My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 41KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315
  1. /**
  2. * stepper.cpp - stepper motor driver: executes motion plans using stepper motors
  3. * Marlin Firmware
  4. *
  5. * Derived from Grbl
  6. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  7. *
  8. * Grbl is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * Grbl is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  20. */
  21. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  22. and Philipp Tiefenbacher. */
  23. #include "Marlin.h"
  24. #include "stepper.h"
  25. #include "planner.h"
  26. #include "temperature.h"
  27. #include "ultralcd.h"
  28. #include "language.h"
  29. #include "cardreader.h"
  30. #include "speed_lookuptable.h"
  31. #if HAS_DIGIPOTSS
  32. #include <SPI.h>
  33. #endif
  34. //===========================================================================
  35. //============================= public variables ============================
  36. //===========================================================================
  37. block_t* current_block; // A pointer to the block currently being traced
  38. #if ENABLED(HAS_Z_MIN_PROBE)
  39. volatile bool z_probe_is_active = false;
  40. #endif
  41. //===========================================================================
  42. //============================= private variables ===========================
  43. //===========================================================================
  44. //static makes it impossible to be called from outside of this file by extern.!
  45. // Variables used by The Stepper Driver Interrupt
  46. static unsigned char out_bits = 0; // The next stepping-bits to be output
  47. static unsigned int cleaning_buffer_counter;
  48. #if ENABLED(Z_DUAL_ENDSTOPS)
  49. static bool performing_homing = false,
  50. locked_z_motor = false,
  51. locked_z2_motor = false;
  52. #endif
  53. // Counter variables for the Bresenham line tracer
  54. static long counter_x, counter_y, counter_z, counter_e;
  55. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  56. #if ENABLED(ADVANCE)
  57. static long advance_rate, advance, final_advance = 0;
  58. static long old_advance = 0;
  59. static long e_steps[4];
  60. #endif
  61. static long acceleration_time, deceleration_time;
  62. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  63. static unsigned short acc_step_rate; // needed for deceleration start point
  64. static uint8_t step_loops;
  65. static uint8_t step_loops_nominal;
  66. static unsigned short OCR1A_nominal;
  67. volatile long endstops_trigsteps[3] = { 0 };
  68. volatile long endstops_stepsTotal, endstops_stepsDone;
  69. static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
  70. #if DISABLED(Z_DUAL_ENDSTOPS)
  71. static byte
  72. #else
  73. static uint16_t
  74. #endif
  75. old_endstop_bits = 0; // use X_MIN, X_MAX... Z_MAX, Z_MIN_PROBE, Z2_MIN, Z2_MAX
  76. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  77. bool abort_on_endstop_hit = false;
  78. #endif
  79. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  80. #ifndef PWM_MOTOR_CURRENT
  81. #define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
  82. #endif
  83. const int motor_current_setting[3] = PWM_MOTOR_CURRENT;
  84. #endif
  85. static bool check_endstops = true;
  86. volatile long count_position[NUM_AXIS] = { 0 }; // Positions of stepper motors, in step units
  87. volatile signed char count_direction[NUM_AXIS] = { 1 };
  88. //===========================================================================
  89. //================================ functions ================================
  90. //===========================================================================
  91. #if ENABLED(DUAL_X_CARRIAGE)
  92. #define X_APPLY_DIR(v,ALWAYS) \
  93. if (extruder_duplication_enabled || ALWAYS) { \
  94. X_DIR_WRITE(v); \
  95. X2_DIR_WRITE(v); \
  96. } \
  97. else { \
  98. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  99. }
  100. #define X_APPLY_STEP(v,ALWAYS) \
  101. if (extruder_duplication_enabled || ALWAYS) { \
  102. X_STEP_WRITE(v); \
  103. X2_STEP_WRITE(v); \
  104. } \
  105. else { \
  106. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  107. }
  108. #else
  109. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  110. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  111. #endif
  112. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  113. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  114. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  115. #else
  116. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  117. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  118. #endif
  119. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  120. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  121. #if ENABLED(Z_DUAL_ENDSTOPS)
  122. #define Z_APPLY_STEP(v,Q) \
  123. if (performing_homing) { \
  124. if (Z_HOME_DIR > 0) {\
  125. if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  126. if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  127. } \
  128. else { \
  129. if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  130. if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  131. } \
  132. } \
  133. else { \
  134. Z_STEP_WRITE(v); \
  135. Z2_STEP_WRITE(v); \
  136. }
  137. #else
  138. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  139. #endif
  140. #else
  141. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  142. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  143. #endif
  144. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  145. // intRes = intIn1 * intIn2 >> 16
  146. // uses:
  147. // r26 to store 0
  148. // r27 to store the byte 1 of the 24 bit result
  149. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  150. asm volatile ( \
  151. "clr r26 \n\t" \
  152. "mul %A1, %B2 \n\t" \
  153. "movw %A0, r0 \n\t" \
  154. "mul %A1, %A2 \n\t" \
  155. "add %A0, r1 \n\t" \
  156. "adc %B0, r26 \n\t" \
  157. "lsr r0 \n\t" \
  158. "adc %A0, r26 \n\t" \
  159. "adc %B0, r26 \n\t" \
  160. "clr r1 \n\t" \
  161. : \
  162. "=&r" (intRes) \
  163. : \
  164. "d" (charIn1), \
  165. "d" (intIn2) \
  166. : \
  167. "r26" \
  168. )
  169. // intRes = longIn1 * longIn2 >> 24
  170. // uses:
  171. // r26 to store 0
  172. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  173. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  174. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  175. // B0 A0 are bits 24-39 and are the returned value
  176. // C1 B1 A1 is longIn1
  177. // D2 C2 B2 A2 is longIn2
  178. //
  179. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  180. asm volatile ( \
  181. "clr r26 \n\t" \
  182. "mul %A1, %B2 \n\t" \
  183. "mov r27, r1 \n\t" \
  184. "mul %B1, %C2 \n\t" \
  185. "movw %A0, r0 \n\t" \
  186. "mul %C1, %C2 \n\t" \
  187. "add %B0, r0 \n\t" \
  188. "mul %C1, %B2 \n\t" \
  189. "add %A0, r0 \n\t" \
  190. "adc %B0, r1 \n\t" \
  191. "mul %A1, %C2 \n\t" \
  192. "add r27, r0 \n\t" \
  193. "adc %A0, r1 \n\t" \
  194. "adc %B0, r26 \n\t" \
  195. "mul %B1, %B2 \n\t" \
  196. "add r27, r0 \n\t" \
  197. "adc %A0, r1 \n\t" \
  198. "adc %B0, r26 \n\t" \
  199. "mul %C1, %A2 \n\t" \
  200. "add r27, r0 \n\t" \
  201. "adc %A0, r1 \n\t" \
  202. "adc %B0, r26 \n\t" \
  203. "mul %B1, %A2 \n\t" \
  204. "add r27, r1 \n\t" \
  205. "adc %A0, r26 \n\t" \
  206. "adc %B0, r26 \n\t" \
  207. "lsr r27 \n\t" \
  208. "adc %A0, r26 \n\t" \
  209. "adc %B0, r26 \n\t" \
  210. "mul %D2, %A1 \n\t" \
  211. "add %A0, r0 \n\t" \
  212. "adc %B0, r1 \n\t" \
  213. "mul %D2, %B1 \n\t" \
  214. "add %B0, r0 \n\t" \
  215. "clr r1 \n\t" \
  216. : \
  217. "=&r" (intRes) \
  218. : \
  219. "d" (longIn1), \
  220. "d" (longIn2) \
  221. : \
  222. "r26" , "r27" \
  223. )
  224. // Some useful constants
  225. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  226. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  227. void endstops_hit_on_purpose() {
  228. endstop_hit_bits = 0;
  229. }
  230. void checkHitEndstops() {
  231. if (endstop_hit_bits) {
  232. SERIAL_ECHO_START;
  233. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  234. if (TEST(endstop_hit_bits, X_MIN)) {
  235. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  236. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  237. }
  238. if (TEST(endstop_hit_bits, Y_MIN)) {
  239. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  240. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  241. }
  242. if (TEST(endstop_hit_bits, Z_MIN)) {
  243. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  244. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  245. }
  246. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  247. if (TEST(endstop_hit_bits, Z_MIN_PROBE)) {
  248. SERIAL_ECHOPAIR(" Z_MIN_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  249. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
  250. }
  251. #endif
  252. SERIAL_EOL;
  253. endstops_hit_on_purpose();
  254. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
  255. if (abort_on_endstop_hit) {
  256. card.sdprinting = false;
  257. card.closefile();
  258. quickStop();
  259. disable_all_heaters(); // switch off all heaters.
  260. }
  261. #endif
  262. }
  263. }
  264. void enable_endstops(bool check) { check_endstops = check; }
  265. // Check endstops - Called from ISR!
  266. inline void update_endstops() {
  267. #if ENABLED(Z_DUAL_ENDSTOPS)
  268. uint16_t
  269. #else
  270. byte
  271. #endif
  272. current_endstop_bits = 0;
  273. #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
  274. #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
  275. #define _AXIS(AXIS) AXIS ##_AXIS
  276. #define _ENDSTOP_HIT(AXIS) SBI(endstop_hit_bits, _ENDSTOP(AXIS, MIN))
  277. #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
  278. // SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
  279. #define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
  280. // COPY_BIT: copy the value of COPY_BIT to BIT in bits
  281. #define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
  282. // TEST_ENDSTOP: test the old and the current status of an endstop
  283. #define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP))
  284. #if ENABLED(COREXY) || ENABLED(COREXZ)
  285. #define _SET_TRIGSTEPS(AXIS) do { \
  286. float axis_pos = count_position[_AXIS(AXIS)]; \
  287. if (_AXIS(AXIS) == A_AXIS) \
  288. axis_pos = (axis_pos + count_position[CORE_AXIS_2]) / 2; \
  289. else if (_AXIS(AXIS) == CORE_AXIS_2) \
  290. axis_pos = (count_position[A_AXIS] - axis_pos) / 2; \
  291. endstops_trigsteps[_AXIS(AXIS)] = axis_pos; \
  292. } while(0)
  293. #else
  294. #define _SET_TRIGSTEPS(AXIS) endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]
  295. #endif // COREXY || COREXZ
  296. #define UPDATE_ENDSTOP(AXIS,MINMAX) do { \
  297. SET_ENDSTOP_BIT(AXIS, MINMAX); \
  298. if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && current_block->steps[_AXIS(AXIS)] > 0) { \
  299. _SET_TRIGSTEPS(AXIS); \
  300. _ENDSTOP_HIT(AXIS); \
  301. step_events_completed = current_block->step_event_count; \
  302. } \
  303. } while(0)
  304. #if ENABLED(COREXY) || ENABLED(COREXZ)
  305. // Head direction in -X axis for CoreXY and CoreXZ bots.
  306. // If Delta1 == -Delta2, the movement is only in Y or Z axis
  307. if ((current_block->steps[A_AXIS] != current_block->steps[CORE_AXIS_2]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, CORE_AXIS_2))) {
  308. if (TEST(out_bits, X_HEAD))
  309. #else
  310. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
  311. #endif
  312. { // -direction
  313. #if ENABLED(DUAL_X_CARRIAGE)
  314. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  315. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  316. #endif
  317. {
  318. #if HAS_X_MIN
  319. UPDATE_ENDSTOP(X, MIN);
  320. #endif
  321. }
  322. }
  323. else { // +direction
  324. #if ENABLED(DUAL_X_CARRIAGE)
  325. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  326. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  327. #endif
  328. {
  329. #if HAS_X_MAX
  330. UPDATE_ENDSTOP(X, MAX);
  331. #endif
  332. }
  333. }
  334. #if ENABLED(COREXY) || ENABLED(COREXZ)
  335. }
  336. #endif
  337. #if ENABLED(COREXY)
  338. // Head direction in -Y axis for CoreXY bots.
  339. // If DeltaX == DeltaY, the movement is only in X axis
  340. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
  341. if (TEST(out_bits, Y_HEAD))
  342. #else
  343. if (TEST(out_bits, Y_AXIS)) // -direction
  344. #endif
  345. { // -direction
  346. #if HAS_Y_MIN
  347. UPDATE_ENDSTOP(Y, MIN);
  348. #endif
  349. }
  350. else { // +direction
  351. #if HAS_Y_MAX
  352. UPDATE_ENDSTOP(Y, MAX);
  353. #endif
  354. }
  355. #if ENABLED(COREXY)
  356. }
  357. #endif
  358. #if ENABLED(COREXZ)
  359. // Head direction in -Z axis for CoreXZ bots.
  360. // If DeltaX == DeltaZ, the movement is only in X axis
  361. if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, C_AXIS))) {
  362. if (TEST(out_bits, Z_HEAD))
  363. #else
  364. if (TEST(out_bits, Z_AXIS))
  365. #endif
  366. { // z -direction
  367. #if HAS_Z_MIN
  368. #if ENABLED(Z_DUAL_ENDSTOPS)
  369. SET_ENDSTOP_BIT(Z, MIN);
  370. #if HAS_Z2_MIN
  371. SET_ENDSTOP_BIT(Z2, MIN);
  372. #else
  373. COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
  374. #endif
  375. byte z_test = TEST_ENDSTOP(Z_MIN) | (TEST_ENDSTOP(Z2_MIN) << 1); // bit 0 for Z, bit 1 for Z2
  376. if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
  377. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  378. SBI(endstop_hit_bits, Z_MIN);
  379. if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
  380. step_events_completed = current_block->step_event_count;
  381. }
  382. #else // !Z_DUAL_ENDSTOPS
  383. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE)
  384. if (z_probe_is_active) UPDATE_ENDSTOP(Z, MIN);
  385. #else
  386. UPDATE_ENDSTOP(Z, MIN);
  387. #endif
  388. #endif // !Z_DUAL_ENDSTOPS
  389. #endif
  390. #if ENABLED(Z_MIN_PROBE_ENDSTOP) && DISABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) && ENABLED(HAS_Z_MIN_PROBE)
  391. if (z_probe_is_active) {
  392. UPDATE_ENDSTOP(Z, MIN_PROBE);
  393. if (TEST_ENDSTOP(Z_MIN_PROBE)) endstop_hit_bits |= _BV(Z_MIN_PROBE);
  394. }
  395. #endif
  396. }
  397. else { // z +direction
  398. #if HAS_Z_MAX
  399. #if ENABLED(Z_DUAL_ENDSTOPS)
  400. SET_ENDSTOP_BIT(Z, MAX);
  401. #if HAS_Z2_MAX
  402. SET_ENDSTOP_BIT(Z2, MAX);
  403. #else
  404. COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX);
  405. #endif
  406. byte z_test = TEST_ENDSTOP(Z_MAX) | (TEST_ENDSTOP(Z2_MAX) << 1); // bit 0 for Z, bit 1 for Z2
  407. if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
  408. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  409. SBI(endstop_hit_bits, Z_MIN);
  410. if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
  411. step_events_completed = current_block->step_event_count;
  412. }
  413. #else // !Z_DUAL_ENDSTOPS
  414. UPDATE_ENDSTOP(Z, MAX);
  415. #endif // !Z_DUAL_ENDSTOPS
  416. #endif // Z_MAX_PIN
  417. }
  418. #if ENABLED(COREXZ)
  419. }
  420. #endif
  421. old_endstop_bits = current_endstop_bits;
  422. }
  423. // __________________________
  424. // /| |\ _________________ ^
  425. // / | | \ /| |\ |
  426. // / | | \ / | | \ s
  427. // / | | | | | \ p
  428. // / | | | | | \ e
  429. // +-----+------------------------+---+--+---------------+----+ e
  430. // | BLOCK 1 | BLOCK 2 | d
  431. //
  432. // time ----->
  433. //
  434. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  435. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  436. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  437. // The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  438. void st_wake_up() {
  439. // TCNT1 = 0;
  440. ENABLE_STEPPER_DRIVER_INTERRUPT();
  441. }
  442. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  443. unsigned short timer;
  444. NOMORE(step_rate, MAX_STEP_FREQUENCY);
  445. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  446. step_rate = (step_rate >> 2) & 0x3fff;
  447. step_loops = 4;
  448. }
  449. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  450. step_rate = (step_rate >> 1) & 0x7fff;
  451. step_loops = 2;
  452. }
  453. else {
  454. step_loops = 1;
  455. }
  456. NOLESS(step_rate, F_CPU / 500000);
  457. step_rate -= F_CPU / 500000; // Correct for minimal speed
  458. if (step_rate >= (8 * 256)) { // higher step rate
  459. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0];
  460. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  461. unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2);
  462. MultiU16X8toH16(timer, tmp_step_rate, gain);
  463. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  464. }
  465. else { // lower step rates
  466. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  467. table_address += ((step_rate) >> 1) & 0xfffc;
  468. timer = (unsigned short)pgm_read_word_near(table_address);
  469. timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3);
  470. }
  471. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  472. return timer;
  473. }
  474. /**
  475. * Set the stepper direction of each axis
  476. *
  477. * X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY
  478. * X_AXIS=A_AXIS and Z_AXIS=C_AXIS for COREXZ
  479. */
  480. void set_stepper_direction() {
  481. #define SET_STEP_DIR(AXIS) \
  482. if (TEST(out_bits, AXIS ##_AXIS)) { \
  483. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  484. count_direction[AXIS ##_AXIS] = -1; \
  485. } \
  486. else { \
  487. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  488. count_direction[AXIS ##_AXIS] = 1; \
  489. }
  490. SET_STEP_DIR(X); // A
  491. SET_STEP_DIR(Y); // B
  492. SET_STEP_DIR(Z); // C
  493. #if DISABLED(ADVANCE)
  494. if (TEST(out_bits, E_AXIS)) {
  495. REV_E_DIR();
  496. count_direction[E_AXIS] = -1;
  497. }
  498. else {
  499. NORM_E_DIR();
  500. count_direction[E_AXIS] = 1;
  501. }
  502. #endif //!ADVANCE
  503. }
  504. // Initializes the trapezoid generator from the current block. Called whenever a new
  505. // block begins.
  506. FORCE_INLINE void trapezoid_generator_reset() {
  507. static int8_t last_extruder = -1;
  508. if (current_block->direction_bits != out_bits || current_block->active_extruder != last_extruder) {
  509. out_bits = current_block->direction_bits;
  510. last_extruder = current_block->active_extruder;
  511. set_stepper_direction();
  512. }
  513. #if ENABLED(ADVANCE)
  514. advance = current_block->initial_advance;
  515. final_advance = current_block->final_advance;
  516. // Do E steps + advance steps
  517. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  518. old_advance = advance >>8;
  519. #endif
  520. deceleration_time = 0;
  521. // step_rate to timer interval
  522. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  523. // make a note of the number of step loops required at nominal speed
  524. step_loops_nominal = step_loops;
  525. acc_step_rate = current_block->initial_rate;
  526. acceleration_time = calc_timer(acc_step_rate);
  527. OCR1A = acceleration_time;
  528. // SERIAL_ECHO_START;
  529. // SERIAL_ECHOPGM("advance :");
  530. // SERIAL_ECHO(current_block->advance/256.0);
  531. // SERIAL_ECHOPGM("advance rate :");
  532. // SERIAL_ECHO(current_block->advance_rate/256.0);
  533. // SERIAL_ECHOPGM("initial advance :");
  534. // SERIAL_ECHO(current_block->initial_advance/256.0);
  535. // SERIAL_ECHOPGM("final advance :");
  536. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  537. }
  538. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  539. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  540. ISR(TIMER1_COMPA_vect) {
  541. if (cleaning_buffer_counter) {
  542. current_block = NULL;
  543. plan_discard_current_block();
  544. #ifdef SD_FINISHED_RELEASECOMMAND
  545. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  546. #endif
  547. cleaning_buffer_counter--;
  548. OCR1A = 200;
  549. return;
  550. }
  551. // If there is no current block, attempt to pop one from the buffer
  552. if (!current_block) {
  553. // Anything in the buffer?
  554. current_block = plan_get_current_block();
  555. if (current_block) {
  556. current_block->busy = true;
  557. trapezoid_generator_reset();
  558. counter_x = -(current_block->step_event_count >> 1);
  559. counter_y = counter_z = counter_e = counter_x;
  560. step_events_completed = 0;
  561. #if ENABLED(Z_LATE_ENABLE)
  562. if (current_block->steps[Z_AXIS] > 0) {
  563. enable_z();
  564. OCR1A = 2000; //1ms wait
  565. return;
  566. }
  567. #endif
  568. // #if ENABLED(ADVANCE)
  569. // e_steps[current_block->active_extruder] = 0;
  570. // #endif
  571. }
  572. else {
  573. OCR1A = 2000; // 1kHz.
  574. }
  575. }
  576. if (current_block != NULL) {
  577. // Update endstops state, if enabled
  578. #if ENABLED(HAS_Z_MIN_PROBE)
  579. if (check_endstops || z_probe_is_active) update_endstops();
  580. #else
  581. if (check_endstops) update_endstops();
  582. #endif
  583. // Take multiple steps per interrupt (For high speed moves)
  584. for (int8_t i = 0; i < step_loops; i++) {
  585. #ifndef USBCON
  586. customizedSerial.checkRx(); // Check for serial chars.
  587. #endif
  588. #if ENABLED(ADVANCE)
  589. counter_e += current_block->steps[E_AXIS];
  590. if (counter_e > 0) {
  591. counter_e -= current_block->step_event_count;
  592. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  593. }
  594. #endif //ADVANCE
  595. #define _COUNTER(axis) counter_## axis
  596. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  597. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  598. #define STEP_ADD(axis, AXIS) \
  599. _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
  600. if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  601. STEP_ADD(x,X);
  602. STEP_ADD(y,Y);
  603. STEP_ADD(z,Z);
  604. #if DISABLED(ADVANCE)
  605. STEP_ADD(e,E);
  606. #endif
  607. #define STEP_IF_COUNTER(axis, AXIS) \
  608. if (_COUNTER(axis) > 0) { \
  609. _COUNTER(axis) -= current_block->step_event_count; \
  610. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  611. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  612. }
  613. STEP_IF_COUNTER(x, X);
  614. STEP_IF_COUNTER(y, Y);
  615. STEP_IF_COUNTER(z, Z);
  616. #if DISABLED(ADVANCE)
  617. STEP_IF_COUNTER(e, E);
  618. #endif
  619. step_events_completed++;
  620. if (step_events_completed >= current_block->step_event_count) break;
  621. }
  622. // Calculate new timer value
  623. unsigned short timer;
  624. unsigned short step_rate;
  625. if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
  626. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  627. acc_step_rate += current_block->initial_rate;
  628. // upper limit
  629. NOMORE(acc_step_rate, current_block->nominal_rate);
  630. // step_rate to timer interval
  631. timer = calc_timer(acc_step_rate);
  632. OCR1A = timer;
  633. acceleration_time += timer;
  634. #if ENABLED(ADVANCE)
  635. advance += advance_rate * step_loops;
  636. //NOLESS(advance, current_block->advance);
  637. // Do E steps + advance steps
  638. e_steps[current_block->active_extruder] += ((advance >> 8) - old_advance);
  639. old_advance = advance >> 8;
  640. #endif //ADVANCE
  641. }
  642. else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
  643. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  644. if (step_rate <= acc_step_rate) { // Still decelerating?
  645. step_rate = acc_step_rate - step_rate;
  646. NOLESS(step_rate, current_block->final_rate);
  647. }
  648. else
  649. step_rate = current_block->final_rate;
  650. // step_rate to timer interval
  651. timer = calc_timer(step_rate);
  652. OCR1A = timer;
  653. deceleration_time += timer;
  654. #if ENABLED(ADVANCE)
  655. advance -= advance_rate * step_loops;
  656. NOLESS(advance, final_advance);
  657. // Do E steps + advance steps
  658. uint32_t advance_whole = advance >> 8;
  659. e_steps[current_block->active_extruder] += advance_whole - old_advance;
  660. old_advance = advance_whole;
  661. #endif //ADVANCE
  662. }
  663. else {
  664. OCR1A = OCR1A_nominal;
  665. // ensure we're running at the correct step rate, even if we just came off an acceleration
  666. step_loops = step_loops_nominal;
  667. }
  668. OCR1A = (OCR1A < (TCNT1 + 16)) ? (TCNT1 + 16) : OCR1A;
  669. // If current block is finished, reset pointer
  670. if (step_events_completed >= current_block->step_event_count) {
  671. current_block = NULL;
  672. plan_discard_current_block();
  673. }
  674. }
  675. }
  676. #if ENABLED(ADVANCE)
  677. unsigned char old_OCR0A;
  678. // Timer interrupt for E. e_steps is set in the main routine;
  679. // Timer 0 is shared with millies
  680. ISR(TIMER0_COMPA_vect) {
  681. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  682. OCR0A = old_OCR0A;
  683. #define STEP_E_ONCE(INDEX) \
  684. if (e_steps[INDEX] != 0) { \
  685. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  686. if (e_steps[INDEX] < 0) { \
  687. E## INDEX ##_DIR_WRITE(INVERT_E## INDEX ##_DIR); \
  688. e_steps[INDEX]++; \
  689. } \
  690. else if (e_steps[INDEX] > 0) { \
  691. E## INDEX ##_DIR_WRITE(!INVERT_E## INDEX ##_DIR); \
  692. e_steps[INDEX]--; \
  693. } \
  694. E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); \
  695. }
  696. // Step all E steppers that have steps, up to 4 steps per interrupt
  697. for (unsigned char i = 0; i < 4; i++) {
  698. STEP_E_ONCE(0);
  699. #if EXTRUDERS > 1
  700. STEP_E_ONCE(1);
  701. #if EXTRUDERS > 2
  702. STEP_E_ONCE(2);
  703. #if EXTRUDERS > 3
  704. STEP_E_ONCE(3);
  705. #endif
  706. #endif
  707. #endif
  708. }
  709. }
  710. #endif // ADVANCE
  711. void st_init() {
  712. digipot_init(); //Initialize Digipot Motor Current
  713. microstep_init(); //Initialize Microstepping Pins
  714. // initialise TMC Steppers
  715. #if ENABLED(HAVE_TMCDRIVER)
  716. tmc_init();
  717. #endif
  718. // initialise L6470 Steppers
  719. #if ENABLED(HAVE_L6470DRIVER)
  720. L6470_init();
  721. #endif
  722. // Initialize Dir Pins
  723. #if HAS_X_DIR
  724. X_DIR_INIT;
  725. #endif
  726. #if HAS_X2_DIR
  727. X2_DIR_INIT;
  728. #endif
  729. #if HAS_Y_DIR
  730. Y_DIR_INIT;
  731. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  732. Y2_DIR_INIT;
  733. #endif
  734. #endif
  735. #if HAS_Z_DIR
  736. Z_DIR_INIT;
  737. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  738. Z2_DIR_INIT;
  739. #endif
  740. #endif
  741. #if HAS_E0_DIR
  742. E0_DIR_INIT;
  743. #endif
  744. #if HAS_E1_DIR
  745. E1_DIR_INIT;
  746. #endif
  747. #if HAS_E2_DIR
  748. E2_DIR_INIT;
  749. #endif
  750. #if HAS_E3_DIR
  751. E3_DIR_INIT;
  752. #endif
  753. //Initialize Enable Pins - steppers default to disabled.
  754. #if HAS_X_ENABLE
  755. X_ENABLE_INIT;
  756. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  757. #endif
  758. #if HAS_X2_ENABLE
  759. X2_ENABLE_INIT;
  760. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  761. #endif
  762. #if HAS_Y_ENABLE
  763. Y_ENABLE_INIT;
  764. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  765. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  766. Y2_ENABLE_INIT;
  767. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  768. #endif
  769. #endif
  770. #if HAS_Z_ENABLE
  771. Z_ENABLE_INIT;
  772. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  773. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  774. Z2_ENABLE_INIT;
  775. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  776. #endif
  777. #endif
  778. #if HAS_E0_ENABLE
  779. E0_ENABLE_INIT;
  780. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  781. #endif
  782. #if HAS_E1_ENABLE
  783. E1_ENABLE_INIT;
  784. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  785. #endif
  786. #if HAS_E2_ENABLE
  787. E2_ENABLE_INIT;
  788. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  789. #endif
  790. #if HAS_E3_ENABLE
  791. E3_ENABLE_INIT;
  792. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  793. #endif
  794. //endstops and pullups
  795. #if HAS_X_MIN
  796. SET_INPUT(X_MIN_PIN);
  797. #if ENABLED(ENDSTOPPULLUP_XMIN)
  798. WRITE(X_MIN_PIN,HIGH);
  799. #endif
  800. #endif
  801. #if HAS_Y_MIN
  802. SET_INPUT(Y_MIN_PIN);
  803. #if ENABLED(ENDSTOPPULLUP_YMIN)
  804. WRITE(Y_MIN_PIN,HIGH);
  805. #endif
  806. #endif
  807. #if HAS_Z_MIN
  808. SET_INPUT(Z_MIN_PIN);
  809. #if ENABLED(ENDSTOPPULLUP_ZMIN)
  810. WRITE(Z_MIN_PIN,HIGH);
  811. #endif
  812. #endif
  813. #if HAS_Z2_MIN
  814. SET_INPUT(Z2_MIN_PIN);
  815. #if ENABLED(ENDSTOPPULLUP_ZMIN)
  816. WRITE(Z2_MIN_PIN,HIGH);
  817. #endif
  818. #endif
  819. #if HAS_X_MAX
  820. SET_INPUT(X_MAX_PIN);
  821. #if ENABLED(ENDSTOPPULLUP_XMAX)
  822. WRITE(X_MAX_PIN,HIGH);
  823. #endif
  824. #endif
  825. #if HAS_Y_MAX
  826. SET_INPUT(Y_MAX_PIN);
  827. #if ENABLED(ENDSTOPPULLUP_YMAX)
  828. WRITE(Y_MAX_PIN,HIGH);
  829. #endif
  830. #endif
  831. #if HAS_Z_MAX
  832. SET_INPUT(Z_MAX_PIN);
  833. #if ENABLED(ENDSTOPPULLUP_ZMAX)
  834. WRITE(Z_MAX_PIN,HIGH);
  835. #endif
  836. #endif
  837. #if HAS_Z2_MAX
  838. SET_INPUT(Z2_MAX_PIN);
  839. #if ENABLED(ENDSTOPPULLUP_ZMAX)
  840. WRITE(Z2_MAX_PIN,HIGH);
  841. #endif
  842. #endif
  843. #if HAS_Z_PROBE && ENABLED(Z_MIN_PROBE_ENDSTOP) // Check for Z_MIN_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
  844. SET_INPUT(Z_MIN_PROBE_PIN);
  845. #if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
  846. WRITE(Z_MIN_PROBE_PIN,HIGH);
  847. #endif
  848. #endif
  849. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  850. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  851. #define _DISABLE(axis) disable_## axis()
  852. #define AXIS_INIT(axis, AXIS, PIN) \
  853. _STEP_INIT(AXIS); \
  854. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  855. _DISABLE(axis)
  856. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  857. // Initialize Step Pins
  858. #if HAS_X_STEP
  859. AXIS_INIT(x, X, X);
  860. #endif
  861. #if HAS_X2_STEP
  862. AXIS_INIT(x, X2, X);
  863. #endif
  864. #if HAS_Y_STEP
  865. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
  866. Y2_STEP_INIT;
  867. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  868. #endif
  869. AXIS_INIT(y, Y, Y);
  870. #endif
  871. #if HAS_Z_STEP
  872. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
  873. Z2_STEP_INIT;
  874. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  875. #endif
  876. AXIS_INIT(z, Z, Z);
  877. #endif
  878. #if HAS_E0_STEP
  879. E_AXIS_INIT(0);
  880. #endif
  881. #if HAS_E1_STEP
  882. E_AXIS_INIT(1);
  883. #endif
  884. #if HAS_E2_STEP
  885. E_AXIS_INIT(2);
  886. #endif
  887. #if HAS_E3_STEP
  888. E_AXIS_INIT(3);
  889. #endif
  890. // waveform generation = 0100 = CTC
  891. CBI(TCCR1B, WGM13);
  892. SBI(TCCR1B, WGM12);
  893. CBI(TCCR1A, WGM11);
  894. CBI(TCCR1A, WGM10);
  895. // output mode = 00 (disconnected)
  896. TCCR1A &= ~(3 << COM1A0);
  897. TCCR1A &= ~(3 << COM1B0);
  898. // Set the timer pre-scaler
  899. // Generally we use a divider of 8, resulting in a 2MHz timer
  900. // frequency on a 16MHz MCU. If you are going to change this, be
  901. // sure to regenerate speed_lookuptable.h with
  902. // create_speed_lookuptable.py
  903. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  904. OCR1A = 0x4000;
  905. TCNT1 = 0;
  906. ENABLE_STEPPER_DRIVER_INTERRUPT();
  907. #if ENABLED(ADVANCE)
  908. #if defined(TCCR0A) && defined(WGM01)
  909. CBI(TCCR0A, WGM01);
  910. CBI(TCCR0A, WGM00);
  911. #endif
  912. e_steps[0] = e_steps[1] = e_steps[2] = e_steps[3] = 0;
  913. SBI(TIMSK0, OCIE0A);
  914. #endif //ADVANCE
  915. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  916. sei();
  917. set_stepper_direction(); // Init directions to out_bits = 0
  918. }
  919. /**
  920. * Block until all buffered steps are executed
  921. */
  922. void st_synchronize() { while (blocks_queued()) idle(); }
  923. void st_set_position(const long& x, const long& y, const long& z, const long& e) {
  924. CRITICAL_SECTION_START;
  925. count_position[X_AXIS] = x;
  926. count_position[Y_AXIS] = y;
  927. count_position[Z_AXIS] = z;
  928. count_position[E_AXIS] = e;
  929. CRITICAL_SECTION_END;
  930. }
  931. void st_set_e_position(const long& e) {
  932. CRITICAL_SECTION_START;
  933. count_position[E_AXIS] = e;
  934. CRITICAL_SECTION_END;
  935. }
  936. long st_get_position(uint8_t axis) {
  937. CRITICAL_SECTION_START;
  938. long count_pos = count_position[axis];
  939. CRITICAL_SECTION_END;
  940. return count_pos;
  941. }
  942. float st_get_axis_position_mm(AxisEnum axis) {
  943. float axis_pos;
  944. #if ENABLED(COREXY) | ENABLED(COREXZ)
  945. if (axis == X_AXIS || axis == CORE_AXIS_2) {
  946. CRITICAL_SECTION_START;
  947. long pos1 = count_position[A_AXIS],
  948. pos2 = count_position[CORE_AXIS_2];
  949. CRITICAL_SECTION_END;
  950. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  951. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  952. axis_pos = (pos1 + ((axis == X_AXIS) ? pos2 : -pos2)) / 2.0f;
  953. }
  954. else
  955. axis_pos = st_get_position(axis);
  956. #else
  957. axis_pos = st_get_position(axis);
  958. #endif
  959. return axis_pos / axis_steps_per_unit[axis];
  960. }
  961. void finishAndDisableSteppers() {
  962. st_synchronize();
  963. disable_all_steppers();
  964. }
  965. void quickStop() {
  966. cleaning_buffer_counter = 5000;
  967. DISABLE_STEPPER_DRIVER_INTERRUPT();
  968. while (blocks_queued()) plan_discard_current_block();
  969. current_block = NULL;
  970. ENABLE_STEPPER_DRIVER_INTERRUPT();
  971. }
  972. #if ENABLED(BABYSTEPPING)
  973. // MUST ONLY BE CALLED BY AN ISR,
  974. // No other ISR should ever interrupt this!
  975. void babystep(const uint8_t axis, const bool direction) {
  976. #define _ENABLE(axis) enable_## axis()
  977. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  978. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  979. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  980. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  981. _ENABLE(axis); \
  982. uint8_t old_pin = _READ_DIR(AXIS); \
  983. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  984. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  985. delayMicroseconds(2); \
  986. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  987. _APPLY_DIR(AXIS, old_pin); \
  988. }
  989. switch (axis) {
  990. case X_AXIS:
  991. BABYSTEP_AXIS(x, X, false);
  992. break;
  993. case Y_AXIS:
  994. BABYSTEP_AXIS(y, Y, false);
  995. break;
  996. case Z_AXIS: {
  997. #if DISABLED(DELTA)
  998. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  999. #else // DELTA
  1000. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1001. enable_x();
  1002. enable_y();
  1003. enable_z();
  1004. uint8_t old_x_dir_pin = X_DIR_READ,
  1005. old_y_dir_pin = Y_DIR_READ,
  1006. old_z_dir_pin = Z_DIR_READ;
  1007. //setup new step
  1008. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  1009. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1010. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1011. //perform step
  1012. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1013. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1014. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1015. delayMicroseconds(2);
  1016. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1017. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1018. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1019. //get old pin state back.
  1020. X_DIR_WRITE(old_x_dir_pin);
  1021. Y_DIR_WRITE(old_y_dir_pin);
  1022. Z_DIR_WRITE(old_z_dir_pin);
  1023. #endif
  1024. } break;
  1025. default: break;
  1026. }
  1027. }
  1028. #endif //BABYSTEPPING
  1029. // From Arduino DigitalPotControl example
  1030. void digitalPotWrite(int address, int value) {
  1031. #if HAS_DIGIPOTSS
  1032. digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  1033. SPI.transfer(address); // send in the address and value via SPI:
  1034. SPI.transfer(value);
  1035. digitalWrite(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  1036. //delay(10);
  1037. #else
  1038. UNUSED(address);
  1039. UNUSED(value);
  1040. #endif
  1041. }
  1042. // Initialize Digipot Motor Current
  1043. void digipot_init() {
  1044. #if HAS_DIGIPOTSS
  1045. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1046. SPI.begin();
  1047. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1048. for (int i = 0; i < COUNT(digipot_motor_current); i++) {
  1049. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1050. digipot_current(i, digipot_motor_current[i]);
  1051. }
  1052. #endif
  1053. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1054. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1055. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1056. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1057. digipot_current(0, motor_current_setting[0]);
  1058. digipot_current(1, motor_current_setting[1]);
  1059. digipot_current(2, motor_current_setting[2]);
  1060. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1061. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1062. #endif
  1063. }
  1064. void digipot_current(uint8_t driver, int current) {
  1065. #if HAS_DIGIPOTSS
  1066. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1067. digitalPotWrite(digipot_ch[driver], current);
  1068. #elif defined(MOTOR_CURRENT_PWM_XY_PIN)
  1069. switch (driver) {
  1070. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE)); break;
  1071. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE)); break;
  1072. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE)); break;
  1073. }
  1074. #else
  1075. UNUSED(driver);
  1076. UNUSED(current);
  1077. #endif
  1078. }
  1079. void microstep_init() {
  1080. #if HAS_MICROSTEPS_E1
  1081. pinMode(E1_MS1_PIN, OUTPUT);
  1082. pinMode(E1_MS2_PIN, OUTPUT);
  1083. #endif
  1084. #if HAS_MICROSTEPS
  1085. pinMode(X_MS1_PIN, OUTPUT);
  1086. pinMode(X_MS2_PIN, OUTPUT);
  1087. pinMode(Y_MS1_PIN, OUTPUT);
  1088. pinMode(Y_MS2_PIN, OUTPUT);
  1089. pinMode(Z_MS1_PIN, OUTPUT);
  1090. pinMode(Z_MS2_PIN, OUTPUT);
  1091. pinMode(E0_MS1_PIN, OUTPUT);
  1092. pinMode(E0_MS2_PIN, OUTPUT);
  1093. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1094. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1095. microstep_mode(i, microstep_modes[i]);
  1096. #endif
  1097. }
  1098. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1099. if (ms1 >= 0) switch (driver) {
  1100. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1101. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1102. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1103. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1104. #if HAS_MICROSTEPS_E1
  1105. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1106. #endif
  1107. }
  1108. if (ms2 >= 0) switch (driver) {
  1109. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1110. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1111. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1112. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1113. #if PIN_EXISTS(E1_MS2)
  1114. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1115. #endif
  1116. }
  1117. }
  1118. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1119. switch (stepping_mode) {
  1120. case 1: microstep_ms(driver, MICROSTEP1); break;
  1121. case 2: microstep_ms(driver, MICROSTEP2); break;
  1122. case 4: microstep_ms(driver, MICROSTEP4); break;
  1123. case 8: microstep_ms(driver, MICROSTEP8); break;
  1124. case 16: microstep_ms(driver, MICROSTEP16); break;
  1125. }
  1126. }
  1127. void microstep_readings() {
  1128. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1129. SERIAL_PROTOCOLPGM("X: ");
  1130. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1131. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1132. SERIAL_PROTOCOLPGM("Y: ");
  1133. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1134. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1135. SERIAL_PROTOCOLPGM("Z: ");
  1136. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1137. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1138. SERIAL_PROTOCOLPGM("E0: ");
  1139. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1140. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1141. #if HAS_MICROSTEPS_E1
  1142. SERIAL_PROTOCOLPGM("E1: ");
  1143. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1144. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1145. #endif
  1146. }
  1147. #if ENABLED(Z_DUAL_ENDSTOPS)
  1148. void In_Homing_Process(bool state) { performing_homing = state; }
  1149. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1150. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1151. #endif