERIAL_ECHOLNPGM("Clockwise");
  3535. }
  3536. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3537. double delta_angle;
  3538. if (schizoid_flag)
  3539. // The points of a 5 point star are 72 degrees apart. We need to
  3540. // skip a point and go to the next one on the star.
  3541. delta_angle = dir * 2.0 * 72.0;
  3542. else
  3543. // If we do this line, we are just trying to move further
  3544. // around the circle.
  3545. delta_angle = dir * (float) random(25, 45);
  3546. angle += delta_angle;
  3547. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3548. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3549. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3550. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3551. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3552. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3553. #if DISABLED(DELTA)
  3554. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3555. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3556. #else
  3557. // If we have gone out too far, we can do a simple fix and scale the numbers
  3558. // back in closer to the origin.
  3559. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3560. X_current /= 1.25;
  3561. Y_current /= 1.25;
  3562. if (verbose_level > 3) {
  3563. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3564. SERIAL_ECHOPAIR(", ", Y_current);
  3565. SERIAL_EOL;
  3566. }
  3567. }
  3568. #endif
  3569. if (verbose_level > 3) {
  3570. SERIAL_PROTOCOLPGM("Going to:");
  3571. SERIAL_ECHOPAIR(" X", X_current);
  3572. SERIAL_ECHOPAIR(" Y", Y_current);
  3573. SERIAL_ECHOPAIR(" Z", current_position[Z_AXIS]);
  3574. SERIAL_EOL;
  3575. }
  3576. do_blocking_move_to_xy(X_current, Y_current);
  3577. } // n_legs loop
  3578. } // n_legs
  3579. // Probe a single point
  3580. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3581. /**
  3582. * Get the current mean for the data points we have so far
  3583. */
  3584. double sum = 0.0;
  3585. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3586. mean = sum / (n + 1);
  3587. /**
  3588. * Now, use that mean to calculate the standard deviation for the
  3589. * data points we have so far
  3590. */
  3591. sum = 0.0;
  3592. for (uint8_t j = 0; j <= n; j++) {
  3593. float ss = sample_set[j] - mean;
  3594. sum += ss * ss;
  3595. }
  3596. sigma = sqrt(sum / (n + 1));
  3597. if (verbose_level > 0) {
  3598. if (verbose_level > 1) {
  3599. SERIAL_PROTOCOL(n + 1);
  3600. SERIAL_PROTOCOLPGM(" of ");
  3601. SERIAL_PROTOCOL((int)n_samples);
  3602. SERIAL_PROTOCOLPGM(" z: ");
  3603. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3604. if (verbose_level > 2) {
  3605. SERIAL_PROTOCOLPGM(" mean: ");
  3606. SERIAL_PROTOCOL_F(mean, 6);
  3607. SERIAL_PROTOCOLPGM(" sigma: ");
  3608. SERIAL_PROTOCOL_F(sigma, 6);
  3609. }
  3610. }
  3611. SERIAL_EOL;
  3612. }
  3613. } // End of probe loop
  3614. if (STOW_PROBE()) return;
  3615. if (verbose_level > 0) {
  3616. SERIAL_PROTOCOLPGM("Mean: ");
  3617. SERIAL_PROTOCOL_F(mean, 6);
  3618. SERIAL_EOL;
  3619. }
  3620. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3621. SERIAL_PROTOCOL_F(sigma, 6);
  3622. SERIAL_EOL; SERIAL_EOL;
  3623. clean_up_after_endstop_or_probe_move();
  3624. report_current_position();
  3625. }
  3626. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3627. /**
  3628. * M75: Start print timer
  3629. */
  3630. inline void gcode_M75() { print_job_timer.start(); }
  3631. /**
  3632. * M76: Pause print timer
  3633. */
  3634. inline void gcode_M76() { print_job_timer.pause(); }
  3635. /**
  3636. * M77: Stop print timer
  3637. */
  3638. inline void gcode_M77() { print_job_timer.stop(); }
  3639. #if ENABLED(PRINTCOUNTER)
  3640. /*+
  3641. * M78: Show print statistics
  3642. */
  3643. inline void gcode_M78() {
  3644. // "M78 S78" will reset the statistics
  3645. if (code_seen('S') && code_value_int() == 78)
  3646. print_job_timer.initStats();
  3647. else print_job_timer.showStats();
  3648. }
  3649. #endif
  3650. /**
  3651. * M104: Set hot end temperature
  3652. */
  3653. inline void gcode_M104() {
  3654. if (get_target_extruder_from_command(104)) return;
  3655. if (DEBUGGING(DRYRUN)) return;
  3656. #if ENABLED(SINGLENOZZLE)
  3657. if (target_extruder != active_extruder) return;
  3658. #endif
  3659. if (code_seen('S')) {
  3660. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3661. #if ENABLED(DUAL_X_CARRIAGE)
  3662. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3663. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3664. #endif
  3665. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3666. /**
  3667. * Stop the timer at the end of print, starting is managed by
  3668. * 'heat and wait' M109.
  3669. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3670. * stand by mode, for instance in a dual extruder setup, without affecting
  3671. * the running print timer.
  3672. */
  3673. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3674. print_job_timer.stop();
  3675. LCD_MESSAGEPGM(WELCOME_MSG);
  3676. }
  3677. #endif
  3678. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3679. }
  3680. }
  3681. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3682. void print_heaterstates() {
  3683. #if HAS_TEMP_HOTEND
  3684. SERIAL_PROTOCOLPGM(" T:");
  3685. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3686. SERIAL_PROTOCOLPGM(" /");
  3687. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3688. #endif
  3689. #if HAS_TEMP_BED
  3690. SERIAL_PROTOCOLPGM(" B:");
  3691. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3692. SERIAL_PROTOCOLPGM(" /");
  3693. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3694. #endif
  3695. #if HOTENDS > 1
  3696. HOTEND_LOOP() {
  3697. SERIAL_PROTOCOLPGM(" T");
  3698. SERIAL_PROTOCOL(e);
  3699. SERIAL_PROTOCOLCHAR(':');
  3700. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3701. SERIAL_PROTOCOLPGM(" /");
  3702. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3703. }
  3704. #endif
  3705. #if HAS_TEMP_BED
  3706. SERIAL_PROTOCOLPGM(" B@:");
  3707. #ifdef BED_WATTS
  3708. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3709. SERIAL_PROTOCOLCHAR('W');
  3710. #else
  3711. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3712. #endif
  3713. #endif
  3714. SERIAL_PROTOCOLPGM(" @:");
  3715. #ifdef EXTRUDER_WATTS
  3716. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3717. SERIAL_PROTOCOLCHAR('W');
  3718. #else
  3719. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3720. #endif
  3721. #if HOTENDS > 1
  3722. HOTEND_LOOP() {
  3723. SERIAL_PROTOCOLPGM(" @");
  3724. SERIAL_PROTOCOL(e);
  3725. SERIAL_PROTOCOLCHAR(':');
  3726. #ifdef EXTRUDER_WATTS
  3727. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3728. SERIAL_PROTOCOLCHAR('W');
  3729. #else
  3730. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3731. #endif
  3732. }
  3733. #endif
  3734. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3735. #if HAS_TEMP_BED
  3736. SERIAL_PROTOCOLPGM(" ADC B:");
  3737. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3738. SERIAL_PROTOCOLPGM("C->");
  3739. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3740. #endif
  3741. HOTEND_LOOP() {
  3742. SERIAL_PROTOCOLPGM(" T");
  3743. SERIAL_PROTOCOL(e);
  3744. SERIAL_PROTOCOLCHAR(':');
  3745. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3746. SERIAL_PROTOCOLPGM("C->");
  3747. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(e) / OVERSAMPLENR, 0);
  3748. }
  3749. #endif
  3750. }
  3751. #endif
  3752. /**
  3753. * M105: Read hot end and bed temperature
  3754. */
  3755. inline void gcode_M105() {
  3756. if (get_target_extruder_from_command(105)) return;
  3757. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3758. SERIAL_PROTOCOLPGM(MSG_OK);
  3759. print_heaterstates();
  3760. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3761. SERIAL_ERROR_START;
  3762. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3763. #endif
  3764. SERIAL_EOL;
  3765. }
  3766. #if FAN_COUNT > 0
  3767. /**
  3768. * M106: Set Fan Speed
  3769. *
  3770. * S<int> Speed between 0-255
  3771. * P<index> Fan index, if more than one fan
  3772. */
  3773. inline void gcode_M106() {
  3774. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3775. p = code_seen('P') ? code_value_ushort() : 0;
  3776. NOMORE(s, 255);
  3777. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3778. }
  3779. /**
  3780. * M107: Fan Off
  3781. */
  3782. inline void gcode_M107() {
  3783. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3784. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3785. }
  3786. #endif // FAN_COUNT > 0
  3787. #if DISABLED(EMERGENCY_PARSER)
  3788. /**
  3789. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3790. */
  3791. inline void gcode_M108() { wait_for_heatup = false; }
  3792. /**
  3793. * M112: Emergency Stop
  3794. */
  3795. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3796. /**
  3797. * M410: Quickstop - Abort all planned moves
  3798. *
  3799. * This will stop the carriages mid-move, so most likely they
  3800. * will be out of sync with the stepper position after this.
  3801. */
  3802. inline void gcode_M410() { quickstop_stepper(); }
  3803. #endif
  3804. #ifndef MIN_COOLING_SLOPE_DEG
  3805. #define MIN_COOLING_SLOPE_DEG 1.50
  3806. #endif
  3807. #ifndef MIN_COOLING_SLOPE_TIME
  3808. #define MIN_COOLING_SLOPE_TIME 60
  3809. #endif
  3810. /**
  3811. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3812. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3813. */
  3814. inline void gcode_M109() {
  3815. if (get_target_extruder_from_command(109)) return;
  3816. if (DEBUGGING(DRYRUN)) return;
  3817. #if ENABLED(SINGLENOZZLE)
  3818. if (target_extruder != active_extruder) return;
  3819. #endif
  3820. bool no_wait_for_cooling = code_seen('S');
  3821. if (no_wait_for_cooling || code_seen('R')) {
  3822. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3823. #if ENABLED(DUAL_X_CARRIAGE)
  3824. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3825. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3826. #endif
  3827. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3828. /**
  3829. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3830. * stand by mode, for instance in a dual extruder setup, without affecting
  3831. * the running print timer.
  3832. */
  3833. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3834. print_job_timer.stop();
  3835. LCD_MESSAGEPGM(WELCOME_MSG);
  3836. }
  3837. /**
  3838. * We do not check if the timer is already running because this check will
  3839. * be done for us inside the Stopwatch::start() method thus a running timer
  3840. * will not restart.
  3841. */
  3842. else print_job_timer.start();
  3843. #endif
  3844. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3845. }
  3846. #if ENABLED(AUTOTEMP)
  3847. planner.autotemp_M109();
  3848. #endif
  3849. #if TEMP_RESIDENCY_TIME > 0
  3850. millis_t residency_start_ms = 0;
  3851. // Loop until the temperature has stabilized
  3852. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3853. #else
  3854. // Loop until the temperature is very close target
  3855. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3856. #endif //TEMP_RESIDENCY_TIME > 0
  3857. float theTarget = -1.0, old_temp = 9999.0;
  3858. bool wants_to_cool = false;
  3859. wait_for_heatup = true;
  3860. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3861. KEEPALIVE_STATE(NOT_BUSY);
  3862. do {
  3863. // Target temperature might be changed during the loop
  3864. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3865. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3866. theTarget = thermalManager.degTargetHotend(target_extruder);
  3867. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3868. if (no_wait_for_cooling && wants_to_cool) break;
  3869. }
  3870. now = millis();
  3871. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3872. next_temp_ms = now + 1000UL;
  3873. print_heaterstates();
  3874. #if TEMP_RESIDENCY_TIME > 0
  3875. SERIAL_PROTOCOLPGM(" W:");
  3876. if (residency_start_ms) {
  3877. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3878. SERIAL_PROTOCOLLN(rem);
  3879. }
  3880. else {
  3881. SERIAL_PROTOCOLLNPGM("?");
  3882. }
  3883. #else
  3884. SERIAL_EOL;
  3885. #endif
  3886. }
  3887. idle();
  3888. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3889. float temp = thermalManager.degHotend(target_extruder);
  3890. #if TEMP_RESIDENCY_TIME > 0
  3891. float temp_diff = fabs(theTarget - temp);
  3892. if (!residency_start_ms) {
  3893. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3894. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3895. }
  3896. else if (temp_diff > TEMP_HYSTERESIS) {
  3897. // Restart the timer whenever the temperature falls outside the hysteresis.
  3898. residency_start_ms = now;
  3899. }
  3900. #endif //TEMP_RESIDENCY_TIME > 0
  3901. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3902. if (wants_to_cool) {
  3903. // break after MIN_COOLING_SLOPE_TIME seconds
  3904. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  3905. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3906. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  3907. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  3908. old_temp = temp;
  3909. }
  3910. }
  3911. } while (wait_for_heatup && TEMP_CONDITIONS);
  3912. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3913. KEEPALIVE_STATE(IN_HANDLER);
  3914. }
  3915. #if HAS_TEMP_BED
  3916. #ifndef MIN_COOLING_SLOPE_DEG_BED
  3917. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  3918. #endif
  3919. #ifndef MIN_COOLING_SLOPE_TIME_BED
  3920. #define MIN_COOLING_SLOPE_TIME_BED 60
  3921. #endif
  3922. /**
  3923. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3924. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3925. */
  3926. inline void gcode_M190() {
  3927. if (DEBUGGING(DRYRUN)) return;
  3928. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3929. bool no_wait_for_cooling = code_seen('S');
  3930. if (no_wait_for_cooling || code_seen('R')) {
  3931. thermalManager.setTargetBed(code_value_temp_abs());
  3932. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3933. if (code_value_temp_abs() > BED_MINTEMP) {
  3934. /**
  3935. * We start the timer when 'heating and waiting' command arrives, LCD
  3936. * functions never wait. Cooling down managed by extruders.
  3937. *
  3938. * We do not check if the timer is already running because this check will
  3939. * be done for us inside the Stopwatch::start() method thus a running timer
  3940. * will not restart.
  3941. */
  3942. print_job_timer.start();
  3943. }
  3944. #endif
  3945. }
  3946. #if TEMP_BED_RESIDENCY_TIME > 0
  3947. millis_t residency_start_ms = 0;
  3948. // Loop until the temperature has stabilized
  3949. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3950. #else
  3951. // Loop until the temperature is very close target
  3952. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3953. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3954. float theTarget = -1.0, old_temp = 9999.0;
  3955. bool wants_to_cool = false;
  3956. wait_for_heatup = true;
  3957. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3958. KEEPALIVE_STATE(NOT_BUSY);
  3959. do {
  3960. // Target temperature might be changed during the loop
  3961. if (theTarget != thermalManager.degTargetBed()) {
  3962. wants_to_cool = thermalManager.isCoolingBed();
  3963. theTarget = thermalManager.degTargetBed();
  3964. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3965. if (no_wait_for_cooling && wants_to_cool) break;
  3966. }
  3967. now = millis();
  3968. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3969. next_temp_ms = now + 1000UL;
  3970. print_heaterstates();
  3971. #if TEMP_BED_RESIDENCY_TIME > 0
  3972. SERIAL_PROTOCOLPGM(" W:");
  3973. if (residency_start_ms) {
  3974. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3975. SERIAL_PROTOCOLLN(rem);
  3976. }
  3977. else {
  3978. SERIAL_PROTOCOLLNPGM("?");
  3979. }
  3980. #else
  3981. SERIAL_EOL;
  3982. #endif
  3983. }
  3984. idle();
  3985. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3986. float temp = thermalManager.degBed();
  3987. #if TEMP_BED_RESIDENCY_TIME > 0
  3988. float temp_diff = fabs(theTarget - temp);
  3989. if (!residency_start_ms) {
  3990. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3991. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  3992. }
  3993. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3994. // Restart the timer whenever the temperature falls outside the hysteresis.
  3995. residency_start_ms = now;
  3996. }
  3997. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3998. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  3999. if (wants_to_cool) {
  4000. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4001. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4002. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4003. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4004. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4005. old_temp = temp;
  4006. }
  4007. }
  4008. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4009. LCD_MESSAGEPGM(MSG_BED_DONE);
  4010. KEEPALIVE_STATE(IN_HANDLER);
  4011. }
  4012. #endif // HAS_TEMP_BED
  4013. /**
  4014. * M110: Set Current Line Number
  4015. */
  4016. inline void gcode_M110() {
  4017. if (code_seen('N')) gcode_N = code_value_long();
  4018. }
  4019. /**
  4020. * M111: Set the debug level
  4021. */
  4022. inline void gcode_M111() {
  4023. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4024. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4025. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4026. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4027. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4028. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4029. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4030. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4031. #endif
  4032. const static char* const debug_strings[] PROGMEM = {
  4033. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4034. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4035. str_debug_32
  4036. #endif
  4037. };
  4038. SERIAL_ECHO_START;
  4039. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4040. if (marlin_debug_flags) {
  4041. uint8_t comma = 0;
  4042. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4043. if (TEST(marlin_debug_flags, i)) {
  4044. if (comma++) SERIAL_CHAR(',');
  4045. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4046. }
  4047. }
  4048. }
  4049. else {
  4050. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4051. }
  4052. SERIAL_EOL;
  4053. }
  4054. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4055. /**
  4056. * M113: Get or set Host Keepalive interval (0 to disable)
  4057. *
  4058. * S<seconds> Optional. Set the keepalive interval.
  4059. */
  4060. inline void gcode_M113() {
  4061. if (code_seen('S')) {
  4062. host_keepalive_interval = code_value_byte();
  4063. NOMORE(host_keepalive_interval, 60);
  4064. }
  4065. else {
  4066. SERIAL_ECHO_START;
  4067. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4068. SERIAL_EOL;
  4069. }
  4070. }
  4071. #endif
  4072. #if ENABLED(BARICUDA)
  4073. #if HAS_HEATER_1
  4074. /**
  4075. * M126: Heater 1 valve open
  4076. */
  4077. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4078. /**
  4079. * M127: Heater 1 valve close
  4080. */
  4081. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4082. #endif
  4083. #if HAS_HEATER_2
  4084. /**
  4085. * M128: Heater 2 valve open
  4086. */
  4087. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4088. /**
  4089. * M129: Heater 2 valve close
  4090. */
  4091. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4092. #endif
  4093. #endif //BARICUDA
  4094. /**
  4095. * M140: Set bed temperature
  4096. */
  4097. inline void gcode_M140() {
  4098. if (DEBUGGING(DRYRUN)) return;
  4099. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4100. }
  4101. #if ENABLED(ULTIPANEL)
  4102. /**
  4103. * M145: Set the heatup state for a material in the LCD menu
  4104. * S<material> (0=PLA, 1=ABS)
  4105. * H<hotend temp>
  4106. * B<bed temp>
  4107. * F<fan speed>
  4108. */
  4109. inline void gcode_M145() {
  4110. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4111. if (material < 0 || material > 1) {
  4112. SERIAL_ERROR_START;
  4113. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4114. }
  4115. else {
  4116. int v;
  4117. switch (material) {
  4118. case 0:
  4119. if (code_seen('H')) {
  4120. v = code_value_int();
  4121. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4122. }
  4123. if (code_seen('F')) {
  4124. v = code_value_int();
  4125. preheatFanSpeed1 = constrain(v, 0, 255);
  4126. }
  4127. #if TEMP_SENSOR_BED != 0
  4128. if (code_seen('B')) {
  4129. v = code_value_int();
  4130. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4131. }
  4132. #endif
  4133. break;
  4134. case 1:
  4135. if (code_seen('H')) {
  4136. v = code_value_int();
  4137. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4138. }
  4139. if (code_seen('F')) {
  4140. v = code_value_int();
  4141. preheatFanSpeed2 = constrain(v, 0, 255);
  4142. }
  4143. #if TEMP_SENSOR_BED != 0
  4144. if (code_seen('B')) {
  4145. v = code_value_int();
  4146. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4147. }
  4148. #endif
  4149. break;
  4150. }
  4151. }
  4152. }
  4153. #endif
  4154. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4155. /**
  4156. * M149: Set temperature units
  4157. */
  4158. inline void gcode_M149() {
  4159. if (code_seen('C')) {
  4160. set_input_temp_units(TEMPUNIT_C);
  4161. } else if (code_seen('K')) {
  4162. set_input_temp_units(TEMPUNIT_K);
  4163. } else if (code_seen('F')) {
  4164. set_input_temp_units(TEMPUNIT_F);
  4165. }
  4166. }
  4167. #endif
  4168. #if HAS_POWER_SWITCH
  4169. /**
  4170. * M80: Turn on Power Supply
  4171. */
  4172. inline void gcode_M80() {
  4173. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4174. /**
  4175. * If you have a switch on suicide pin, this is useful
  4176. * if you want to start another print with suicide feature after
  4177. * a print without suicide...
  4178. */
  4179. #if HAS_SUICIDE
  4180. OUT_WRITE(SUICIDE_PIN, HIGH);
  4181. #endif
  4182. #if ENABLED(ULTIPANEL)
  4183. powersupply = true;
  4184. LCD_MESSAGEPGM(WELCOME_MSG);
  4185. lcd_update();
  4186. #endif
  4187. }
  4188. #endif // HAS_POWER_SWITCH
  4189. /**
  4190. * M81: Turn off Power, including Power Supply, if there is one.
  4191. *
  4192. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4193. */
  4194. inline void gcode_M81() {
  4195. thermalManager.disable_all_heaters();
  4196. stepper.finish_and_disable();
  4197. #if FAN_COUNT > 0
  4198. #if FAN_COUNT > 1
  4199. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4200. #else
  4201. fanSpeeds[0] = 0;
  4202. #endif
  4203. #endif
  4204. delay(1000); // Wait 1 second before switching off
  4205. #if HAS_SUICIDE
  4206. stepper.synchronize();
  4207. suicide();
  4208. #elif HAS_POWER_SWITCH
  4209. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4210. #endif
  4211. #if ENABLED(ULTIPANEL)
  4212. #if HAS_POWER_SWITCH
  4213. powersupply = false;
  4214. #endif
  4215. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4216. lcd_update();
  4217. #endif
  4218. }
  4219. /**
  4220. * M82: Set E codes absolute (default)
  4221. */
  4222. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4223. /**
  4224. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4225. */
  4226. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4227. /**
  4228. * M18, M84: Disable all stepper motors
  4229. */
  4230. inline void gcode_M18_M84() {
  4231. if (code_seen('S')) {
  4232. stepper_inactive_time = code_value_millis_from_seconds();
  4233. }
  4234. else {
  4235. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4236. if (all_axis) {
  4237. stepper.finish_and_disable();
  4238. }
  4239. else {
  4240. stepper.synchronize();
  4241. if (code_seen('X')) disable_x();
  4242. if (code_seen('Y')) disable_y();
  4243. if (code_seen('Z')) disable_z();
  4244. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4245. if (code_seen('E')) {
  4246. disable_e0();
  4247. disable_e1();
  4248. disable_e2();
  4249. disable_e3();
  4250. }
  4251. #endif
  4252. }
  4253. }
  4254. }
  4255. /**
  4256. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4257. */
  4258. inline void gcode_M85() {
  4259. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4260. }
  4261. /**
  4262. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4263. * (Follows the same syntax as G92)
  4264. */
  4265. inline void gcode_M92() {
  4266. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4267. if (code_seen(axis_codes[i])) {
  4268. if (i == E_AXIS) {
  4269. float value = code_value_per_axis_unit(i);
  4270. if (value < 20.0) {
  4271. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4272. planner.max_e_jerk *= factor;
  4273. planner.max_feedrate[i] *= factor;
  4274. planner.max_acceleration_steps_per_s2[i] *= factor;
  4275. }
  4276. planner.axis_steps_per_mm[i] = value;
  4277. }
  4278. else {
  4279. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4280. }
  4281. }
  4282. }
  4283. }
  4284. /**
  4285. * Output the current position to serial
  4286. */
  4287. static void report_current_position() {
  4288. SERIAL_PROTOCOLPGM("X:");
  4289. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4290. SERIAL_PROTOCOLPGM(" Y:");
  4291. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4292. SERIAL_PROTOCOLPGM(" Z:");
  4293. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4294. SERIAL_PROTOCOLPGM(" E:");
  4295. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4296. stepper.report_positions();
  4297. #if ENABLED(SCARA)
  4298. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4299. SERIAL_PROTOCOL(delta[X_AXIS]);
  4300. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4301. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4302. SERIAL_EOL;
  4303. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4304. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4305. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4306. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4307. SERIAL_EOL;
  4308. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4309. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4310. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4311. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4312. SERIAL_EOL; SERIAL_EOL;
  4313. #endif
  4314. }
  4315. /**
  4316. * M114: Output current position to serial port
  4317. */
  4318. inline void gcode_M114() { report_current_position(); }
  4319. /**
  4320. * M115: Capabilities string
  4321. */
  4322. inline void gcode_M115() {
  4323. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4324. }
  4325. /**
  4326. * M117: Set LCD Status Message
  4327. */
  4328. inline void gcode_M117() {
  4329. lcd_setstatus(current_command_args);
  4330. }
  4331. /**
  4332. * M119: Output endstop states to serial output
  4333. */
  4334. inline void gcode_M119() { endstops.M119(); }
  4335. /**
  4336. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4337. */
  4338. inline void gcode_M120() { endstops.enable_globally(true); }
  4339. /**
  4340. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4341. */
  4342. inline void gcode_M121() { endstops.enable_globally(false); }
  4343. #if ENABLED(BLINKM)
  4344. /**
  4345. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4346. */
  4347. inline void gcode_M150() {
  4348. SendColors(
  4349. code_seen('R') ? code_value_byte() : 0,
  4350. code_seen('U') ? code_value_byte() : 0,
  4351. code_seen('B') ? code_value_byte() : 0
  4352. );
  4353. }
  4354. #endif // BLINKM
  4355. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4356. /**
  4357. * M155: Send data to a I2C slave device
  4358. *
  4359. * This is a PoC, the formating and arguments for the GCODE will
  4360. * change to be more compatible, the current proposal is:
  4361. *
  4362. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4363. *
  4364. * M155 B<byte-1 value in base 10>
  4365. * M155 B<byte-2 value in base 10>
  4366. * M155 B<byte-3 value in base 10>
  4367. *
  4368. * M155 S1 ; Send the buffered data and reset the buffer
  4369. * M155 R1 ; Reset the buffer without sending data
  4370. *
  4371. */
  4372. inline void gcode_M155() {
  4373. // Set the target address
  4374. if (code_seen('A'))
  4375. i2c.address(code_value_byte());
  4376. // Add a new byte to the buffer
  4377. else if (code_seen('B'))
  4378. i2c.addbyte(code_value_int());
  4379. // Flush the buffer to the bus
  4380. else if (code_seen('S')) i2c.send();
  4381. // Reset and rewind the buffer
  4382. else if (code_seen('R')) i2c.reset();
  4383. }
  4384. /**
  4385. * M156: Request X bytes from I2C slave device
  4386. *
  4387. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4388. */
  4389. inline void gcode_M156() {
  4390. uint8_t addr = code_seen('A') ? code_value_byte() : 0;
  4391. int bytes = code_seen('B') ? code_value_int() : 1;
  4392. if (addr && bytes > 0 && bytes <= 32) {
  4393. i2c.address(addr);
  4394. i2c.reqbytes(bytes);
  4395. }
  4396. else {
  4397. SERIAL_ERROR_START;
  4398. SERIAL_ERRORLN("Bad i2c request");
  4399. }
  4400. }
  4401. #endif //EXPERIMENTAL_I2CBUS
  4402. /**
  4403. * M200: Set filament diameter and set E axis units to cubic units
  4404. *
  4405. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4406. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4407. */
  4408. inline void gcode_M200() {
  4409. if (get_target_extruder_from_command(200)) return;
  4410. if (code_seen('D')) {
  4411. // setting any extruder filament size disables volumetric on the assumption that
  4412. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4413. // for all extruders
  4414. volumetric_enabled = (code_value_linear_units() != 0.0);
  4415. if (volumetric_enabled) {
  4416. filament_size[target_extruder] = code_value_linear_units();
  4417. // make sure all extruders have some sane value for the filament size
  4418. for (int i = 0; i < EXTRUDERS; i++)
  4419. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4420. }
  4421. }
  4422. else {
  4423. //reserved for setting filament diameter via UFID or filament measuring device
  4424. return;
  4425. }
  4426. calculate_volumetric_multipliers();
  4427. }
  4428. /**
  4429. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4430. */
  4431. inline void gcode_M201() {
  4432. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4433. if (code_seen(axis_codes[i])) {
  4434. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4435. }
  4436. }
  4437. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4438. planner.reset_acceleration_rates();
  4439. }
  4440. #if 0 // Not used for Sprinter/grbl gen6
  4441. inline void gcode_M202() {
  4442. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4443. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4444. }
  4445. }
  4446. #endif
  4447. /**
  4448. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4449. */
  4450. inline void gcode_M203() {
  4451. for (int8_t i = 0; i < NUM_AXIS; i++)
  4452. if (code_seen(axis_codes[i]))
  4453. planner.max_feedrate[i] = code_value_axis_units(i);
  4454. }
  4455. /**
  4456. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4457. *
  4458. * P = Printing moves
  4459. * R = Retract only (no X, Y, Z) moves
  4460. * T = Travel (non printing) moves
  4461. *
  4462. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4463. */
  4464. inline void gcode_M204() {
  4465. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4466. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4467. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4468. SERIAL_EOL;
  4469. }
  4470. if (code_seen('P')) {
  4471. planner.acceleration = code_value_linear_units();
  4472. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4473. SERIAL_EOL;
  4474. }
  4475. if (code_seen('R')) {
  4476. planner.retract_acceleration = code_value_linear_units();
  4477. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4478. SERIAL_EOL;
  4479. }
  4480. if (code_seen('T')) {
  4481. planner.travel_acceleration = code_value_linear_units();
  4482. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4483. SERIAL_EOL;
  4484. }
  4485. }
  4486. /**
  4487. * M205: Set Advanced Settings
  4488. *
  4489. * S = Min Feed Rate (units/s)
  4490. * T = Min Travel Feed Rate (units/s)
  4491. * B = Min Segment Time (µs)
  4492. * X = Max XY Jerk (units/sec^2)
  4493. * Z = Max Z Jerk (units/sec^2)
  4494. * E = Max E Jerk (units/sec^2)
  4495. */
  4496. inline void gcode_M205() {
  4497. if (code_seen('S')) planner.min_feedrate = code_value_linear_units();
  4498. if (code_seen('T')) planner.min_travel_feedrate = code_value_linear_units();
  4499. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4500. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4501. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4502. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4503. }
  4504. /**
  4505. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4506. */
  4507. inline void gcode_M206() {
  4508. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4509. if (code_seen(axis_codes[i]))
  4510. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4511. #if ENABLED(SCARA)
  4512. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4513. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4514. #endif
  4515. SYNC_PLAN_POSITION_KINEMATIC();
  4516. report_current_position();
  4517. }
  4518. #if ENABLED(DELTA)
  4519. /**
  4520. * M665: Set delta configurations
  4521. *
  4522. * L = diagonal rod
  4523. * R = delta radius
  4524. * S = segments per second
  4525. * A = Alpha (Tower 1) diagonal rod trim
  4526. * B = Beta (Tower 2) diagonal rod trim
  4527. * C = Gamma (Tower 3) diagonal rod trim
  4528. */
  4529. inline void gcode_M665() {
  4530. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4531. if (code_seen('R')) delta_radius = code_value_linear_units();
  4532. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4533. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4534. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4535. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4536. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4537. }
  4538. /**
  4539. * M666: Set delta endstop adjustment
  4540. */
  4541. inline void gcode_M666() {
  4542. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4543. if (DEBUGGING(LEVELING)) {
  4544. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4545. }
  4546. #endif
  4547. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4548. if (code_seen(axis_codes[i])) {
  4549. endstop_adj[i] = code_value_axis_units(i);
  4550. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4551. if (DEBUGGING(LEVELING)) {
  4552. SERIAL_ECHOPGM("endstop_adj[");
  4553. SERIAL_ECHO(axis_codes[i]);
  4554. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4555. SERIAL_EOL;
  4556. }
  4557. #endif
  4558. }
  4559. }
  4560. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4561. if (DEBUGGING(LEVELING)) {
  4562. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4563. }
  4564. #endif
  4565. }
  4566. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4567. /**
  4568. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4569. */
  4570. inline void gcode_M666() {
  4571. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4572. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4573. SERIAL_EOL;
  4574. }
  4575. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4576. #if ENABLED(FWRETRACT)
  4577. /**
  4578. * M207: Set firmware retraction values
  4579. *
  4580. * S[+units] retract_length
  4581. * W[+units] retract_length_swap (multi-extruder)
  4582. * F[units/min] retract_feedrate_mm_s
  4583. * Z[units] retract_zlift
  4584. */
  4585. inline void gcode_M207() {
  4586. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4587. if (code_seen('F')) retract_feedrate_mm_s = code_value_axis_units(E_AXIS) / 60;
  4588. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4589. #if EXTRUDERS > 1
  4590. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4591. #endif
  4592. }
  4593. /**
  4594. * M208: Set firmware un-retraction values
  4595. *
  4596. * S[+units] retract_recover_length (in addition to M207 S*)
  4597. * W[+units] retract_recover_length_swap (multi-extruder)
  4598. * F[units/min] retract_recover_feedrate
  4599. */
  4600. inline void gcode_M208() {
  4601. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4602. if (code_seen('F')) retract_recover_feedrate = code_value_axis_units(E_AXIS) / 60;
  4603. #if EXTRUDERS > 1
  4604. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4605. #endif
  4606. }
  4607. /**
  4608. * M209: Enable automatic retract (M209 S1)
  4609. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4610. */
  4611. inline void gcode_M209() {
  4612. if (code_seen('S')) {
  4613. int t = code_value_int();
  4614. switch (t) {
  4615. case 0:
  4616. autoretract_enabled = false;
  4617. break;
  4618. case 1:
  4619. autoretract_enabled = true;
  4620. break;
  4621. default:
  4622. unknown_command_error();
  4623. return;
  4624. }
  4625. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4626. }
  4627. }
  4628. #endif // FWRETRACT
  4629. #if HOTENDS > 1
  4630. /**
  4631. * M218 - set hotend offset (in linear units)
  4632. *
  4633. * T<tool>
  4634. * X<xoffset>
  4635. * Y<yoffset>
  4636. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4637. */
  4638. inline void gcode_M218() {
  4639. if (get_target_extruder_from_command(218)) return;
  4640. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4641. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4642. #if ENABLED(DUAL_X_CARRIAGE)
  4643. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4644. #endif
  4645. SERIAL_ECHO_START;
  4646. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4647. HOTEND_LOOP() {
  4648. SERIAL_CHAR(' ');
  4649. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4650. SERIAL_CHAR(',');
  4651. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4652. #if ENABLED(DUAL_X_CARRIAGE)
  4653. SERIAL_CHAR(',');
  4654. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4655. #endif
  4656. }
  4657. SERIAL_EOL;
  4658. }
  4659. #endif // HOTENDS > 1
  4660. /**
  4661. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4662. */
  4663. inline void gcode_M220() {
  4664. if (code_seen('S')) feedrate_multiplier = code_value_int();
  4665. }
  4666. /**
  4667. * M221: Set extrusion percentage (M221 T0 S95)
  4668. */
  4669. inline void gcode_M221() {
  4670. if (get_target_extruder_from_command(221)) return;
  4671. if (code_seen('S'))
  4672. extruder_multiplier[target_extruder] = code_value_int();
  4673. }
  4674. /**
  4675. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4676. */
  4677. inline void gcode_M226() {
  4678. if (code_seen('P')) {
  4679. int pin_number = code_value_int();
  4680. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4681. if (pin_state >= -1 && pin_state <= 1) {
  4682. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4683. if (sensitive_pins[i] == pin_number) {
  4684. pin_number = -1;
  4685. break;
  4686. }
  4687. }
  4688. if (pin_number > -1) {
  4689. int target = LOW;
  4690. stepper.synchronize();
  4691. pinMode(pin_number, INPUT);
  4692. switch (pin_state) {
  4693. case 1:
  4694. target = HIGH;
  4695. break;
  4696. case 0:
  4697. target = LOW;
  4698. break;
  4699. case -1:
  4700. target = !digitalRead(pin_number);
  4701. break;
  4702. }
  4703. while (digitalRead(pin_number) != target) idle();
  4704. } // pin_number > -1
  4705. } // pin_state -1 0 1
  4706. } // code_seen('P')
  4707. }
  4708. #if HAS_SERVOS
  4709. /**
  4710. * M280: Get or set servo position. P<index> [S<angle>]
  4711. */
  4712. inline void gcode_M280() {
  4713. if (!code_seen('P')) return;
  4714. int servo_index = code_value_int();
  4715. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4716. if (code_seen('S'))
  4717. MOVE_SERVO(servo_index, code_value_int());
  4718. else {
  4719. SERIAL_ECHO_START;
  4720. SERIAL_ECHOPGM(" Servo ");
  4721. SERIAL_ECHO(servo_index);
  4722. SERIAL_ECHOPGM(": ");
  4723. SERIAL_ECHOLN(servo[servo_index].read());
  4724. }
  4725. }
  4726. else {
  4727. SERIAL_ERROR_START;
  4728. SERIAL_ERROR("Servo ");
  4729. SERIAL_ERROR(servo_index);
  4730. SERIAL_ERRORLN(" out of range");
  4731. }
  4732. }
  4733. #endif // HAS_SERVOS
  4734. #if HAS_BUZZER
  4735. /**
  4736. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4737. */
  4738. inline void gcode_M300() {
  4739. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4740. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4741. // Limits the tone duration to 0-5 seconds.
  4742. NOMORE(duration, 5000);
  4743. buzzer.tone(duration, frequency);
  4744. }
  4745. #endif // HAS_BUZZER
  4746. #if ENABLED(PIDTEMP)
  4747. /**
  4748. * M301: Set PID parameters P I D (and optionally C, L)
  4749. *
  4750. * P[float] Kp term
  4751. * I[float] Ki term (unscaled)
  4752. * D[float] Kd term (unscaled)
  4753. *
  4754. * With PID_ADD_EXTRUSION_RATE:
  4755. *
  4756. * C[float] Kc term
  4757. * L[float] LPQ length
  4758. */
  4759. inline void gcode_M301() {
  4760. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4761. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4762. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4763. if (e < HOTENDS) { // catch bad input value
  4764. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4765. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4766. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4767. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4768. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4769. if (code_seen('L')) lpq_len = code_value_float();
  4770. NOMORE(lpq_len, LPQ_MAX_LEN);
  4771. #endif
  4772. thermalManager.updatePID();
  4773. SERIAL_ECHO_START;
  4774. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4775. SERIAL_ECHOPGM(" e:"); // specify extruder in serial output
  4776. SERIAL_ECHO(e);
  4777. #endif // PID_PARAMS_PER_HOTEND
  4778. SERIAL_ECHOPGM(" p:");
  4779. SERIAL_ECHO(PID_PARAM(Kp, e));
  4780. SERIAL_ECHOPGM(" i:");
  4781. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4782. SERIAL_ECHOPGM(" d:");
  4783. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4784. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4785. SERIAL_ECHOPGM(" c:");
  4786. //Kc does not have scaling applied above, or in resetting defaults
  4787. SERIAL_ECHO(PID_PARAM(Kc, e));
  4788. #endif
  4789. SERIAL_EOL;
  4790. }
  4791. else {
  4792. SERIAL_ERROR_START;
  4793. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4794. }
  4795. }
  4796. #endif // PIDTEMP
  4797. #if ENABLED(PIDTEMPBED)
  4798. inline void gcode_M304() {
  4799. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4800. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4801. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4802. thermalManager.updatePID();
  4803. SERIAL_ECHO_START;
  4804. SERIAL_ECHOPGM(" p:");
  4805. SERIAL_ECHO(thermalManager.bedKp);
  4806. SERIAL_ECHOPGM(" i:");
  4807. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4808. SERIAL_ECHOPGM(" d:");
  4809. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4810. }
  4811. #endif // PIDTEMPBED
  4812. #if defined(CHDK) || HAS_PHOTOGRAPH
  4813. /**
  4814. * M240: Trigger a camera by emulating a Canon RC-1
  4815. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4816. */
  4817. inline void gcode_M240() {
  4818. #ifdef CHDK
  4819. OUT_WRITE(CHDK, HIGH);
  4820. chdkHigh = millis();
  4821. chdkActive = true;
  4822. #elif HAS_PHOTOGRAPH
  4823. const uint8_t NUM_PULSES = 16;
  4824. const float PULSE_LENGTH = 0.01524;
  4825. for (int i = 0; i < NUM_PULSES; i++) {
  4826. WRITE(PHOTOGRAPH_PIN, HIGH);
  4827. _delay_ms(PULSE_LENGTH);
  4828. WRITE(PHOTOGRAPH_PIN, LOW);
  4829. _delay_ms(PULSE_LENGTH);
  4830. }
  4831. delay(7.33);
  4832. for (int i = 0; i < NUM_PULSES; i++) {
  4833. WRITE(PHOTOGRAPH_PIN, HIGH);
  4834. _delay_ms(PULSE_LENGTH);
  4835. WRITE(PHOTOGRAPH_PIN, LOW);
  4836. _delay_ms(PULSE_LENGTH);
  4837. }
  4838. #endif // !CHDK && HAS_PHOTOGRAPH
  4839. }
  4840. #endif // CHDK || PHOTOGRAPH_PIN
  4841. #if HAS_LCD_CONTRAST
  4842. /**
  4843. * M250: Read and optionally set the LCD contrast
  4844. */
  4845. inline void gcode_M250() {
  4846. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4847. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4848. SERIAL_PROTOCOL(lcd_contrast);
  4849. SERIAL_EOL;
  4850. }
  4851. #endif // HAS_LCD_CONTRAST
  4852. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4853. /**
  4854. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4855. *
  4856. * S<temperature> sets the minimum extrude temperature
  4857. * P<bool> enables (1) or disables (0) cold extrusion
  4858. *
  4859. * Examples:
  4860. *
  4861. * M302 ; report current cold extrusion state
  4862. * M302 P0 ; enable cold extrusion checking
  4863. * M302 P1 ; disables cold extrusion checking
  4864. * M302 S0 ; always allow extrusion (disables checking)
  4865. * M302 S170 ; only allow extrusion above 170
  4866. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4867. */
  4868. inline void gcode_M302() {
  4869. bool seen_S = code_seen('S');
  4870. if (seen_S) {
  4871. thermalManager.extrude_min_temp = code_value_temp_abs();
  4872. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4873. }
  4874. if (code_seen('P'))
  4875. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4876. else if (!seen_S) {
  4877. // Report current state
  4878. SERIAL_ECHO_START;
  4879. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4880. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4881. SERIAL_ECHOLNPGM("C)");
  4882. }
  4883. }
  4884. #endif // PREVENT_DANGEROUS_EXTRUDE
  4885. /**
  4886. * M303: PID relay autotune
  4887. *
  4888. * S<temperature> sets the target temperature. (default 150C)
  4889. * E<extruder> (-1 for the bed) (default 0)
  4890. * C<cycles>
  4891. * U<bool> with a non-zero value will apply the result to current settings
  4892. */
  4893. inline void gcode_M303() {
  4894. #if HAS_PID_HEATING
  4895. int e = code_seen('E') ? code_value_int() : 0;
  4896. int c = code_seen('C') ? code_value_int() : 5;
  4897. bool u = code_seen('U') && code_value_bool();
  4898. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4899. if (e >= 0 && e < HOTENDS)
  4900. target_extruder = e;
  4901. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4902. thermalManager.PID_autotune(temp, e, c, u);
  4903. KEEPALIVE_STATE(IN_HANDLER);
  4904. #else
  4905. SERIAL_ERROR_START;
  4906. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4907. #endif
  4908. }
  4909. #if ENABLED(SCARA)
  4910. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4911. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4912. //SERIAL_ECHOLNPGM(" Soft endstops disabled");
  4913. if (IsRunning()) {
  4914. //gcode_get_destination(); // For X Y Z E F
  4915. delta[X_AXIS] = delta_x;
  4916. delta[Y_AXIS] = delta_y;
  4917. calculate_SCARA_forward_Transform(delta);
  4918. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4919. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4920. prepare_move_to_destination();
  4921. //ok_to_send();
  4922. return true;
  4923. }
  4924. return false;
  4925. }
  4926. /**
  4927. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4928. */
  4929. inline bool gcode_M360() {
  4930. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  4931. return SCARA_move_to_cal(0, 120);
  4932. }
  4933. /**
  4934. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4935. */
  4936. inline bool gcode_M361() {
  4937. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  4938. return SCARA_move_to_cal(90, 130);
  4939. }
  4940. /**
  4941. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4942. */
  4943. inline bool gcode_M362() {
  4944. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  4945. return SCARA_move_to_cal(60, 180);
  4946. }
  4947. /**
  4948. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4949. */
  4950. inline bool gcode_M363() {
  4951. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  4952. return SCARA_move_to_cal(50, 90);
  4953. }
  4954. /**
  4955. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4956. */
  4957. inline bool gcode_M364() {
  4958. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  4959. return SCARA_move_to_cal(45, 135);
  4960. }
  4961. /**
  4962. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4963. */
  4964. inline void gcode_M365() {
  4965. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4966. if (code_seen(axis_codes[i]))
  4967. axis_scaling[i] = code_value_float();
  4968. }
  4969. #endif // SCARA
  4970. #if ENABLED(EXT_SOLENOID)
  4971. void enable_solenoid(uint8_t num) {
  4972. switch (num) {
  4973. case 0:
  4974. OUT_WRITE(SOL0_PIN, HIGH);
  4975. break;
  4976. #if HAS_SOLENOID_1
  4977. case 1:
  4978. OUT_WRITE(SOL1_PIN, HIGH);
  4979. break;
  4980. #endif
  4981. #if HAS_SOLENOID_2
  4982. case 2:
  4983. OUT_WRITE(SOL2_PIN, HIGH);
  4984. break;
  4985. #endif
  4986. #if HAS_SOLENOID_3
  4987. case 3:
  4988. OUT_WRITE(SOL3_PIN, HIGH);
  4989. break;
  4990. #endif
  4991. default:
  4992. SERIAL_ECHO_START;
  4993. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4994. break;
  4995. }
  4996. }
  4997. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4998. void disable_all_solenoids() {
  4999. OUT_WRITE(SOL0_PIN, LOW);
  5000. OUT_WRITE(SOL1_PIN, LOW);
  5001. OUT_WRITE(SOL2_PIN, LOW);
  5002. OUT_WRITE(SOL3_PIN, LOW);
  5003. }
  5004. /**
  5005. * M380: Enable solenoid on the active extruder
  5006. */
  5007. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5008. /**
  5009. * M381: Disable all solenoids
  5010. */
  5011. inline void gcode_M381() { disable_all_solenoids(); }
  5012. #endif // EXT_SOLENOID
  5013. /**
  5014. * M400: Finish all moves
  5015. */
  5016. inline void gcode_M400() { stepper.synchronize(); }
  5017. #if HAS_BED_PROBE
  5018. /**
  5019. * M401: Engage Z Servo endstop if available
  5020. */
  5021. inline void gcode_M401() { DEPLOY_PROBE(); }
  5022. /**
  5023. * M402: Retract Z Servo endstop if enabled
  5024. */
  5025. inline void gcode_M402() { STOW_PROBE(); }
  5026. #endif // HAS_BED_PROBE
  5027. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5028. /**
  5029. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5030. */
  5031. inline void gcode_M404() {
  5032. if (code_seen('W')) {
  5033. filament_width_nominal = code_value_linear_units();
  5034. }
  5035. else {
  5036. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5037. SERIAL_PROTOCOLLN(filament_width_nominal);
  5038. }
  5039. }
  5040. /**
  5041. * M405: Turn on filament sensor for control
  5042. */
  5043. inline void gcode_M405() {
  5044. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5045. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5046. if (code_seen('D')) meas_delay_cm = code_value_int();
  5047. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5048. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  5049. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5050. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5051. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5052. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  5053. }
  5054. filament_sensor = true;
  5055. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5056. //SERIAL_PROTOCOL(filament_width_meas);
  5057. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5058. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  5059. }
  5060. /**
  5061. * M406: Turn off filament sensor for control
  5062. */
  5063. inline void gcode_M406() { filament_sensor = false; }
  5064. /**
  5065. * M407: Get measured filament diameter on serial output
  5066. */
  5067. inline void gcode_M407() {
  5068. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5069. SERIAL_PROTOCOLLN(filament_width_meas);
  5070. }
  5071. #endif // FILAMENT_WIDTH_SENSOR
  5072. void quickstop_stepper() {
  5073. stepper.quick_stop();
  5074. #if DISABLED(DELTA) && DISABLED(SCARA)
  5075. stepper.synchronize();
  5076. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5077. vector_3 pos = planner.adjusted_position(); // values directly from steppers...
  5078. current_position[X_AXIS] = pos.x;
  5079. current_position[Y_AXIS] = pos.y;
  5080. current_position[Z_AXIS] = pos.z;
  5081. #else
  5082. current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  5083. current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  5084. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  5085. #endif
  5086. sync_plan_position(); // ...re-apply to planner position
  5087. #endif
  5088. }
  5089. #if ENABLED(MESH_BED_LEVELING)
  5090. /**
  5091. * M420: Enable/Disable Mesh Bed Leveling
  5092. */
  5093. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5094. /**
  5095. * M421: Set a single Mesh Bed Leveling Z coordinate
  5096. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5097. */
  5098. inline void gcode_M421() {
  5099. int8_t px = 0, py = 0;
  5100. float z = 0;
  5101. bool hasX, hasY, hasZ, hasI, hasJ;
  5102. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5103. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5104. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5105. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5106. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5107. if (hasX && hasY && hasZ) {
  5108. if (px >= 0 && py >= 0)
  5109. mbl.set_z(px, py, z);
  5110. else {
  5111. SERIAL_ERROR_START;
  5112. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5113. }
  5114. }
  5115. else if (hasI && hasJ && hasZ) {
  5116. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5117. mbl.set_z(px, py, z);
  5118. else {
  5119. SERIAL_ERROR_START;
  5120. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5121. }
  5122. }
  5123. else {
  5124. SERIAL_ERROR_START;
  5125. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5126. }
  5127. }
  5128. #endif
  5129. /**
  5130. * M428: Set home_offset based on the distance between the
  5131. * current_position and the nearest "reference point."
  5132. * If an axis is past center its endstop position
  5133. * is the reference-point. Otherwise it uses 0. This allows
  5134. * the Z offset to be set near the bed when using a max endstop.
  5135. *
  5136. * M428 can't be used more than 2cm away from 0 or an endstop.
  5137. *
  5138. * Use M206 to set these values directly.
  5139. */
  5140. inline void gcode_M428() {
  5141. bool err = false;
  5142. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5143. if (axis_homed[i]) {
  5144. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5145. diff = current_position[i] - base;
  5146. if (diff > -20 && diff < 20) {
  5147. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5148. }
  5149. else {
  5150. SERIAL_ERROR_START;
  5151. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5152. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5153. #if HAS_BUZZER
  5154. buzzer.tone(200, 40);
  5155. #endif
  5156. err = true;
  5157. break;
  5158. }
  5159. }
  5160. }
  5161. if (!err) {
  5162. SYNC_PLAN_POSITION_KINEMATIC();
  5163. report_current_position();
  5164. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5165. #if HAS_BUZZER
  5166. buzzer.tone(200, 659);
  5167. buzzer.tone(200, 698);
  5168. #endif
  5169. }
  5170. }
  5171. /**
  5172. * M500: Store settings in EEPROM
  5173. */
  5174. inline void gcode_M500() {
  5175. Config_StoreSettings();
  5176. }
  5177. /**
  5178. * M501: Read settings from EEPROM
  5179. */
  5180. inline void gcode_M501() {
  5181. Config_RetrieveSettings();
  5182. }
  5183. /**
  5184. * M502: Revert to default settings
  5185. */
  5186. inline void gcode_M502() {
  5187. Config_ResetDefault();
  5188. }
  5189. /**
  5190. * M503: print settings currently in memory
  5191. */
  5192. inline void gcode_M503() {
  5193. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5194. }
  5195. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5196. /**
  5197. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5198. */
  5199. inline void gcode_M540() {
  5200. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5201. }
  5202. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5203. #if HAS_BED_PROBE
  5204. inline void gcode_M851() {
  5205. SERIAL_ECHO_START;
  5206. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5207. SERIAL_CHAR(' ');
  5208. if (code_seen('Z')) {
  5209. float value = code_value_axis_units(Z_AXIS);
  5210. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5211. zprobe_zoffset = value;
  5212. SERIAL_ECHO(zprobe_zoffset);
  5213. }
  5214. else {
  5215. SERIAL_ECHOPGM(MSG_Z_MIN);
  5216. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5217. SERIAL_CHAR(' ');
  5218. SERIAL_ECHOPGM(MSG_Z_MAX);
  5219. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5220. }
  5221. }
  5222. else {
  5223. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5224. }
  5225. SERIAL_EOL;
  5226. }
  5227. #endif // HAS_BED_PROBE
  5228. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5229. /**
  5230. * M600: Pause for filament change
  5231. *
  5232. * E[distance] - Retract the filament this far (negative value)
  5233. * Z[distance] - Move the Z axis by this distance
  5234. * X[position] - Move to this X position, with Y
  5235. * Y[position] - Move to this Y position, with X
  5236. * L[distance] - Retract distance for removal (manual reload)
  5237. *
  5238. * Default values are used for omitted arguments.
  5239. *
  5240. */
  5241. inline void gcode_M600() {
  5242. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5243. SERIAL_ERROR_START;
  5244. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5245. return;
  5246. }
  5247. // Show initial message and wait for synchronize steppers
  5248. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5249. stepper.synchronize();
  5250. float lastpos[NUM_AXIS];
  5251. // Save current position of all axes
  5252. for (uint8_t i = 0; i < NUM_AXIS; i++)
  5253. lastpos[i] = destination[i] = current_position[i];
  5254. // Define runplan for move axes
  5255. #if ENABLED(DELTA)
  5256. #define RUNPLAN(RATE) calculate_delta(destination); \
  5257. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE, active_extruder);
  5258. #else
  5259. #define RUNPLAN(RATE) line_to_destination(RATE * 60);
  5260. #endif
  5261. KEEPALIVE_STATE(IN_HANDLER);
  5262. // Initial retract before move to filament change position
  5263. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5264. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5265. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5266. #endif
  5267. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5268. // Lift Z axis
  5269. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5270. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5271. FILAMENT_CHANGE_Z_ADD
  5272. #else
  5273. 0
  5274. #endif
  5275. ;
  5276. if (z_lift > 0) {
  5277. destination[Z_AXIS] += z_lift;
  5278. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5279. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5280. }
  5281. // Move XY axes to filament exchange position
  5282. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5283. #ifdef FILAMENT_CHANGE_X_POS
  5284. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5285. #endif
  5286. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5287. #ifdef FILAMENT_CHANGE_Y_POS
  5288. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5289. #endif
  5290. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5291. stepper.synchronize();
  5292. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5293. // Unload filament
  5294. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5295. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5296. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5297. #endif
  5298. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5299. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5300. stepper.synchronize();
  5301. disable_e0();
  5302. disable_e1();
  5303. disable_e2();
  5304. disable_e3();
  5305. delay(100);
  5306. #if HAS_BUZZER
  5307. millis_t next_tick = 0;
  5308. #endif
  5309. // Wait for filament insert by user and press button
  5310. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5311. while (!lcd_clicked()) {
  5312. #if HAS_BUZZER
  5313. millis_t ms = millis();
  5314. if (ms >= next_tick) {
  5315. buzzer.tone(300, 2000);
  5316. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5317. }
  5318. #endif
  5319. idle(true);
  5320. }
  5321. delay(100);
  5322. while (lcd_clicked()) idle(true);
  5323. delay(100);
  5324. // Show load message
  5325. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5326. // Load filament
  5327. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5328. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5329. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5330. #endif
  5331. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5332. stepper.synchronize();
  5333. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5334. do {
  5335. // Extrude filament to get into hotend
  5336. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5337. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5338. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5339. stepper.synchronize();
  5340. // Ask user if more filament should be extruded
  5341. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5342. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5343. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5344. KEEPALIVE_STATE(IN_HANDLER);
  5345. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5346. #endif
  5347. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5348. KEEPALIVE_STATE(IN_HANDLER);
  5349. // Set extruder to saved position
  5350. current_position[E_AXIS] = lastpos[E_AXIS];
  5351. destination[E_AXIS] = lastpos[E_AXIS];
  5352. planner.set_e_position_mm(current_position[E_AXIS]);
  5353. #if ENABLED(DELTA)
  5354. // Move XYZ to starting position, then E
  5355. calculate_delta(lastpos);
  5356. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5357. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5358. #else
  5359. // Move XY to starting position, then Z, then E
  5360. destination[X_AXIS] = lastpos[X_AXIS];
  5361. destination[Y_AXIS] = lastpos[Y_AXIS];
  5362. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5363. destination[Z_AXIS] = lastpos[Z_AXIS];
  5364. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5365. #endif
  5366. stepper.synchronize();
  5367. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5368. filament_ran_out = false;
  5369. #endif
  5370. // Show status screen
  5371. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5372. }
  5373. #endif // FILAMENT_CHANGE_FEATURE
  5374. #if ENABLED(DUAL_X_CARRIAGE)
  5375. /**
  5376. * M605: Set dual x-carriage movement mode
  5377. *
  5378. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5379. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5380. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5381. * units x-offset and an optional differential hotend temperature of
  5382. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5383. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5384. *
  5385. * Note: the X axis should be homed after changing dual x-carriage mode.
  5386. */
  5387. inline void gcode_M605() {
  5388. stepper.synchronize();
  5389. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5390. switch (dual_x_carriage_mode) {
  5391. case DXC_DUPLICATION_MODE:
  5392. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5393. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5394. SERIAL_ECHO_START;
  5395. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5396. SERIAL_CHAR(' ');
  5397. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5398. SERIAL_CHAR(',');
  5399. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5400. SERIAL_CHAR(' ');
  5401. SERIAL_ECHO(duplicate_extruder_x_offset);
  5402. SERIAL_CHAR(',');
  5403. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5404. break;
  5405. case DXC_FULL_CONTROL_MODE:
  5406. case DXC_AUTO_PARK_MODE:
  5407. break;
  5408. default:
  5409. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5410. break;
  5411. }
  5412. active_extruder_parked = false;
  5413. extruder_duplication_enabled = false;
  5414. delayed_move_time = 0;
  5415. }
  5416. #endif // DUAL_X_CARRIAGE
  5417. #if ENABLED(LIN_ADVANCE)
  5418. /**
  5419. * M905: Set advance factor
  5420. */
  5421. inline void gcode_M905() {
  5422. stepper.synchronize();
  5423. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5424. }
  5425. #endif
  5426. /**
  5427. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5428. */
  5429. inline void gcode_M907() {
  5430. #if HAS_DIGIPOTSS
  5431. for (int i = 0; i < NUM_AXIS; i++)
  5432. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5433. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5434. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5435. #endif
  5436. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5437. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5438. #endif
  5439. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5440. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5441. #endif
  5442. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5443. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5444. #endif
  5445. #if ENABLED(DIGIPOT_I2C)
  5446. // this one uses actual amps in floating point
  5447. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5448. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5449. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5450. #endif
  5451. #if ENABLED(DAC_STEPPER_CURRENT)
  5452. if (code_seen('S')) {
  5453. float dac_percent = code_value_float();
  5454. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5455. }
  5456. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5457. #endif
  5458. }
  5459. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5460. /**
  5461. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5462. */
  5463. inline void gcode_M908() {
  5464. #if HAS_DIGIPOTSS
  5465. stepper.digitalPotWrite(
  5466. code_seen('P') ? code_value_int() : 0,
  5467. code_seen('S') ? code_value_int() : 0
  5468. );
  5469. #endif
  5470. #ifdef DAC_STEPPER_CURRENT
  5471. dac_current_raw(
  5472. code_seen('P') ? code_value_byte() : -1,
  5473. code_seen('S') ? code_value_ushort() : 0
  5474. );
  5475. #endif
  5476. }
  5477. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5478. inline void gcode_M909() { dac_print_values(); }
  5479. inline void gcode_M910() { dac_commit_eeprom(); }
  5480. #endif
  5481. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5482. #if HAS_MICROSTEPS
  5483. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5484. inline void gcode_M350() {
  5485. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5486. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5487. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5488. stepper.microstep_readings();
  5489. }
  5490. /**
  5491. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5492. * S# determines MS1 or MS2, X# sets the pin high/low.
  5493. */
  5494. inline void gcode_M351() {
  5495. if (code_seen('S')) switch (code_value_byte()) {
  5496. case 1:
  5497. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5498. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5499. break;
  5500. case 2:
  5501. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5502. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5503. break;
  5504. }
  5505. stepper.microstep_readings();
  5506. }
  5507. #endif // HAS_MICROSTEPS
  5508. /**
  5509. * M999: Restart after being stopped
  5510. *
  5511. * Default behaviour is to flush the serial buffer and request
  5512. * a resend to the host starting on the last N line received.
  5513. *
  5514. * Sending "M999 S1" will resume printing without flushing the
  5515. * existing command buffer.
  5516. *
  5517. */
  5518. inline void gcode_M999() {
  5519. Running = true;
  5520. lcd_reset_alert_level();
  5521. if (code_seen('S') && code_value_bool()) return;
  5522. // gcode_LastN = Stopped_gcode_LastN;
  5523. FlushSerialRequestResend();
  5524. }
  5525. /**
  5526. * T0-T3: Switch tool, usually switching extruders
  5527. *
  5528. * F[units/min] Set the movement feedrate
  5529. * S1 Don't move the tool in XY after change
  5530. */
  5531. inline void gcode_T(uint8_t tmp_extruder) {
  5532. if (tmp_extruder >= EXTRUDERS) {
  5533. SERIAL_ECHO_START;
  5534. SERIAL_CHAR('T');
  5535. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5536. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5537. return;
  5538. }
  5539. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5540. if (DEBUGGING(LEVELING)) {
  5541. SERIAL_ECHOLNPGM(">>> gcode_T");
  5542. DEBUG_POS("BEFORE", current_position);
  5543. }
  5544. #endif
  5545. #if HOTENDS > 1
  5546. float old_feedrate = feedrate;
  5547. if (code_seen('F')) {
  5548. float next_feedrate = code_value_axis_units(X_AXIS);
  5549. if (next_feedrate > 0.0) old_feedrate = feedrate = next_feedrate;
  5550. }
  5551. else
  5552. feedrate = XY_PROBE_FEEDRATE;
  5553. if (tmp_extruder != active_extruder) {
  5554. bool no_move = code_seen('S') && code_value_bool();
  5555. if (!no_move && axis_unhomed_error(true, true, true)) {
  5556. SERIAL_ECHOLNPGM("No move on toolchange");
  5557. no_move = true;
  5558. }
  5559. // Save current position to destination, for use later
  5560. set_destination_to_current();
  5561. #if ENABLED(DUAL_X_CARRIAGE)
  5562. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5563. if (DEBUGGING(LEVELING)) {
  5564. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5565. switch (dual_x_carriage_mode) {
  5566. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5567. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5568. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5569. }
  5570. }
  5571. #endif
  5572. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning()
  5573. && (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5574. ) {
  5575. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5576. if (DEBUGGING(LEVELING)) {
  5577. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5578. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5579. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5580. }
  5581. #endif
  5582. // Park old head: 1) raise 2) move to park position 3) lower
  5583. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5584. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5585. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5586. current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder);
  5587. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5588. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5589. stepper.synchronize();
  5590. }
  5591. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5592. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5593. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5594. active_extruder = tmp_extruder;
  5595. // This function resets the max/min values - the current position may be overwritten below.
  5596. set_axis_is_at_home(X_AXIS);
  5597. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5598. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5599. #endif
  5600. switch (dual_x_carriage_mode) {
  5601. case DXC_FULL_CONTROL_MODE:
  5602. current_position[X_AXIS] = inactive_extruder_x_pos;
  5603. inactive_extruder_x_pos = destination[X_AXIS];
  5604. break;
  5605. case DXC_DUPLICATION_MODE:
  5606. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5607. if (active_extruder_parked)
  5608. current_position[X_AXIS] = inactive_extruder_x_pos;
  5609. else
  5610. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5611. inactive_extruder_x_pos = destination[X_AXIS];
  5612. extruder_duplication_enabled = false;
  5613. break;
  5614. default:
  5615. // record raised toolhead position for use by unpark
  5616. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5617. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5618. active_extruder_parked = true;
  5619. delayed_move_time = 0;
  5620. break;
  5621. }
  5622. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5623. if (DEBUGGING(LEVELING)) {
  5624. SERIAL_ECHOPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5625. SERIAL_EOL;
  5626. DEBUG_POS("New extruder (parked)", current_position);
  5627. }
  5628. #endif
  5629. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5630. #else // !DUAL_X_CARRIAGE
  5631. /**
  5632. * Set current_position to the position of the new nozzle.
  5633. * Offsets are based on linear distance, so we need to get
  5634. * the resulting position in coordinate space.
  5635. *
  5636. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5637. * - With mesh leveling, update Z for the new position
  5638. * - Otherwise, just use the raw linear distance
  5639. *
  5640. * Software endstops are altered here too. Consider a case where:
  5641. * E0 at X=0 ... E1 at X=10
  5642. * When we switch to E1 now X=10, but E1 can't move left.
  5643. * To express this we apply the change in XY to the software endstops.
  5644. * E1 can move farther right than E0, so the right limit is extended.
  5645. *
  5646. * Note that we don't adjust the Z software endstops. Why not?
  5647. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5648. * because the bed is 1mm lower at the new position. As long as
  5649. * the first nozzle is out of the way, the carriage should be
  5650. * allowed to move 1mm lower. This technically "breaks" the
  5651. * Z software endstop. But this is technically correct (and
  5652. * there is no viable alternative).
  5653. */
  5654. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5655. // Offset extruder, make sure to apply the bed level rotation matrix
  5656. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5657. hotend_offset[Y_AXIS][tmp_extruder],
  5658. 0),
  5659. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5660. hotend_offset[Y_AXIS][active_extruder],
  5661. 0),
  5662. offset_vec = tmp_offset_vec - act_offset_vec;
  5663. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5664. if (DEBUGGING(LEVELING)) {
  5665. tmp_offset_vec.debug("tmp_offset_vec");
  5666. act_offset_vec.debug("act_offset_vec");
  5667. offset_vec.debug("offset_vec (BEFORE)");
  5668. }
  5669. #endif
  5670. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5671. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5672. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5673. #endif
  5674. // Adjustments to the current position
  5675. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5676. current_position[Z_AXIS] += offset_vec.z;
  5677. #else // !AUTO_BED_LEVELING_FEATURE
  5678. float xydiff[2] = {
  5679. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5680. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5681. };
  5682. #if ENABLED(MESH_BED_LEVELING)
  5683. if (mbl.active()) {
  5684. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5685. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5686. #endif
  5687. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5688. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5689. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5690. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5691. if (DEBUGGING(LEVELING)) {
  5692. SERIAL_ECHOPAIR(" after: ", current_position[Z_AXIS]);
  5693. SERIAL_EOL;
  5694. }
  5695. #endif
  5696. }
  5697. #endif // MESH_BED_LEVELING
  5698. #endif // !AUTO_BED_LEVELING_FEATURE
  5699. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5700. if (DEBUGGING(LEVELING)) {
  5701. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5702. SERIAL_ECHOPAIR(", ", xydiff[X_AXIS]);
  5703. SERIAL_ECHOLNPGM(" }");
  5704. }
  5705. #endif
  5706. // The newly-selected extruder XY is actually at...
  5707. current_position[X_AXIS] += xydiff[X_AXIS];
  5708. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5709. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5710. position_shift[i] += xydiff[i];
  5711. update_software_endstops((AxisEnum)i);
  5712. }
  5713. // Set the new active extruder
  5714. active_extruder = tmp_extruder;
  5715. #endif // !DUAL_X_CARRIAGE
  5716. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5717. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5718. #endif
  5719. // Tell the planner the new "current position"
  5720. SYNC_PLAN_POSITION_KINEMATIC();
  5721. // Move to the "old position" (move the extruder into place)
  5722. if (!no_move && IsRunning()) {
  5723. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5724. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5725. #endif
  5726. prepare_move_to_destination();
  5727. }
  5728. } // (tmp_extruder != active_extruder)
  5729. stepper.synchronize();
  5730. #if ENABLED(EXT_SOLENOID)
  5731. disable_all_solenoids();
  5732. enable_solenoid_on_active_extruder();
  5733. #endif // EXT_SOLENOID
  5734. feedrate = old_feedrate;
  5735. #else // !HOTENDS > 1
  5736. // Set the new active extruder
  5737. active_extruder = tmp_extruder;
  5738. #endif
  5739. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5740. if (DEBUGGING(LEVELING)) {
  5741. DEBUG_POS("AFTER", current_position);
  5742. SERIAL_ECHOLNPGM("<<< gcode_T");
  5743. }
  5744. #endif
  5745. SERIAL_ECHO_START;
  5746. SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
  5747. SERIAL_PROTOCOLLN((int)active_extruder);
  5748. }
  5749. /**
  5750. * Process a single command and dispatch it to its handler
  5751. * This is called from the main loop()
  5752. */
  5753. void process_next_command() {
  5754. current_command = command_queue[cmd_queue_index_r];
  5755. if (DEBUGGING(ECHO)) {
  5756. SERIAL_ECHO_START;
  5757. SERIAL_ECHOLN(current_command);
  5758. }
  5759. // Sanitize the current command:
  5760. // - Skip leading spaces
  5761. // - Bypass N[-0-9][0-9]*[ ]*
  5762. // - Overwrite * with nul to mark the end
  5763. while (*current_command == ' ') ++current_command;
  5764. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5765. current_command += 2; // skip N[-0-9]
  5766. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5767. while (*current_command == ' ') ++current_command; // skip [ ]*
  5768. }
  5769. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5770. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5771. char *cmd_ptr = current_command;
  5772. // Get the command code, which must be G, M, or T
  5773. char command_code = *cmd_ptr++;
  5774. // Skip spaces to get the numeric part
  5775. while (*cmd_ptr == ' ') cmd_ptr++;
  5776. uint16_t codenum = 0; // define ahead of goto
  5777. // Bail early if there's no code
  5778. bool code_is_good = NUMERIC(*cmd_ptr);
  5779. if (!code_is_good) goto ExitUnknownCommand;
  5780. // Get and skip the code number
  5781. do {
  5782. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5783. cmd_ptr++;
  5784. } while (NUMERIC(*cmd_ptr));
  5785. // Skip all spaces to get to the first argument, or nul
  5786. while (*cmd_ptr == ' ') cmd_ptr++;
  5787. // The command's arguments (if any) start here, for sure!
  5788. current_command_args = cmd_ptr;
  5789. KEEPALIVE_STATE(IN_HANDLER);
  5790. // Handle a known G, M, or T
  5791. switch (command_code) {
  5792. case 'G': switch (codenum) {
  5793. // G0, G1
  5794. case 0:
  5795. case 1:
  5796. gcode_G0_G1();
  5797. break;
  5798. // G2, G3
  5799. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5800. case 2: // G2 - CW ARC
  5801. case 3: // G3 - CCW ARC
  5802. gcode_G2_G3(codenum == 2);
  5803. break;
  5804. #endif
  5805. // G4 Dwell
  5806. case 4:
  5807. gcode_G4();
  5808. break;
  5809. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5810. // G5
  5811. case 5: // G5 - Cubic B_spline
  5812. gcode_G5();
  5813. break;
  5814. #endif // BEZIER_CURVE_SUPPORT
  5815. #if ENABLED(FWRETRACT)
  5816. case 10: // G10: retract
  5817. case 11: // G11: retract_recover
  5818. gcode_G10_G11(codenum == 10);
  5819. break;
  5820. #endif // FWRETRACT
  5821. #if ENABLED(NOZZLE_CLEAN_FEATURE) && HAS_BED_PROBE
  5822. case 12:
  5823. gcode_G12(); // G12: Clean Nozzle
  5824. break;
  5825. #endif // NOZZLE_CLEAN_FEATURE
  5826. #if ENABLED(INCH_MODE_SUPPORT)
  5827. case 20: //G20: Inch Mode
  5828. gcode_G20();
  5829. break;
  5830. case 21: //G21: MM Mode
  5831. gcode_G21();
  5832. break;
  5833. #endif // INCH_MODE_SUPPORT
  5834. case 28: // G28: Home all axes, one at a time
  5835. gcode_G28();
  5836. break;
  5837. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5838. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5839. gcode_G29();
  5840. break;
  5841. #endif // AUTO_BED_LEVELING_FEATURE
  5842. #if HAS_BED_PROBE
  5843. case 30: // G30 Single Z probe
  5844. gcode_G30();
  5845. break;
  5846. #if ENABLED(Z_PROBE_SLED)
  5847. case 31: // G31: dock the sled
  5848. gcode_G31();
  5849. break;
  5850. case 32: // G32: undock the sled
  5851. gcode_G32();
  5852. break;
  5853. #endif // Z_PROBE_SLED
  5854. #endif // HAS_BED_PROBE
  5855. case 90: // G90
  5856. relative_mode = false;
  5857. break;
  5858. case 91: // G91
  5859. relative_mode = true;
  5860. break;
  5861. case 92: // G92
  5862. gcode_G92();
  5863. break;
  5864. }
  5865. break;
  5866. case 'M': switch (codenum) {
  5867. #if ENABLED(ULTIPANEL)
  5868. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5869. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5870. gcode_M0_M1();
  5871. break;
  5872. #endif // ULTIPANEL
  5873. case 17:
  5874. gcode_M17();
  5875. break;
  5876. #if ENABLED(SDSUPPORT)
  5877. case 20: // M20 - list SD card
  5878. gcode_M20(); break;
  5879. case 21: // M21 - init SD card
  5880. gcode_M21(); break;
  5881. case 22: //M22 - release SD card
  5882. gcode_M22(); break;
  5883. case 23: //M23 - Select file
  5884. gcode_M23(); break;
  5885. case 24: //M24 - Start SD print
  5886. gcode_M24(); break;
  5887. case 25: //M25 - Pause SD print
  5888. gcode_M25(); break;
  5889. case 26: //M26 - Set SD index
  5890. gcode_M26(); break;
  5891. case 27: //M27 - Get SD status
  5892. gcode_M27(); break;
  5893. case 28: //M28 - Start SD write
  5894. gcode_M28(); break;
  5895. case 29: //M29 - Stop SD write
  5896. gcode_M29(); break;
  5897. case 30: //M30 <filename> Delete File
  5898. gcode_M30(); break;
  5899. case 32: //M32 - Select file and start SD print
  5900. gcode_M32(); break;
  5901. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5902. case 33: //M33 - Get the long full path to a file or folder
  5903. gcode_M33(); break;
  5904. #endif // LONG_FILENAME_HOST_SUPPORT
  5905. case 928: //M928 - Start SD write
  5906. gcode_M928(); break;
  5907. #endif //SDSUPPORT
  5908. case 31: //M31 take time since the start of the SD print or an M109 command
  5909. gcode_M31();
  5910. break;
  5911. case 42: //M42 -Change pin status via gcode
  5912. gcode_M42();
  5913. break;
  5914. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5915. case 48: // M48 Z probe repeatability
  5916. gcode_M48();
  5917. break;
  5918. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5919. case 75: // Start print timer
  5920. gcode_M75();
  5921. break;
  5922. case 76: // Pause print timer
  5923. gcode_M76();
  5924. break;
  5925. case 77: // Stop print timer
  5926. gcode_M77();
  5927. break;
  5928. #if ENABLED(PRINTCOUNTER)
  5929. case 78: // Show print statistics
  5930. gcode_M78();
  5931. break;
  5932. #endif
  5933. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5934. case 100:
  5935. gcode_M100();
  5936. break;
  5937. #endif
  5938. case 104: // M104
  5939. gcode_M104();
  5940. break;
  5941. case 110: // M110: Set Current Line Number
  5942. gcode_M110();
  5943. break;
  5944. case 111: // M111: Set debug level
  5945. gcode_M111();
  5946. break;
  5947. #if DISABLED(EMERGENCY_PARSER)
  5948. case 108: // M108: Cancel Waiting
  5949. gcode_M108();
  5950. break;
  5951. case 112: // M112: Emergency Stop
  5952. gcode_M112();
  5953. break;
  5954. case 410: // M410 quickstop - Abort all the planned moves.
  5955. gcode_M410();
  5956. break;
  5957. #endif
  5958. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5959. case 113: // M113: Set Host Keepalive interval
  5960. gcode_M113();
  5961. break;
  5962. #endif
  5963. case 140: // M140: Set bed temp
  5964. gcode_M140();
  5965. break;
  5966. case 105: // M105: Read current temperature
  5967. gcode_M105();
  5968. KEEPALIVE_STATE(NOT_BUSY);
  5969. return; // "ok" already printed
  5970. case 109: // M109: Wait for temperature
  5971. gcode_M109();
  5972. break;
  5973. #if HAS_TEMP_BED
  5974. case 190: // M190: Wait for bed heater to reach target
  5975. gcode_M190();
  5976. break;
  5977. #endif // HAS_TEMP_BED
  5978. #if FAN_COUNT > 0
  5979. case 106: // M106: Fan On
  5980. gcode_M106();
  5981. break;
  5982. case 107: // M107: Fan Off
  5983. gcode_M107();
  5984. break;
  5985. #endif // FAN_COUNT > 0
  5986. #if ENABLED(BARICUDA)
  5987. // PWM for HEATER_1_PIN
  5988. #if HAS_HEATER_1
  5989. case 126: // M126: valve open
  5990. gcode_M126();
  5991. break;
  5992. case 127: // M127: valve closed
  5993. gcode_M127();
  5994. break;
  5995. #endif // HAS_HEATER_1
  5996. // PWM for HEATER_2_PIN
  5997. #if HAS_HEATER_2
  5998. case 128: // M128: valve open
  5999. gcode_M128();
  6000. break;
  6001. case 129: // M129: valve closed
  6002. gcode_M129();
  6003. break;
  6004. #endif // HAS_HEATER_2
  6005. #endif // BARICUDA
  6006. #if HAS_POWER_SWITCH
  6007. case 80: // M80: Turn on Power Supply
  6008. gcode_M80();
  6009. break;
  6010. #endif // HAS_POWER_SWITCH
  6011. case 81: // M81: Turn off Power, including Power Supply, if possible
  6012. gcode_M81();
  6013. break;
  6014. case 82:
  6015. gcode_M82();
  6016. break;
  6017. case 83:
  6018. gcode_M83();
  6019. break;
  6020. case 18: // (for compatibility)
  6021. case 84: // M84
  6022. gcode_M18_M84();
  6023. break;
  6024. case 85: // M85
  6025. gcode_M85();
  6026. break;
  6027. case 92: // M92: Set the steps-per-unit for one or more axes
  6028. gcode_M92();
  6029. break;
  6030. case 115: // M115: Report capabilities
  6031. gcode_M115();
  6032. break;
  6033. case 117: // M117: Set LCD message text, if possible
  6034. gcode_M117();
  6035. break;
  6036. case 114: // M114: Report current position
  6037. gcode_M114();
  6038. break;
  6039. case 120: // M120: Enable endstops
  6040. gcode_M120();
  6041. break;
  6042. case 121: // M121: Disable endstops
  6043. gcode_M121();
  6044. break;
  6045. case 119: // M119: Report endstop states
  6046. gcode_M119();
  6047. break;
  6048. #if ENABLED(ULTIPANEL)
  6049. case 145: // M145: Set material heatup parameters
  6050. gcode_M145();
  6051. break;
  6052. #endif
  6053. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6054. case 149:
  6055. gcode_M149();
  6056. break;
  6057. #endif
  6058. #if ENABLED(BLINKM)
  6059. case 150: // M150
  6060. gcode_M150();
  6061. break;
  6062. #endif //BLINKM
  6063. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6064. case 155:
  6065. gcode_M155();
  6066. break;
  6067. case 156:
  6068. gcode_M156();
  6069. break;
  6070. #endif //EXPERIMENTAL_I2CBUS
  6071. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6072. gcode_M200();
  6073. break;
  6074. case 201: // M201
  6075. gcode_M201();
  6076. break;
  6077. #if 0 // Not used for Sprinter/grbl gen6
  6078. case 202: // M202
  6079. gcode_M202();
  6080. break;
  6081. #endif
  6082. case 203: // M203 max feedrate units/sec
  6083. gcode_M203();
  6084. break;
  6085. case 204: // M204 acclereration S normal moves T filmanent only moves
  6086. gcode_M204();
  6087. break;
  6088. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6089. gcode_M205();
  6090. break;
  6091. case 206: // M206 additional homing offset
  6092. gcode_M206();
  6093. break;
  6094. #if ENABLED(DELTA)
  6095. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6096. gcode_M665();
  6097. break;
  6098. #endif
  6099. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6100. case 666: // M666 set delta / dual endstop adjustment
  6101. gcode_M666();
  6102. break;
  6103. #endif
  6104. #if ENABLED(FWRETRACT)
  6105. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6106. gcode_M207();
  6107. break;
  6108. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6109. gcode_M208();
  6110. break;
  6111. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6112. gcode_M209();
  6113. break;
  6114. #endif // FWRETRACT
  6115. #if HOTENDS > 1
  6116. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6117. gcode_M218();
  6118. break;
  6119. #endif
  6120. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6121. gcode_M220();
  6122. break;
  6123. case 221: // M221 - Set Flow Percentage: S<percent>
  6124. gcode_M221();
  6125. break;
  6126. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6127. gcode_M226();
  6128. break;
  6129. #if HAS_SERVOS
  6130. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6131. gcode_M280();
  6132. break;
  6133. #endif // HAS_SERVOS
  6134. #if HAS_BUZZER
  6135. case 300: // M300 - Play beep tone
  6136. gcode_M300();
  6137. break;
  6138. #endif // HAS_BUZZER
  6139. #if ENABLED(PIDTEMP)
  6140. case 301: // M301
  6141. gcode_M301();
  6142. break;
  6143. #endif // PIDTEMP
  6144. #if ENABLED(PIDTEMPBED)
  6145. case 304: // M304
  6146. gcode_M304();
  6147. break;
  6148. #endif // PIDTEMPBED
  6149. #if defined(CHDK) || HAS_PHOTOGRAPH
  6150. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6151. gcode_M240();
  6152. break;
  6153. #endif // CHDK || PHOTOGRAPH_PIN
  6154. #if HAS_LCD_CONTRAST
  6155. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6156. gcode_M250();
  6157. break;
  6158. #endif // HAS_LCD_CONTRAST
  6159. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6160. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6161. gcode_M302();
  6162. break;
  6163. #endif // PREVENT_DANGEROUS_EXTRUDE
  6164. case 303: // M303 PID autotune
  6165. gcode_M303();
  6166. break;
  6167. #if ENABLED(SCARA)
  6168. case 360: // M360 SCARA Theta pos1
  6169. if (gcode_M360()) return;
  6170. break;
  6171. case 361: // M361 SCARA Theta pos2
  6172. if (gcode_M361()) return;
  6173. break;
  6174. case 362: // M362 SCARA Psi pos1
  6175. if (gcode_M362()) return;
  6176. break;
  6177. case 363: // M363 SCARA Psi pos2
  6178. if (gcode_M363()) return;
  6179. break;
  6180. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6181. if (gcode_M364()) return;
  6182. break;
  6183. case 365: // M365 Set SCARA scaling for X Y Z
  6184. gcode_M365();
  6185. break;
  6186. #endif // SCARA
  6187. case 400: // M400 finish all moves
  6188. gcode_M400();
  6189. break;
  6190. #if HAS_BED_PROBE
  6191. case 401:
  6192. gcode_M401();
  6193. break;
  6194. case 402:
  6195. gcode_M402();
  6196. break;
  6197. #endif // HAS_BED_PROBE
  6198. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6199. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6200. gcode_M404();
  6201. break;
  6202. case 405: //M405 Turn on filament sensor for control
  6203. gcode_M405();
  6204. break;
  6205. case 406: //M406 Turn off filament sensor for control
  6206. gcode_M406();
  6207. break;
  6208. case 407: //M407 Display measured filament diameter
  6209. gcode_M407();
  6210. break;
  6211. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6212. #if ENABLED(MESH_BED_LEVELING)
  6213. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6214. gcode_M420();
  6215. break;
  6216. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6217. gcode_M421();
  6218. break;
  6219. #endif
  6220. case 428: // M428 Apply current_position to home_offset
  6221. gcode_M428();
  6222. break;
  6223. case 500: // M500 Store settings in EEPROM
  6224. gcode_M500();
  6225. break;
  6226. case 501: // M501 Read settings from EEPROM
  6227. gcode_M501();
  6228. break;
  6229. case 502: // M502 Revert to default settings
  6230. gcode_M502();
  6231. break;
  6232. case 503: // M503 print settings currently in memory
  6233. gcode_M503();
  6234. break;
  6235. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6236. case 540:
  6237. gcode_M540();
  6238. break;
  6239. #endif
  6240. #if HAS_BED_PROBE
  6241. case 851:
  6242. gcode_M851();
  6243. break;
  6244. #endif // HAS_BED_PROBE
  6245. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6246. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6247. gcode_M600();
  6248. break;
  6249. #endif // FILAMENT_CHANGE_FEATURE
  6250. #if ENABLED(DUAL_X_CARRIAGE)
  6251. case 605:
  6252. gcode_M605();
  6253. break;
  6254. #endif // DUAL_X_CARRIAGE
  6255. #if ENABLED(LIN_ADVANCE)
  6256. case 905: // M905 Set advance factor.
  6257. gcode_M905();
  6258. break;
  6259. #endif
  6260. case 907: // M907 Set digital trimpot motor current using axis codes.
  6261. gcode_M907();
  6262. break;
  6263. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6264. case 908: // M908 Control digital trimpot directly.
  6265. gcode_M908();
  6266. break;
  6267. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6268. case 909: // M909 Print digipot/DAC current value
  6269. gcode_M909();
  6270. break;
  6271. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6272. gcode_M910();
  6273. break;
  6274. #endif
  6275. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6276. #if HAS_MICROSTEPS
  6277. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6278. gcode_M350();
  6279. break;
  6280. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6281. gcode_M351();
  6282. break;
  6283. #endif // HAS_MICROSTEPS
  6284. case 999: // M999: Restart after being Stopped
  6285. gcode_M999();
  6286. break;
  6287. }
  6288. break;
  6289. case 'T':
  6290. gcode_T(codenum);
  6291. break;
  6292. default: code_is_good = false;
  6293. }
  6294. KEEPALIVE_STATE(NOT_BUSY);
  6295. ExitUnknownCommand:
  6296. // Still unknown command? Throw an error
  6297. if (!code_is_good) unknown_command_error();
  6298. ok_to_send();
  6299. }
  6300. void FlushSerialRequestResend() {
  6301. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6302. MYSERIAL.flush();
  6303. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6304. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6305. ok_to_send();
  6306. }
  6307. void ok_to_send() {
  6308. refresh_cmd_timeout();
  6309. if (!send_ok[cmd_queue_index_r]) return;
  6310. SERIAL_PROTOCOLPGM(MSG_OK);
  6311. #if ENABLED(ADVANCED_OK)
  6312. char* p = command_queue[cmd_queue_index_r];
  6313. if (*p == 'N') {
  6314. SERIAL_PROTOCOL(' ');
  6315. SERIAL_ECHO(*p++);
  6316. while (NUMERIC_SIGNED(*p))
  6317. SERIAL_ECHO(*p++);
  6318. }
  6319. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6320. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6321. #endif
  6322. SERIAL_EOL;
  6323. }
  6324. void clamp_to_software_endstops(float target[3]) {
  6325. if (min_software_endstops) {
  6326. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6327. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6328. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6329. }
  6330. if (max_software_endstops) {
  6331. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6332. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6333. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6334. }
  6335. }
  6336. #if ENABLED(DELTA)
  6337. void recalc_delta_settings(float radius, float diagonal_rod) {
  6338. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6339. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6340. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6341. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6342. delta_tower3_x = 0.0; // back middle tower
  6343. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6344. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6345. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6346. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6347. }
  6348. void calculate_delta(float cartesian[3]) {
  6349. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6350. - sq(delta_tower1_x - cartesian[X_AXIS])
  6351. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6352. ) + cartesian[Z_AXIS];
  6353. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6354. - sq(delta_tower2_x - cartesian[X_AXIS])
  6355. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6356. ) + cartesian[Z_AXIS];
  6357. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6358. - sq(delta_tower3_x - cartesian[X_AXIS])
  6359. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6360. ) + cartesian[Z_AXIS];
  6361. /**
  6362. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6363. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6364. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6365. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6366. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6367. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6368. */
  6369. }
  6370. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6371. // Adjust print surface height by linear interpolation over the bed_level array.
  6372. void adjust_delta(float cartesian[3]) {
  6373. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6374. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6375. float h1 = 0.001 - half, h2 = half - 0.001,
  6376. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6377. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6378. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6379. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6380. z1 = bed_level[floor_x + half][floor_y + half],
  6381. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6382. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6383. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6384. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6385. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6386. offset = (1 - ratio_x) * left + ratio_x * right;
  6387. delta[X_AXIS] += offset;
  6388. delta[Y_AXIS] += offset;
  6389. delta[Z_AXIS] += offset;
  6390. /**
  6391. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6392. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6393. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6394. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6395. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6396. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6397. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6398. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6399. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6400. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6401. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6402. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6403. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6404. */
  6405. }
  6406. #endif // AUTO_BED_LEVELING_FEATURE
  6407. #endif // DELTA
  6408. #if ENABLED(MESH_BED_LEVELING)
  6409. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6410. void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6411. if (!mbl.active()) {
  6412. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6413. set_current_to_destination();
  6414. return;
  6415. }
  6416. int pcx = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6417. pcy = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6418. cx = mbl.cell_index_x(RAW_POSITION(x, X_AXIS)),
  6419. cy = mbl.cell_index_y(RAW_POSITION(y, Y_AXIS));
  6420. NOMORE(pcx, MESH_NUM_X_POINTS - 2);
  6421. NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
  6422. NOMORE(cx, MESH_NUM_X_POINTS - 2);
  6423. NOMORE(cy, MESH_NUM_Y_POINTS - 2);
  6424. if (pcx == cx && pcy == cy) {
  6425. // Start and end on same mesh square
  6426. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6427. set_current_to_destination();
  6428. return;
  6429. }
  6430. float nx, ny, nz, ne, normalized_dist;
  6431. if (cx > pcx && TEST(x_splits, cx)) {
  6432. nx = mbl.get_probe_x(cx) + home_offset[X_AXIS];
  6433. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6434. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6435. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6436. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6437. CBI(x_splits, cx);
  6438. }
  6439. else if (cx < pcx && TEST(x_splits, pcx)) {
  6440. nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS];
  6441. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6442. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6443. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6444. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6445. CBI(x_splits, pcx);
  6446. }
  6447. else if (cy > pcy && TEST(y_splits, cy)) {
  6448. ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS];
  6449. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6450. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6451. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6452. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6453. CBI(y_splits, cy);
  6454. }
  6455. else if (cy < pcy && TEST(y_splits, pcy)) {
  6456. ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS];
  6457. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6458. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6459. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6460. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6461. CBI(y_splits, pcy);
  6462. }
  6463. else {
  6464. // Already split on a border
  6465. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6466. set_current_to_destination();
  6467. return;
  6468. }
  6469. // Do the split and look for more borders
  6470. destination[X_AXIS] = nx;
  6471. destination[Y_AXIS] = ny;
  6472. destination[Z_AXIS] = nz;
  6473. destination[E_AXIS] = ne;
  6474. mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6475. destination[X_AXIS] = x;
  6476. destination[Y_AXIS] = y;
  6477. destination[Z_AXIS] = z;
  6478. destination[E_AXIS] = e;
  6479. mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6480. }
  6481. #endif // MESH_BED_LEVELING
  6482. #if ENABLED(DELTA) || ENABLED(SCARA)
  6483. inline bool prepare_delta_move_to(float target[NUM_AXIS]) {
  6484. float difference[NUM_AXIS];
  6485. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6486. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6487. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6488. if (cartesian_mm < 0.000001) return false;
  6489. float _feedrate = feedrate * feedrate_multiplier / 6000.0;
  6490. float seconds = cartesian_mm / _feedrate;
  6491. int steps = max(1, int(delta_segments_per_second * seconds));
  6492. float inv_steps = 1.0/steps;
  6493. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6494. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6495. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6496. for (int s = 1; s <= steps; s++) {
  6497. float fraction = float(s) * inv_steps;
  6498. for (int8_t i = 0; i < NUM_AXIS; i++)
  6499. target[i] = current_position[i] + difference[i] * fraction;
  6500. calculate_delta(target);
  6501. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6502. if (!bed_leveling_in_progress) adjust_delta(target);
  6503. #endif
  6504. //DEBUG_POS("prepare_delta_move_to", target);
  6505. //DEBUG_POS("prepare_delta_move_to", delta);
  6506. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder);
  6507. }
  6508. return true;
  6509. }
  6510. #endif // DELTA || SCARA
  6511. #if ENABLED(SCARA)
  6512. inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); }
  6513. #endif
  6514. #if ENABLED(DUAL_X_CARRIAGE)
  6515. inline bool prepare_move_to_destination_dualx() {
  6516. if (active_extruder_parked) {
  6517. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6518. // move duplicate extruder into correct duplication position.
  6519. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6520. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6521. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
  6522. SYNC_PLAN_POSITION_KINEMATIC();
  6523. stepper.synchronize();
  6524. extruder_duplication_enabled = true;
  6525. active_extruder_parked = false;
  6526. }
  6527. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6528. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6529. // This is a travel move (with no extrusion)
  6530. // Skip it, but keep track of the current position
  6531. // (so it can be used as the start of the next non-travel move)
  6532. if (delayed_move_time != 0xFFFFFFFFUL) {
  6533. set_current_to_destination();
  6534. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6535. delayed_move_time = millis();
  6536. return false;
  6537. }
  6538. }
  6539. delayed_move_time = 0;
  6540. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6541. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6542. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6543. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6544. active_extruder_parked = false;
  6545. }
  6546. }
  6547. return true;
  6548. }
  6549. #endif // DUAL_X_CARRIAGE
  6550. #if DISABLED(DELTA) && DISABLED(SCARA)
  6551. inline bool prepare_move_to_destination_cartesian() {
  6552. // Do not use feedrate_multiplier for E or Z only moves
  6553. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6554. line_to_destination();
  6555. }
  6556. else {
  6557. #if ENABLED(MESH_BED_LEVELING)
  6558. mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6559. return false;
  6560. #else
  6561. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6562. #endif
  6563. }
  6564. return true;
  6565. }
  6566. #endif // !DELTA && !SCARA
  6567. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6568. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6569. if (DEBUGGING(DRYRUN)) return;
  6570. float de = dest_e - curr_e;
  6571. if (de) {
  6572. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6573. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6574. SERIAL_ECHO_START;
  6575. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6576. }
  6577. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6578. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6579. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6580. SERIAL_ECHO_START;
  6581. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6582. }
  6583. #endif
  6584. }
  6585. }
  6586. #endif // PREVENT_DANGEROUS_EXTRUDE
  6587. /**
  6588. * Prepare a single move and get ready for the next one
  6589. *
  6590. * (This may call planner.buffer_line several times to put
  6591. * smaller moves into the planner for DELTA or SCARA.)
  6592. */
  6593. void prepare_move_to_destination() {
  6594. clamp_to_software_endstops(destination);
  6595. refresh_cmd_timeout();
  6596. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6597. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6598. #endif
  6599. #if ENABLED(SCARA)
  6600. if (!prepare_scara_move_to(destination)) return;
  6601. #elif ENABLED(DELTA)
  6602. if (!prepare_delta_move_to(destination)) return;
  6603. #else
  6604. #if ENABLED(DUAL_X_CARRIAGE)
  6605. if (!prepare_move_to_destination_dualx()) return;
  6606. #endif
  6607. if (!prepare_move_to_destination_cartesian()) return;
  6608. #endif
  6609. set_current_to_destination();
  6610. }
  6611. #if ENABLED(ARC_SUPPORT)
  6612. /**
  6613. * Plan an arc in 2 dimensions
  6614. *
  6615. * The arc is approximated by generating many small linear segments.
  6616. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6617. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6618. * larger segments will tend to be more efficient. Your slicer should have
  6619. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6620. */
  6621. void plan_arc(
  6622. float target[NUM_AXIS], // Destination position
  6623. float* offset, // Center of rotation relative to current_position
  6624. uint8_t clockwise // Clockwise?
  6625. ) {
  6626. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6627. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6628. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6629. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6630. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6631. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6632. r_Y = -offset[Y_AXIS],
  6633. rt_X = target[X_AXIS] - center_X,
  6634. rt_Y = target[Y_AXIS] - center_Y;
  6635. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6636. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6637. if (angular_travel < 0) angular_travel += RADIANS(360);
  6638. if (clockwise) angular_travel -= RADIANS(360);
  6639. // Make a circle if the angular rotation is 0
  6640. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6641. angular_travel += RADIANS(360);
  6642. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6643. if (mm_of_travel < 0.001) return;
  6644. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6645. if (segments == 0) segments = 1;
  6646. float theta_per_segment = angular_travel / segments;
  6647. float linear_per_segment = linear_travel / segments;
  6648. float extruder_per_segment = extruder_travel / segments;
  6649. /**
  6650. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6651. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6652. * r_T = [cos(phi) -sin(phi);
  6653. * sin(phi) cos(phi] * r ;
  6654. *
  6655. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6656. * defined from the circle center to the initial position. Each line segment is formed by successive
  6657. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6658. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6659. * all double numbers are single precision on the Arduino. (True double precision will not have
  6660. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6661. * tool precision in some cases. Therefore, arc path correction is implemented.
  6662. *
  6663. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6664. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6665. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6666. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6667. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6668. * issue for CNC machines with the single precision Arduino calculations.
  6669. *
  6670. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6671. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6672. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6673. * This is important when there are successive arc motions.
  6674. */
  6675. // Vector rotation matrix values
  6676. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6677. float sin_T = theta_per_segment;
  6678. float arc_target[NUM_AXIS];
  6679. float sin_Ti, cos_Ti, r_new_Y;
  6680. uint16_t i;
  6681. int8_t count = 0;
  6682. // Initialize the linear axis
  6683. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6684. // Initialize the extruder axis
  6685. arc_target[E_AXIS] = current_position[E_AXIS];
  6686. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6687. millis_t next_idle_ms = millis() + 200UL;
  6688. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6689. thermalManager.manage_heater();
  6690. millis_t now = millis();
  6691. if (ELAPSED(now, next_idle_ms)) {
  6692. next_idle_ms = now + 200UL;
  6693. idle();
  6694. }
  6695. if (++count < N_ARC_CORRECTION) {
  6696. // Apply vector rotation matrix to previous r_X / 1
  6697. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6698. r_X = r_X * cos_T - r_Y * sin_T;
  6699. r_Y = r_new_Y;
  6700. }
  6701. else {
  6702. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6703. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6704. // To reduce stuttering, the sin and cos could be computed at different times.
  6705. // For now, compute both at the same time.
  6706. cos_Ti = cos(i * theta_per_segment);
  6707. sin_Ti = sin(i * theta_per_segment);
  6708. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6709. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6710. count = 0;
  6711. }
  6712. // Update arc_target location
  6713. arc_target[X_AXIS] = center_X + r_X;
  6714. arc_target[Y_AXIS] = center_Y + r_Y;
  6715. arc_target[Z_AXIS] += linear_per_segment;
  6716. arc_target[E_AXIS] += extruder_per_segment;
  6717. clamp_to_software_endstops(arc_target);
  6718. #if ENABLED(DELTA) || ENABLED(SCARA)
  6719. calculate_delta(arc_target);
  6720. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6721. adjust_delta(arc_target);
  6722. #endif
  6723. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6724. #else
  6725. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6726. #endif
  6727. }
  6728. // Ensure last segment arrives at target location.
  6729. #if ENABLED(DELTA) || ENABLED(SCARA)
  6730. calculate_delta(target);
  6731. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6732. adjust_delta(target);
  6733. #endif
  6734. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6735. #else
  6736. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6737. #endif
  6738. // As far as the parser is concerned, the position is now == target. In reality the
  6739. // motion control system might still be processing the action and the real tool position
  6740. // in any intermediate location.
  6741. set_current_to_destination();
  6742. }
  6743. #endif
  6744. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6745. void plan_cubic_move(const float offset[4]) {
  6746. cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder);
  6747. // As far as the parser is concerned, the position is now == target. In reality the
  6748. // motion control system might still be processing the action and the real tool position
  6749. // in any intermediate location.
  6750. set_current_to_destination();
  6751. }
  6752. #endif // BEZIER_CURVE_SUPPORT
  6753. #if HAS_CONTROLLERFAN
  6754. void controllerFan() {
  6755. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6756. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6757. millis_t ms = millis();
  6758. if (ELAPSED(ms, nextMotorCheck)) {
  6759. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6760. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6761. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6762. #if EXTRUDERS > 1
  6763. || E1_ENABLE_READ == E_ENABLE_ON
  6764. #if HAS_X2_ENABLE
  6765. || X2_ENABLE_READ == X_ENABLE_ON
  6766. #endif
  6767. #if EXTRUDERS > 2
  6768. || E2_ENABLE_READ == E_ENABLE_ON
  6769. #if EXTRUDERS > 3
  6770. || E3_ENABLE_READ == E_ENABLE_ON
  6771. #endif
  6772. #endif
  6773. #endif
  6774. ) {
  6775. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6776. }
  6777. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6778. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6779. // allows digital or PWM fan output to be used (see M42 handling)
  6780. digitalWrite(CONTROLLERFAN_PIN, speed);
  6781. analogWrite(CONTROLLERFAN_PIN, speed);
  6782. }
  6783. }
  6784. #endif // HAS_CONTROLLERFAN
  6785. #if ENABLED(SCARA)
  6786. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6787. // Perform forward kinematics, and place results in delta[3]
  6788. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6789. float x_sin, x_cos, y_sin, y_cos;
  6790. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6791. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6792. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6793. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6794. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6795. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6796. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6797. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6798. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6799. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6800. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6801. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6802. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6803. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6804. }
  6805. void calculate_delta(float cartesian[3]) {
  6806. //reverse kinematics.
  6807. // Perform reversed kinematics, and place results in delta[3]
  6808. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6809. float SCARA_pos[2];
  6810. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6811. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6812. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6813. #if (Linkage_1 == Linkage_2)
  6814. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6815. #else
  6816. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6817. #endif
  6818. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6819. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6820. SCARA_K2 = Linkage_2 * SCARA_S2;
  6821. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6822. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6823. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6824. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6825. delta[Z_AXIS] = cartesian[Z_AXIS];
  6826. /**
  6827. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6828. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6829. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6830. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6831. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6832. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6833. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6834. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6835. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6836. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6837. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6838. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6839. SERIAL_EOL;
  6840. */
  6841. }
  6842. #endif // SCARA
  6843. #if ENABLED(TEMP_STAT_LEDS)
  6844. static bool red_led = false;
  6845. static millis_t next_status_led_update_ms = 0;
  6846. void handle_status_leds(void) {
  6847. float max_temp = 0.0;
  6848. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6849. next_status_led_update_ms += 500; // Update every 0.5s
  6850. HOTEND_LOOP() {
  6851. max_temp = max(max(max_temp, thermalManager.degHotend(e)), thermalManager.degTargetHotend(e));
  6852. }
  6853. #if HAS_TEMP_BED
  6854. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  6855. #endif
  6856. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6857. if (new_led != red_led) {
  6858. red_led = new_led;
  6859. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6860. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6861. }
  6862. }
  6863. }
  6864. #endif
  6865. void enable_all_steppers() {
  6866. enable_x();
  6867. enable_y();
  6868. enable_z();
  6869. enable_e0();
  6870. enable_e1();
  6871. enable_e2();
  6872. enable_e3();
  6873. }
  6874. void disable_all_steppers() {
  6875. disable_x();
  6876. disable_y();
  6877. disable_z();
  6878. disable_e0();
  6879. disable_e1();
  6880. disable_e2();
  6881. disable_e3();
  6882. }
  6883. /**
  6884. * Standard idle routine keeps the machine alive
  6885. */
  6886. void idle(
  6887. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6888. bool no_stepper_sleep/*=false*/
  6889. #endif
  6890. ) {
  6891. lcd_update();
  6892. host_keepalive();
  6893. manage_inactivity(
  6894. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6895. no_stepper_sleep
  6896. #endif
  6897. );
  6898. thermalManager.manage_heater();
  6899. #if ENABLED(PRINTCOUNTER)
  6900. print_job_timer.tick();
  6901. #endif
  6902. #if HAS_BUZZER
  6903. buzzer.tick();
  6904. #endif
  6905. }
  6906. /**
  6907. * Manage several activities:
  6908. * - Check for Filament Runout
  6909. * - Keep the command buffer full
  6910. * - Check for maximum inactive time between commands
  6911. * - Check for maximum inactive time between stepper commands
  6912. * - Check if pin CHDK needs to go LOW
  6913. * - Check for KILL button held down
  6914. * - Check for HOME button held down
  6915. * - Check if cooling fan needs to be switched on
  6916. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6917. */
  6918. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6919. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6920. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6921. handle_filament_runout();
  6922. #endif
  6923. if (commands_in_queue < BUFSIZE) get_available_commands();
  6924. millis_t ms = millis();
  6925. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6926. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6927. && !ignore_stepper_queue && !planner.blocks_queued()) {
  6928. #if ENABLED(DISABLE_INACTIVE_X)
  6929. disable_x();
  6930. #endif
  6931. #if ENABLED(DISABLE_INACTIVE_Y)
  6932. disable_y();
  6933. #endif
  6934. #if ENABLED(DISABLE_INACTIVE_Z)
  6935. disable_z();
  6936. #endif
  6937. #if ENABLED(DISABLE_INACTIVE_E)
  6938. disable_e0();
  6939. disable_e1();
  6940. disable_e2();
  6941. disable_e3();
  6942. #endif
  6943. }
  6944. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6945. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6946. chdkActive = false;
  6947. WRITE(CHDK, LOW);
  6948. }
  6949. #endif
  6950. #if HAS_KILL
  6951. // Check if the kill button was pressed and wait just in case it was an accidental
  6952. // key kill key press
  6953. // -------------------------------------------------------------------------------
  6954. static int killCount = 0; // make the inactivity button a bit less responsive
  6955. const int KILL_DELAY = 750;
  6956. if (!READ(KILL_PIN))
  6957. killCount++;
  6958. else if (killCount > 0)
  6959. killCount--;
  6960. // Exceeded threshold and we can confirm that it was not accidental
  6961. // KILL the machine
  6962. // ----------------------------------------------------------------
  6963. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6964. #endif
  6965. #if HAS_HOME
  6966. // Check to see if we have to home, use poor man's debouncer
  6967. // ---------------------------------------------------------
  6968. static int homeDebounceCount = 0; // poor man's debouncing count
  6969. const int HOME_DEBOUNCE_DELAY = 2500;
  6970. if (!READ(HOME_PIN)) {
  6971. if (!homeDebounceCount) {
  6972. enqueue_and_echo_commands_P(PSTR("G28"));
  6973. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6974. }
  6975. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6976. homeDebounceCount++;
  6977. else
  6978. homeDebounceCount = 0;
  6979. }
  6980. #endif
  6981. #if HAS_CONTROLLERFAN
  6982. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6983. #endif
  6984. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6985. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6986. if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6987. bool oldstatus;
  6988. switch (active_extruder) {
  6989. case 0:
  6990. oldstatus = E0_ENABLE_READ;
  6991. enable_e0();
  6992. break;
  6993. #if EXTRUDERS > 1
  6994. case 1:
  6995. oldstatus = E1_ENABLE_READ;
  6996. enable_e1();
  6997. break;
  6998. #if EXTRUDERS > 2
  6999. case 2:
  7000. oldstatus = E2_ENABLE_READ;
  7001. enable_e2();
  7002. break;
  7003. #if EXTRUDERS > 3
  7004. case 3:
  7005. oldstatus = E3_ENABLE_READ;
  7006. enable_e3();
  7007. break;
  7008. #endif
  7009. #endif
  7010. #endif
  7011. }
  7012. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  7013. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7014. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
  7015. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
  7016. current_position[E_AXIS] = oldepos;
  7017. destination[E_AXIS] = oldedes;
  7018. planner.set_e_position_mm(oldepos);
  7019. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7020. stepper.synchronize();
  7021. switch (active_extruder) {
  7022. case 0:
  7023. E0_ENABLE_WRITE(oldstatus);
  7024. break;
  7025. #if EXTRUDERS > 1
  7026. case 1:
  7027. E1_ENABLE_WRITE(oldstatus);
  7028. break;
  7029. #if EXTRUDERS > 2
  7030. case 2:
  7031. E2_ENABLE_WRITE(oldstatus);
  7032. break;
  7033. #if EXTRUDERS > 3
  7034. case 3:
  7035. E3_ENABLE_WRITE(oldstatus);
  7036. break;
  7037. #endif
  7038. #endif
  7039. #endif
  7040. }
  7041. }
  7042. #endif
  7043. #if ENABLED(DUAL_X_CARRIAGE)
  7044. // handle delayed move timeout
  7045. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7046. // travel moves have been received so enact them
  7047. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7048. set_destination_to_current();
  7049. prepare_move_to_destination();
  7050. }
  7051. #endif
  7052. #if ENABLED(TEMP_STAT_LEDS)
  7053. handle_status_leds();
  7054. #endif
  7055. planner.check_axes_activity();
  7056. }
  7057. void kill(const char* lcd_msg) {
  7058. SERIAL_ERROR_START;
  7059. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7060. #if ENABLED(ULTRA_LCD)
  7061. kill_screen(lcd_msg);
  7062. #else
  7063. UNUSED(lcd_msg);
  7064. #endif
  7065. for (int i = 5; i--;) delay(100); // Wait a short time
  7066. cli(); // Stop interrupts
  7067. thermalManager.disable_all_heaters();
  7068. disable_all_steppers();
  7069. #if HAS_POWER_SWITCH
  7070. pinMode(PS_ON_PIN, INPUT);
  7071. #endif
  7072. suicide();
  7073. while (1) {
  7074. #if ENABLED(USE_WATCHDOG)
  7075. watchdog_reset();
  7076. #endif
  7077. } // Wait for reset
  7078. }
  7079. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7080. void handle_filament_runout() {
  7081. if (!filament_ran_out) {
  7082. filament_ran_out = true;
  7083. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7084. stepper.synchronize();
  7085. }
  7086. }
  7087. #endif // FILAMENT_RUNOUT_SENSOR
  7088. #if ENABLED(FAST_PWM_FAN)
  7089. void setPwmFrequency(uint8_t pin, int val) {
  7090. val &= 0x07;
  7091. switch (digitalPinToTimer(pin)) {
  7092. #if defined(TCCR0A)
  7093. case TIMER0A:
  7094. case TIMER0B:
  7095. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7096. // TCCR0B |= val;
  7097. break;
  7098. #endif
  7099. #if defined(TCCR1A)
  7100. case TIMER1A:
  7101. case TIMER1B:
  7102. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7103. // TCCR1B |= val;
  7104. break;
  7105. #endif
  7106. #if defined(TCCR2)
  7107. case TIMER2:
  7108. case TIMER2:
  7109. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7110. TCCR2 |= val;
  7111. break;
  7112. #endif
  7113. #if defined(TCCR2A)
  7114. case TIMER2A:
  7115. case TIMER2B:
  7116. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7117. TCCR2B |= val;
  7118. break;
  7119. #endif
  7120. #if defined(TCCR3A)
  7121. case TIMER3A:
  7122. case TIMER3B:
  7123. case TIMER3C:
  7124. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7125. TCCR3B |= val;
  7126. break;
  7127. #endif
  7128. #if defined(TCCR4A)
  7129. case TIMER4A:
  7130. case TIMER4B:
  7131. case TIMER4C:
  7132. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7133. TCCR4B |= val;
  7134. break;
  7135. #endif
  7136. #if defined(TCCR5A)
  7137. case TIMER5A:
  7138. case TIMER5B:
  7139. case TIMER5C:
  7140. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7141. TCCR5B |= val;
  7142. break;
  7143. #endif
  7144. }
  7145. }
  7146. #endif // FAST_PWM_FAN
  7147. void stop() {
  7148. thermalManager.disable_all_heaters();
  7149. if (IsRunning()) {
  7150. Running = false;
  7151. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7152. SERIAL_ERROR_START;
  7153. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7154. LCD_MESSAGEPGM(MSG_STOPPED);
  7155. }
  7156. }
  7157. float calculate_volumetric_multiplier(float diameter) {
  7158. if (!volumetric_enabled || diameter == 0) return 1.0;
  7159. float d2 = diameter * 0.5;
  7160. return 1.0 / (M_PI * d2 * d2);
  7161. }
  7162. void calculate_volumetric_multipliers() {
  7163. for (int i = 0; i < EXTRUDERS; i++)
  7164. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7165. }