My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

stepper.cpp 41KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. Stepper stepper; // Singleton
  57. // public:
  58. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  59. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  60. bool Stepper::abort_on_endstop_hit = false;
  61. #endif
  62. #if ENABLED(Z_DUAL_ENDSTOPS)
  63. bool Stepper::performing_homing = false;
  64. #endif
  65. // private:
  66. unsigned char Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  67. unsigned int Stepper::cleaning_buffer_counter = 0;
  68. #if ENABLED(Z_DUAL_ENDSTOPS)
  69. bool Stepper::locked_z_motor = false;
  70. bool Stepper::locked_z2_motor = false;
  71. #endif
  72. long Stepper::counter_X = 0,
  73. Stepper::counter_Y = 0,
  74. Stepper::counter_Z = 0,
  75. Stepper::counter_E = 0;
  76. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  77. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  78. uint16_t Stepper::nextMainISR = 0,
  79. Stepper::nextAdvanceISR = 65535,
  80. Stepper::eISR_Rate = 65535;
  81. #if ENABLED(LIN_ADVANCE)
  82. volatile int Stepper::e_steps[E_STEPPERS];
  83. int Stepper::final_estep_rate,
  84. Stepper::current_estep_rate[E_STEPPERS],
  85. Stepper::current_adv_steps[E_STEPPERS];
  86. #else
  87. long Stepper::e_steps[E_STEPPERS],
  88. Stepper::final_advance = 0,
  89. Stepper::old_advance = 0,
  90. Stepper::advance_rate,
  91. Stepper::advance;
  92. #endif
  93. #endif
  94. long Stepper::acceleration_time, Stepper::deceleration_time;
  95. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  96. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  97. #if ENABLED(MIXING_EXTRUDER)
  98. long Stepper::counter_m[MIXING_STEPPERS];
  99. #endif
  100. unsigned short Stepper::acc_step_rate; // needed for deceleration start point
  101. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  102. unsigned short Stepper::OCR1A_nominal;
  103. volatile long Stepper::endstops_trigsteps[XYZ];
  104. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  105. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  106. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  107. #elif ENABLED(DUAL_X_CARRIAGE)
  108. #define X_APPLY_DIR(v,ALWAYS) \
  109. if (extruder_duplication_enabled || ALWAYS) { \
  110. X_DIR_WRITE(v); \
  111. X2_DIR_WRITE(v); \
  112. } \
  113. else { \
  114. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  115. }
  116. #define X_APPLY_STEP(v,ALWAYS) \
  117. if (extruder_duplication_enabled || ALWAYS) { \
  118. X_STEP_WRITE(v); \
  119. X2_STEP_WRITE(v); \
  120. } \
  121. else { \
  122. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  123. }
  124. #else
  125. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  126. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  127. #endif
  128. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  129. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  130. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  131. #else
  132. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  133. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  134. #endif
  135. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  136. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  137. #if ENABLED(Z_DUAL_ENDSTOPS)
  138. #define Z_APPLY_STEP(v,Q) \
  139. if (performing_homing) { \
  140. if (Z_HOME_DIR < 0) { \
  141. if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  142. if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  143. } \
  144. else { \
  145. if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  146. if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  147. } \
  148. } \
  149. else { \
  150. Z_STEP_WRITE(v); \
  151. Z2_STEP_WRITE(v); \
  152. }
  153. #else
  154. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  155. #endif
  156. #else
  157. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  158. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  159. #endif
  160. #if DISABLED(MIXING_EXTRUDER)
  161. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  162. #endif
  163. // intRes = longIn1 * longIn2 >> 24
  164. // uses:
  165. // r26 to store 0
  166. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  167. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  168. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  169. // B0 A0 are bits 24-39 and are the returned value
  170. // C1 B1 A1 is longIn1
  171. // D2 C2 B2 A2 is longIn2
  172. //
  173. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  174. asm volatile ( \
  175. "clr r26 \n\t" \
  176. "mul %A1, %B2 \n\t" \
  177. "mov r27, r1 \n\t" \
  178. "mul %B1, %C2 \n\t" \
  179. "movw %A0, r0 \n\t" \
  180. "mul %C1, %C2 \n\t" \
  181. "add %B0, r0 \n\t" \
  182. "mul %C1, %B2 \n\t" \
  183. "add %A0, r0 \n\t" \
  184. "adc %B0, r1 \n\t" \
  185. "mul %A1, %C2 \n\t" \
  186. "add r27, r0 \n\t" \
  187. "adc %A0, r1 \n\t" \
  188. "adc %B0, r26 \n\t" \
  189. "mul %B1, %B2 \n\t" \
  190. "add r27, r0 \n\t" \
  191. "adc %A0, r1 \n\t" \
  192. "adc %B0, r26 \n\t" \
  193. "mul %C1, %A2 \n\t" \
  194. "add r27, r0 \n\t" \
  195. "adc %A0, r1 \n\t" \
  196. "adc %B0, r26 \n\t" \
  197. "mul %B1, %A2 \n\t" \
  198. "add r27, r1 \n\t" \
  199. "adc %A0, r26 \n\t" \
  200. "adc %B0, r26 \n\t" \
  201. "lsr r27 \n\t" \
  202. "adc %A0, r26 \n\t" \
  203. "adc %B0, r26 \n\t" \
  204. "mul %D2, %A1 \n\t" \
  205. "add %A0, r0 \n\t" \
  206. "adc %B0, r1 \n\t" \
  207. "mul %D2, %B1 \n\t" \
  208. "add %B0, r0 \n\t" \
  209. "clr r1 \n\t" \
  210. : \
  211. "=&r" (intRes) \
  212. : \
  213. "d" (longIn1), \
  214. "d" (longIn2) \
  215. : \
  216. "r26" , "r27" \
  217. )
  218. // Some useful constants
  219. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  220. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  221. /**
  222. * __________________________
  223. * /| |\ _________________ ^
  224. * / | | \ /| |\ |
  225. * / | | \ / | | \ s
  226. * / | | | | | \ p
  227. * / | | | | | \ e
  228. * +-----+------------------------+---+--+---------------+----+ e
  229. * | BLOCK 1 | BLOCK 2 | d
  230. *
  231. * time ----->
  232. *
  233. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  234. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  235. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  236. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  237. */
  238. void Stepper::wake_up() {
  239. // TCNT1 = 0;
  240. ENABLE_STEPPER_DRIVER_INTERRUPT();
  241. }
  242. /**
  243. * Set the stepper direction of each axis
  244. *
  245. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  246. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  247. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  248. */
  249. void Stepper::set_directions() {
  250. #define SET_STEP_DIR(AXIS) \
  251. if (motor_direction(AXIS ##_AXIS)) { \
  252. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  253. count_direction[AXIS ##_AXIS] = -1; \
  254. } \
  255. else { \
  256. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  257. count_direction[AXIS ##_AXIS] = 1; \
  258. }
  259. #if HAS_X_DIR
  260. SET_STEP_DIR(X); // A
  261. #endif
  262. #if HAS_Y_DIR
  263. SET_STEP_DIR(Y); // B
  264. #endif
  265. #if HAS_Z_DIR
  266. SET_STEP_DIR(Z); // C
  267. #endif
  268. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  269. if (motor_direction(E_AXIS)) {
  270. REV_E_DIR();
  271. count_direction[E_AXIS] = -1;
  272. }
  273. else {
  274. NORM_E_DIR();
  275. count_direction[E_AXIS] = 1;
  276. }
  277. #endif // !ADVANCE && !LIN_ADVANCE
  278. }
  279. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  280. extern volatile uint8_t e_hit;
  281. #endif
  282. /**
  283. * Stepper Driver Interrupt
  284. *
  285. * Directly pulses the stepper motors at high frequency.
  286. * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
  287. *
  288. * OCR1A Frequency
  289. * 1 2 MHz
  290. * 50 40 KHz
  291. * 100 20 KHz - capped max rate
  292. * 200 10 KHz - nominal max rate
  293. * 2000 1 KHz - sleep rate
  294. * 4000 500 Hz - init rate
  295. */
  296. ISR(TIMER1_COMPA_vect) {
  297. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  298. Stepper::advance_isr_scheduler();
  299. #else
  300. Stepper::isr();
  301. #endif
  302. }
  303. void Stepper::isr() {
  304. #define _ENABLE_ISRs() cli(); SBI(TIMSK0, OCIE0B); ENABLE_STEPPER_DRIVER_INTERRUPT()
  305. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  306. //Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  307. CBI(TIMSK0, OCIE0B); //Temperature ISR
  308. DISABLE_STEPPER_DRIVER_INTERRUPT();
  309. sei();
  310. #endif
  311. if (cleaning_buffer_counter) {
  312. --cleaning_buffer_counter;
  313. current_block = NULL;
  314. planner.discard_current_block();
  315. #ifdef SD_FINISHED_RELEASECOMMAND
  316. if (!cleaning_buffer_counter && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  317. #endif
  318. _NEXT_ISR(200); // Run at max speed - 10 KHz
  319. _ENABLE_ISRs(); // re-enable ISRs
  320. return;
  321. }
  322. // If there is no current block, attempt to pop one from the buffer
  323. if (!current_block) {
  324. // Anything in the buffer?
  325. current_block = planner.get_current_block();
  326. if (current_block) {
  327. trapezoid_generator_reset();
  328. // Initialize Bresenham counters to 1/2 the ceiling
  329. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  330. #if ENABLED(MIXING_EXTRUDER)
  331. MIXING_STEPPERS_LOOP(i)
  332. counter_m[i] = -(current_block->mix_event_count[i] >> 1);
  333. #endif
  334. step_events_completed = 0;
  335. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  336. e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
  337. // No 'change' can be detected.
  338. #endif
  339. #if ENABLED(Z_LATE_ENABLE)
  340. if (current_block->steps[Z_AXIS] > 0) {
  341. enable_z();
  342. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  343. _ENABLE_ISRs(); // re-enable ISRs
  344. return;
  345. }
  346. #endif
  347. // #if ENABLED(ADVANCE)
  348. // e_steps[TOOL_E_INDEX] = 0;
  349. // #endif
  350. }
  351. else {
  352. _NEXT_ISR(2000); // Run at slow speed - 1 KHz
  353. _ENABLE_ISRs(); // re-enable ISRs
  354. return;
  355. }
  356. }
  357. // Update endstops state, if enabled
  358. if ((endstops.enabled
  359. #if HAS_BED_PROBE
  360. || endstops.z_probe_enabled
  361. #endif
  362. )
  363. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  364. && e_hit
  365. #endif
  366. ) {
  367. endstops.update();
  368. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  369. e_hit--;
  370. #endif
  371. }
  372. // Take multiple steps per interrupt (For high speed moves)
  373. bool all_steps_done = false;
  374. for (int8_t i = 0; i < step_loops; i++) {
  375. #if ENABLED(LIN_ADVANCE)
  376. counter_E += current_block->steps[E_AXIS];
  377. if (counter_E > 0) {
  378. counter_E -= current_block->step_event_count;
  379. #if DISABLED(MIXING_EXTRUDER)
  380. // Don't step E here for mixing extruder
  381. count_position[E_AXIS] += count_direction[E_AXIS];
  382. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  383. #endif
  384. }
  385. #if ENABLED(MIXING_EXTRUDER)
  386. // Step mixing steppers proportionally
  387. const bool dir = motor_direction(E_AXIS);
  388. MIXING_STEPPERS_LOOP(j) {
  389. counter_m[j] += current_block->steps[E_AXIS];
  390. if (counter_m[j] > 0) {
  391. counter_m[j] -= current_block->mix_event_count[j];
  392. dir ? --e_steps[j] : ++e_steps[j];
  393. }
  394. }
  395. #endif
  396. #elif ENABLED(ADVANCE)
  397. // Always count the unified E axis
  398. counter_E += current_block->steps[E_AXIS];
  399. if (counter_E > 0) {
  400. counter_E -= current_block->step_event_count;
  401. #if DISABLED(MIXING_EXTRUDER)
  402. // Don't step E here for mixing extruder
  403. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  404. #endif
  405. }
  406. #if ENABLED(MIXING_EXTRUDER)
  407. // Step mixing steppers proportionally
  408. const bool dir = motor_direction(E_AXIS);
  409. MIXING_STEPPERS_LOOP(j) {
  410. counter_m[j] += current_block->steps[E_AXIS];
  411. if (counter_m[j] > 0) {
  412. counter_m[j] -= current_block->mix_event_count[j];
  413. dir ? --e_steps[j] : ++e_steps[j];
  414. }
  415. }
  416. #endif // MIXING_EXTRUDER
  417. #endif // ADVANCE or LIN_ADVANCE
  418. #define _COUNTER(AXIS) counter_## AXIS
  419. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  420. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  421. // Advance the Bresenham counter; start a pulse if the axis needs a step
  422. #define PULSE_START(AXIS) \
  423. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  424. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  425. // Stop an active pulse, reset the Bresenham counter, update the position
  426. #define PULSE_STOP(AXIS) \
  427. if (_COUNTER(AXIS) > 0) { \
  428. _COUNTER(AXIS) -= current_block->step_event_count; \
  429. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  430. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  431. }
  432. #define CYCLES_EATEN_BY_CODE 240
  433. // If a minimum pulse time was specified get the CPU clock
  434. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
  435. static uint32_t pulse_start;
  436. pulse_start = TCNT0;
  437. #endif
  438. #if HAS_X_STEP
  439. PULSE_START(X);
  440. #endif
  441. #if HAS_Y_STEP
  442. PULSE_START(Y);
  443. #endif
  444. #if HAS_Z_STEP
  445. PULSE_START(Z);
  446. #endif
  447. // For non-advance use linear interpolation for E also
  448. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  449. #if ENABLED(MIXING_EXTRUDER)
  450. // Keep updating the single E axis
  451. counter_E += current_block->steps[E_AXIS];
  452. // Tick the counters used for this mix
  453. MIXING_STEPPERS_LOOP(j) {
  454. // Step mixing steppers (proportionally)
  455. counter_m[j] += current_block->steps[E_AXIS];
  456. // Step when the counter goes over zero
  457. if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  458. }
  459. #else // !MIXING_EXTRUDER
  460. PULSE_START(E);
  461. #endif
  462. #endif // !ADVANCE && !LIN_ADVANCE
  463. // For a minimum pulse time wait before stopping pulses
  464. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
  465. while ((uint32_t)(TCNT0 - pulse_start) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_CODE) { /* nada */ }
  466. #endif
  467. #if HAS_X_STEP
  468. PULSE_STOP(X);
  469. #endif
  470. #if HAS_Y_STEP
  471. PULSE_STOP(Y);
  472. #endif
  473. #if HAS_Z_STEP
  474. PULSE_STOP(Z);
  475. #endif
  476. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  477. #if ENABLED(MIXING_EXTRUDER)
  478. // Always step the single E axis
  479. if (counter_E > 0) {
  480. counter_E -= current_block->step_event_count;
  481. count_position[E_AXIS] += count_direction[E_AXIS];
  482. }
  483. MIXING_STEPPERS_LOOP(j) {
  484. if (counter_m[j] > 0) {
  485. counter_m[j] -= current_block->mix_event_count[j];
  486. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  487. }
  488. }
  489. #else // !MIXING_EXTRUDER
  490. PULSE_STOP(E);
  491. #endif
  492. #endif // !ADVANCE && !LIN_ADVANCE
  493. if (++step_events_completed >= current_block->step_event_count) {
  494. all_steps_done = true;
  495. break;
  496. }
  497. }
  498. #if ENABLED(LIN_ADVANCE)
  499. if (current_block->use_advance_lead) {
  500. int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
  501. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  502. #if ENABLED(MIXING_EXTRUDER)
  503. // Mixing extruders apply advance lead proportionally
  504. MIXING_STEPPERS_LOOP(j)
  505. e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  506. #else
  507. // For most extruders, advance the single E stepper
  508. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  509. #endif
  510. }
  511. #endif
  512. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  513. // If we have esteps to execute, fire the next advance_isr "now"
  514. if (e_steps[TOOL_E_INDEX]) nextAdvanceISR = 0;
  515. #endif
  516. // Calculate new timer value
  517. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  518. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  519. acc_step_rate += current_block->initial_rate;
  520. // upper limit
  521. NOMORE(acc_step_rate, current_block->nominal_rate);
  522. // step_rate to timer interval
  523. uint16_t timer = calc_timer(acc_step_rate);
  524. _NEXT_ISR(timer);
  525. acceleration_time += timer;
  526. #if ENABLED(LIN_ADVANCE)
  527. if (current_block->use_advance_lead) {
  528. #if ENABLED(MIXING_EXTRUDER)
  529. MIXING_STEPPERS_LOOP(j)
  530. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  531. #else
  532. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  533. #endif
  534. }
  535. #elif ENABLED(ADVANCE)
  536. advance += advance_rate * step_loops;
  537. //NOLESS(advance, current_block->advance);
  538. long advance_whole = advance >> 8,
  539. advance_factor = advance_whole - old_advance;
  540. // Do E steps + advance steps
  541. #if ENABLED(MIXING_EXTRUDER)
  542. // ...for mixing steppers proportionally
  543. MIXING_STEPPERS_LOOP(j)
  544. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  545. #else
  546. // ...for the active extruder
  547. e_steps[TOOL_E_INDEX] += advance_factor;
  548. #endif
  549. old_advance = advance_whole;
  550. #endif // ADVANCE or LIN_ADVANCE
  551. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  552. eISR_Rate = !e_steps[TOOL_E_INDEX] ? 65535 : timer * step_loops / abs(e_steps[TOOL_E_INDEX]);
  553. #endif
  554. }
  555. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  556. uint16_t step_rate;
  557. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  558. if (step_rate < acc_step_rate) { // Still decelerating?
  559. step_rate = acc_step_rate - step_rate;
  560. NOLESS(step_rate, current_block->final_rate);
  561. }
  562. else
  563. step_rate = current_block->final_rate;
  564. // step_rate to timer interval
  565. uint16_t timer = calc_timer(step_rate);
  566. _NEXT_ISR(timer);
  567. deceleration_time += timer;
  568. #if ENABLED(LIN_ADVANCE)
  569. if (current_block->use_advance_lead) {
  570. #if ENABLED(MIXING_EXTRUDER)
  571. MIXING_STEPPERS_LOOP(j)
  572. current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  573. #else
  574. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  575. #endif
  576. }
  577. #elif ENABLED(ADVANCE)
  578. advance -= advance_rate * step_loops;
  579. NOLESS(advance, final_advance);
  580. // Do E steps + advance steps
  581. long advance_whole = advance >> 8,
  582. advance_factor = advance_whole - old_advance;
  583. #if ENABLED(MIXING_EXTRUDER)
  584. MIXING_STEPPERS_LOOP(j)
  585. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  586. #else
  587. e_steps[TOOL_E_INDEX] += advance_factor;
  588. #endif
  589. old_advance = advance_whole;
  590. #endif // ADVANCE or LIN_ADVANCE
  591. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  592. eISR_Rate = !e_steps[TOOL_E_INDEX] ? 65535 : timer * step_loops / abs(e_steps[TOOL_E_INDEX]);
  593. #endif
  594. }
  595. else {
  596. #if ENABLED(LIN_ADVANCE)
  597. if (current_block->use_advance_lead)
  598. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  599. eISR_Rate = !e_steps[TOOL_E_INDEX] ? 65535 : OCR1A_nominal * step_loops_nominal / abs(e_steps[TOOL_E_INDEX]);
  600. #endif
  601. _NEXT_ISR(OCR1A_nominal);
  602. // ensure we're running at the correct step rate, even if we just came off an acceleration
  603. step_loops = step_loops_nominal;
  604. }
  605. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  606. NOLESS(OCR1A, TCNT1 + 16);
  607. #endif
  608. // If current block is finished, reset pointer
  609. if (all_steps_done) {
  610. current_block = NULL;
  611. planner.discard_current_block();
  612. }
  613. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  614. _ENABLE_ISRs(); // re-enable ISRs
  615. #endif
  616. }
  617. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  618. // Timer interrupt for E. e_steps is set in the main routine;
  619. void Stepper::advance_isr() {
  620. nextAdvanceISR = eISR_Rate;
  621. #define SET_E_STEP_DIR(INDEX) \
  622. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
  623. #define START_E_PULSE(INDEX) \
  624. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
  625. #define STOP_E_PULSE(INDEX) \
  626. if (e_steps[INDEX]) { \
  627. e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  628. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  629. }
  630. SET_E_STEP_DIR(0);
  631. #if E_STEPPERS > 1
  632. SET_E_STEP_DIR(1);
  633. #if E_STEPPERS > 2
  634. SET_E_STEP_DIR(2);
  635. #if E_STEPPERS > 3
  636. SET_E_STEP_DIR(3);
  637. #endif
  638. #endif
  639. #endif
  640. #define CYCLES_EATEN_BY_E 60
  641. // Step all E steppers that have steps
  642. for (uint8_t i = 0; i < step_loops; i++) {
  643. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
  644. static uint32_t pulse_start;
  645. pulse_start = TCNT0;
  646. #endif
  647. START_E_PULSE(0);
  648. #if E_STEPPERS > 1
  649. START_E_PULSE(1);
  650. #if E_STEPPERS > 2
  651. START_E_PULSE(2);
  652. #if E_STEPPERS > 3
  653. START_E_PULSE(3);
  654. #endif
  655. #endif
  656. #endif
  657. // For a minimum pulse time wait before stopping pulses
  658. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
  659. while ((uint32_t)(TCNT0 - pulse_start) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_E) { /* nada */ }
  660. #endif
  661. STOP_E_PULSE(0);
  662. #if E_STEPPERS > 1
  663. STOP_E_PULSE(1);
  664. #if E_STEPPERS > 2
  665. STOP_E_PULSE(2);
  666. #if E_STEPPERS > 3
  667. STOP_E_PULSE(3);
  668. #endif
  669. #endif
  670. #endif
  671. }
  672. }
  673. void Stepper::advance_isr_scheduler() {
  674. // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  675. CBI(TIMSK0, OCIE0B); // Temperature ISR
  676. DISABLE_STEPPER_DRIVER_INTERRUPT();
  677. sei();
  678. // Run main stepping ISR if flagged
  679. if (!nextMainISR) isr();
  680. // Run Advance stepping ISR if flagged
  681. if (!nextAdvanceISR) advance_isr();
  682. // Is the next advance ISR scheduled before the next main ISR?
  683. if (nextAdvanceISR <= nextMainISR) {
  684. // Set up the next interrupt
  685. OCR1A = nextAdvanceISR;
  686. // New interval for the next main ISR
  687. if (nextMainISR) nextMainISR -= nextAdvanceISR;
  688. // Will call Stepper::advance_isr on the next interrupt
  689. nextAdvanceISR = 0;
  690. }
  691. else {
  692. // The next main ISR comes first
  693. OCR1A = nextMainISR;
  694. // New interval for the next advance ISR, if any
  695. if (nextAdvanceISR && nextAdvanceISR != 65535)
  696. nextAdvanceISR -= nextMainISR;
  697. // Will call Stepper::isr on the next interrupt
  698. nextMainISR = 0;
  699. }
  700. // Don't run the ISR faster than possible
  701. NOLESS(OCR1A, TCNT1 + 16);
  702. // Restore original ISR settings
  703. cli();
  704. SBI(TIMSK0, OCIE0B);
  705. ENABLE_STEPPER_DRIVER_INTERRUPT();
  706. }
  707. #endif // ADVANCE or LIN_ADVANCE
  708. void Stepper::init() {
  709. // Init Digipot Motor Current
  710. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  711. digipot_init();
  712. #endif
  713. // Init Microstepping Pins
  714. #if HAS_MICROSTEPS
  715. microstep_init();
  716. #endif
  717. // Init TMC Steppers
  718. #if ENABLED(HAVE_TMCDRIVER)
  719. tmc_init();
  720. #endif
  721. // Init TMC2130 Steppers
  722. #if ENABLED(HAVE_TMC2130DRIVER)
  723. tmc2130_init();
  724. #endif
  725. // Init L6470 Steppers
  726. #if ENABLED(HAVE_L6470DRIVER)
  727. L6470_init();
  728. #endif
  729. // Init Dir Pins
  730. #if HAS_X_DIR
  731. X_DIR_INIT;
  732. #endif
  733. #if HAS_X2_DIR
  734. X2_DIR_INIT;
  735. #endif
  736. #if HAS_Y_DIR
  737. Y_DIR_INIT;
  738. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  739. Y2_DIR_INIT;
  740. #endif
  741. #endif
  742. #if HAS_Z_DIR
  743. Z_DIR_INIT;
  744. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  745. Z2_DIR_INIT;
  746. #endif
  747. #endif
  748. #if HAS_E0_DIR
  749. E0_DIR_INIT;
  750. #endif
  751. #if HAS_E1_DIR
  752. E1_DIR_INIT;
  753. #endif
  754. #if HAS_E2_DIR
  755. E2_DIR_INIT;
  756. #endif
  757. #if HAS_E3_DIR
  758. E3_DIR_INIT;
  759. #endif
  760. // Init Enable Pins - steppers default to disabled.
  761. #if HAS_X_ENABLE
  762. X_ENABLE_INIT;
  763. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  764. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  765. X2_ENABLE_INIT;
  766. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  767. #endif
  768. #endif
  769. #if HAS_Y_ENABLE
  770. Y_ENABLE_INIT;
  771. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  772. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  773. Y2_ENABLE_INIT;
  774. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  775. #endif
  776. #endif
  777. #if HAS_Z_ENABLE
  778. Z_ENABLE_INIT;
  779. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  780. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  781. Z2_ENABLE_INIT;
  782. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  783. #endif
  784. #endif
  785. #if HAS_E0_ENABLE
  786. E0_ENABLE_INIT;
  787. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  788. #endif
  789. #if HAS_E1_ENABLE
  790. E1_ENABLE_INIT;
  791. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  792. #endif
  793. #if HAS_E2_ENABLE
  794. E2_ENABLE_INIT;
  795. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  796. #endif
  797. #if HAS_E3_ENABLE
  798. E3_ENABLE_INIT;
  799. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  800. #endif
  801. // Init endstops and pullups
  802. endstops.init();
  803. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  804. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  805. #define _DISABLE(axis) disable_## axis()
  806. #define AXIS_INIT(axis, AXIS, PIN) \
  807. _STEP_INIT(AXIS); \
  808. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  809. _DISABLE(axis)
  810. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  811. // Init Step Pins
  812. #if HAS_X_STEP
  813. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  814. X2_STEP_INIT;
  815. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  816. #endif
  817. AXIS_INIT(x, X, X);
  818. #endif
  819. #if HAS_Y_STEP
  820. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  821. Y2_STEP_INIT;
  822. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  823. #endif
  824. AXIS_INIT(y, Y, Y);
  825. #endif
  826. #if HAS_Z_STEP
  827. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  828. Z2_STEP_INIT;
  829. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  830. #endif
  831. AXIS_INIT(z, Z, Z);
  832. #endif
  833. #if HAS_E0_STEP
  834. E_AXIS_INIT(0);
  835. #endif
  836. #if HAS_E1_STEP
  837. E_AXIS_INIT(1);
  838. #endif
  839. #if HAS_E2_STEP
  840. E_AXIS_INIT(2);
  841. #endif
  842. #if HAS_E3_STEP
  843. E_AXIS_INIT(3);
  844. #endif
  845. // waveform generation = 0100 = CTC
  846. CBI(TCCR1B, WGM13);
  847. SBI(TCCR1B, WGM12);
  848. CBI(TCCR1A, WGM11);
  849. CBI(TCCR1A, WGM10);
  850. // output mode = 00 (disconnected)
  851. TCCR1A &= ~(3 << COM1A0);
  852. TCCR1A &= ~(3 << COM1B0);
  853. // Set the timer pre-scaler
  854. // Generally we use a divider of 8, resulting in a 2MHz timer
  855. // frequency on a 16MHz MCU. If you are going to change this, be
  856. // sure to regenerate speed_lookuptable.h with
  857. // create_speed_lookuptable.py
  858. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  859. // Init Stepper ISR to 122 Hz for quick starting
  860. OCR1A = 0x4000;
  861. TCNT1 = 0;
  862. ENABLE_STEPPER_DRIVER_INTERRUPT();
  863. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  864. for (int i = 0; i < E_STEPPERS; i++) {
  865. e_steps[i] = 0;
  866. #if ENABLED(LIN_ADVANCE)
  867. current_adv_steps[i] = 0;
  868. #endif
  869. }
  870. #endif // ADVANCE or LIN_ADVANCE
  871. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  872. sei();
  873. set_directions(); // Init directions to last_direction_bits = 0
  874. }
  875. /**
  876. * Block until all buffered steps are executed
  877. */
  878. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  879. /**
  880. * Set the stepper positions directly in steps
  881. *
  882. * The input is based on the typical per-axis XYZ steps.
  883. * For CORE machines XYZ needs to be translated to ABC.
  884. *
  885. * This allows get_axis_position_mm to correctly
  886. * derive the current XYZ position later on.
  887. */
  888. void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
  889. synchronize(); // Bad to set stepper counts in the middle of a move
  890. CRITICAL_SECTION_START;
  891. #if CORE_IS_XY
  892. // corexy positioning
  893. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  894. count_position[A_AXIS] = a + b;
  895. count_position[B_AXIS] = CORESIGN(a - b);
  896. count_position[Z_AXIS] = c;
  897. #elif CORE_IS_XZ
  898. // corexz planning
  899. count_position[A_AXIS] = a + c;
  900. count_position[Y_AXIS] = b;
  901. count_position[C_AXIS] = CORESIGN(a - c);
  902. #elif CORE_IS_YZ
  903. // coreyz planning
  904. count_position[X_AXIS] = a;
  905. count_position[B_AXIS] = b + c;
  906. count_position[C_AXIS] = CORESIGN(b - c);
  907. #else
  908. // default non-h-bot planning
  909. count_position[X_AXIS] = a;
  910. count_position[Y_AXIS] = b;
  911. count_position[Z_AXIS] = c;
  912. #endif
  913. count_position[E_AXIS] = e;
  914. CRITICAL_SECTION_END;
  915. }
  916. void Stepper::set_position(const AxisEnum &axis, const long &v) {
  917. CRITICAL_SECTION_START;
  918. count_position[axis] = v;
  919. CRITICAL_SECTION_END;
  920. }
  921. void Stepper::set_e_position(const long &e) {
  922. CRITICAL_SECTION_START;
  923. count_position[E_AXIS] = e;
  924. CRITICAL_SECTION_END;
  925. }
  926. /**
  927. * Get a stepper's position in steps.
  928. */
  929. long Stepper::position(AxisEnum axis) {
  930. CRITICAL_SECTION_START;
  931. long count_pos = count_position[axis];
  932. CRITICAL_SECTION_END;
  933. return count_pos;
  934. }
  935. /**
  936. * Get an axis position according to stepper position(s)
  937. * For CORE machines apply translation from ABC to XYZ.
  938. */
  939. float Stepper::get_axis_position_mm(AxisEnum axis) {
  940. float axis_steps;
  941. #if IS_CORE
  942. // Requesting one of the "core" axes?
  943. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  944. CRITICAL_SECTION_START;
  945. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  946. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  947. axis_steps = 0.5f * (
  948. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  949. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  950. );
  951. CRITICAL_SECTION_END;
  952. }
  953. else
  954. axis_steps = position(axis);
  955. #else
  956. axis_steps = position(axis);
  957. #endif
  958. return axis_steps * planner.steps_to_mm[axis];
  959. }
  960. void Stepper::finish_and_disable() {
  961. synchronize();
  962. disable_all_steppers();
  963. }
  964. void Stepper::quick_stop() {
  965. cleaning_buffer_counter = 5000;
  966. DISABLE_STEPPER_DRIVER_INTERRUPT();
  967. while (planner.blocks_queued()) planner.discard_current_block();
  968. current_block = NULL;
  969. ENABLE_STEPPER_DRIVER_INTERRUPT();
  970. #if ENABLED(ULTRA_LCD)
  971. planner.clear_block_buffer_runtime();
  972. #endif
  973. }
  974. void Stepper::endstop_triggered(AxisEnum axis) {
  975. #if IS_CORE
  976. endstops_trigsteps[axis] = 0.5f * (
  977. axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  978. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  979. );
  980. #else // !COREXY && !COREXZ && !COREYZ
  981. endstops_trigsteps[axis] = count_position[axis];
  982. #endif // !COREXY && !COREXZ && !COREYZ
  983. kill_current_block();
  984. }
  985. void Stepper::report_positions() {
  986. CRITICAL_SECTION_START;
  987. long xpos = count_position[X_AXIS],
  988. ypos = count_position[Y_AXIS],
  989. zpos = count_position[Z_AXIS];
  990. CRITICAL_SECTION_END;
  991. #if CORE_IS_XY || CORE_IS_XZ || IS_SCARA
  992. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  993. #else
  994. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  995. #endif
  996. SERIAL_PROTOCOL(xpos);
  997. #if CORE_IS_XY || CORE_IS_YZ || IS_SCARA
  998. SERIAL_PROTOCOLPGM(" B:");
  999. #else
  1000. SERIAL_PROTOCOLPGM(" Y:");
  1001. #endif
  1002. SERIAL_PROTOCOL(ypos);
  1003. #if CORE_IS_XZ || CORE_IS_YZ
  1004. SERIAL_PROTOCOLPGM(" C:");
  1005. #else
  1006. SERIAL_PROTOCOLPGM(" Z:");
  1007. #endif
  1008. SERIAL_PROTOCOL(zpos);
  1009. SERIAL_EOL;
  1010. }
  1011. #if ENABLED(BABYSTEPPING)
  1012. #define _ENABLE(axis) enable_## axis()
  1013. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  1014. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  1015. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  1016. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  1017. _ENABLE(axis); \
  1018. uint8_t old_pin = _READ_DIR(AXIS); \
  1019. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  1020. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  1021. delayMicroseconds(2); \
  1022. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  1023. _APPLY_DIR(AXIS, old_pin); \
  1024. }
  1025. // MUST ONLY BE CALLED BY AN ISR,
  1026. // No other ISR should ever interrupt this!
  1027. void Stepper::babystep(const AxisEnum axis, const bool direction) {
  1028. switch (axis) {
  1029. case X_AXIS:
  1030. BABYSTEP_AXIS(x, X, false);
  1031. break;
  1032. case Y_AXIS:
  1033. BABYSTEP_AXIS(y, Y, false);
  1034. break;
  1035. case Z_AXIS: {
  1036. #if DISABLED(DELTA)
  1037. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  1038. #else // DELTA
  1039. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1040. enable_x();
  1041. enable_y();
  1042. enable_z();
  1043. uint8_t old_x_dir_pin = X_DIR_READ,
  1044. old_y_dir_pin = Y_DIR_READ,
  1045. old_z_dir_pin = Z_DIR_READ;
  1046. //setup new step
  1047. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  1048. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1049. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1050. //perform step
  1051. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1052. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1053. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1054. delayMicroseconds(2);
  1055. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1056. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1057. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1058. //get old pin state back.
  1059. X_DIR_WRITE(old_x_dir_pin);
  1060. Y_DIR_WRITE(old_y_dir_pin);
  1061. Z_DIR_WRITE(old_z_dir_pin);
  1062. #endif
  1063. } break;
  1064. default: break;
  1065. }
  1066. }
  1067. #endif //BABYSTEPPING
  1068. /**
  1069. * Software-controlled Stepper Motor Current
  1070. */
  1071. #if HAS_DIGIPOTSS
  1072. // From Arduino DigitalPotControl example
  1073. void Stepper::digitalPotWrite(int address, int value) {
  1074. WRITE(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  1075. SPI.transfer(address); // send in the address and value via SPI:
  1076. SPI.transfer(value);
  1077. WRITE(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  1078. //delay(10);
  1079. }
  1080. #endif //HAS_DIGIPOTSS
  1081. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  1082. void Stepper::digipot_init() {
  1083. #if HAS_DIGIPOTSS
  1084. static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1085. SPI.begin();
  1086. SET_OUTPUT(DIGIPOTSS_PIN);
  1087. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  1088. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1089. digipot_current(i, digipot_motor_current[i]);
  1090. }
  1091. #elif HAS_MOTOR_CURRENT_PWM
  1092. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1093. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1094. digipot_current(0, motor_current_setting[0]);
  1095. #endif
  1096. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1097. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1098. digipot_current(1, motor_current_setting[1]);
  1099. #endif
  1100. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1101. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1102. digipot_current(2, motor_current_setting[2]);
  1103. #endif
  1104. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1105. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1106. #endif
  1107. }
  1108. void Stepper::digipot_current(uint8_t driver, int current) {
  1109. #if HAS_DIGIPOTSS
  1110. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1111. digitalPotWrite(digipot_ch[driver], current);
  1112. #elif HAS_MOTOR_CURRENT_PWM
  1113. #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1114. switch (driver) {
  1115. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1116. case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
  1117. #endif
  1118. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1119. case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
  1120. #endif
  1121. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1122. case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
  1123. #endif
  1124. }
  1125. #endif
  1126. }
  1127. #endif
  1128. #if HAS_MICROSTEPS
  1129. /**
  1130. * Software-controlled Microstepping
  1131. */
  1132. void Stepper::microstep_init() {
  1133. SET_OUTPUT(X_MS1_PIN);
  1134. SET_OUTPUT(X_MS2_PIN);
  1135. #if HAS_MICROSTEPS_Y
  1136. SET_OUTPUT(Y_MS1_PIN);
  1137. SET_OUTPUT(Y_MS2_PIN);
  1138. #endif
  1139. #if HAS_MICROSTEPS_Z
  1140. SET_OUTPUT(Z_MS1_PIN);
  1141. SET_OUTPUT(Z_MS2_PIN);
  1142. #endif
  1143. #if HAS_MICROSTEPS_E0
  1144. SET_OUTPUT(E0_MS1_PIN);
  1145. SET_OUTPUT(E0_MS2_PIN);
  1146. #endif
  1147. #if HAS_MICROSTEPS_E1
  1148. SET_OUTPUT(E1_MS1_PIN);
  1149. SET_OUTPUT(E1_MS2_PIN);
  1150. #endif
  1151. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1152. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1153. microstep_mode(i, microstep_modes[i]);
  1154. }
  1155. void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1156. if (ms1 >= 0) switch (driver) {
  1157. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1158. #if HAS_MICROSTEPS_Y
  1159. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1160. #endif
  1161. #if HAS_MICROSTEPS_Z
  1162. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1163. #endif
  1164. #if HAS_MICROSTEPS_E0
  1165. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1166. #endif
  1167. #if HAS_MICROSTEPS_E1
  1168. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1169. #endif
  1170. }
  1171. if (ms2 >= 0) switch (driver) {
  1172. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1173. #if HAS_MICROSTEPS_Y
  1174. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1175. #endif
  1176. #if HAS_MICROSTEPS_Z
  1177. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1178. #endif
  1179. #if HAS_MICROSTEPS_E0
  1180. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1181. #endif
  1182. #if HAS_MICROSTEPS_E1
  1183. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1184. #endif
  1185. }
  1186. }
  1187. void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1188. switch (stepping_mode) {
  1189. case 1: microstep_ms(driver, MICROSTEP1); break;
  1190. case 2: microstep_ms(driver, MICROSTEP2); break;
  1191. case 4: microstep_ms(driver, MICROSTEP4); break;
  1192. case 8: microstep_ms(driver, MICROSTEP8); break;
  1193. case 16: microstep_ms(driver, MICROSTEP16); break;
  1194. }
  1195. }
  1196. void Stepper::microstep_readings() {
  1197. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1198. SERIAL_PROTOCOLPGM("X: ");
  1199. SERIAL_PROTOCOL(READ(X_MS1_PIN));
  1200. SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
  1201. #if HAS_MICROSTEPS_Y
  1202. SERIAL_PROTOCOLPGM("Y: ");
  1203. SERIAL_PROTOCOL(READ(Y_MS1_PIN));
  1204. SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
  1205. #endif
  1206. #if HAS_MICROSTEPS_Z
  1207. SERIAL_PROTOCOLPGM("Z: ");
  1208. SERIAL_PROTOCOL(READ(Z_MS1_PIN));
  1209. SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
  1210. #endif
  1211. #if HAS_MICROSTEPS_E0
  1212. SERIAL_PROTOCOLPGM("E0: ");
  1213. SERIAL_PROTOCOL(READ(E0_MS1_PIN));
  1214. SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
  1215. #endif
  1216. #if HAS_MICROSTEPS_E1
  1217. SERIAL_PROTOCOLPGM("E1: ");
  1218. SERIAL_PROTOCOL(READ(E1_MS1_PIN));
  1219. SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
  1220. #endif
  1221. }
  1222. #endif // HAS_MICROSTEPS