My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

Marlin_main.cpp 251KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #include "ultralcd.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "cardreader.h"
  48. #include "configuration_store.h"
  49. #include "language.h"
  50. #include "pins_arduino.h"
  51. #include "math.h"
  52. #include "buzzer.h"
  53. #if ENABLED(USE_WATCHDOG)
  54. #include "watchdog.h"
  55. #endif
  56. #if ENABLED(BLINKM)
  57. #include "blinkm.h"
  58. #include "Wire.h"
  59. #endif
  60. #if HAS_SERVOS
  61. #include "servo.h"
  62. #endif
  63. #if HAS_DIGIPOTSS
  64. #include <SPI.h>
  65. #endif
  66. #if ENABLED(DAC_STEPPER_CURRENT)
  67. #include "stepper_dac.h"
  68. #endif
  69. #if ENABLED(EXPERIMENTAL_I2CBUS)
  70. #include "twibus.h"
  71. #endif
  72. /**
  73. * Look here for descriptions of G-codes:
  74. * - http://linuxcnc.org/handbook/gcode/g-code.html
  75. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  76. *
  77. * Help us document these G-codes online:
  78. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  79. * - http://reprap.org/wiki/G-code
  80. *
  81. * -----------------
  82. * Implemented Codes
  83. * -----------------
  84. *
  85. * "G" Codes
  86. *
  87. * G0 -> G1
  88. * G1 - Coordinated Movement X Y Z E
  89. * G2 - CW ARC
  90. * G3 - CCW ARC
  91. * G4 - Dwell S<seconds> or P<milliseconds>
  92. * G10 - retract filament according to settings of M207
  93. * G11 - retract recover filament according to settings of M208
  94. * G28 - Home one or more axes
  95. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  96. * G30 - Single Z probe, probes bed at current XY location.
  97. * G31 - Dock sled (Z_PROBE_SLED only)
  98. * G32 - Undock sled (Z_PROBE_SLED only)
  99. * G90 - Use Absolute Coordinates
  100. * G91 - Use Relative Coordinates
  101. * G92 - Set current position to coordinates given
  102. *
  103. * "M" Codes
  104. *
  105. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  106. * M1 - Same as M0
  107. * M17 - Enable/Power all stepper motors
  108. * M18 - Disable all stepper motors; same as M84
  109. * M20 - List SD card
  110. * M21 - Init SD card
  111. * M22 - Release SD card
  112. * M23 - Select SD file (M23 filename.g)
  113. * M24 - Start/resume SD print
  114. * M25 - Pause SD print
  115. * M26 - Set SD position in bytes (M26 S12345)
  116. * M27 - Report SD print status
  117. * M28 - Start SD write (M28 filename.g)
  118. * M29 - Stop SD write
  119. * M30 - Delete file from SD (M30 filename.g)
  120. * M31 - Output time since last M109 or SD card start to serial
  121. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  122. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  123. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  124. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  125. * M33 - Get the longname version of a path
  126. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  127. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  128. * M75 - Start the print job timer
  129. * M76 - Pause the print job timer
  130. * M77 - Stop the print job timer
  131. * M78 - Show statistical information about the print jobs
  132. * M80 - Turn on Power Supply
  133. * M81 - Turn off Power Supply
  134. * M82 - Set E codes absolute (default)
  135. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  136. * M84 - Disable steppers until next move,
  137. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  138. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  139. * M92 - Set axis_steps_per_unit - same syntax as G92
  140. * M104 - Set extruder target temp
  141. * M105 - Read current temp
  142. * M106 - Fan on
  143. * M107 - Fan off
  144. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  145. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  146. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  147. * M110 - Set the current line number
  148. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  149. * M112 - Emergency stop
  150. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  151. * M114 - Output current position to serial port
  152. * M115 - Capabilities string
  153. * M117 - Display a message on the controller screen
  154. * M119 - Output Endstop status to serial port
  155. * M120 - Enable endstop detection
  156. * M121 - Disable endstop detection
  157. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  158. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  159. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  160. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  161. * M140 - Set bed target temp
  162. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  163. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  164. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  165. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  166. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  167. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  168. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  169. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  170. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  171. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  172. * M206 - Set additional homing offset
  173. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  174. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  175. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  176. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  177. * M220 - Set speed factor override percentage: S<factor in percent>
  178. * M221 - Set extrude factor override percentage: S<factor in percent>
  179. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  180. * M240 - Trigger a camera to take a photograph
  181. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  182. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  183. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  184. * M301 - Set PID parameters P I and D
  185. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  186. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  187. * M304 - Set bed PID parameters P I and D
  188. * M380 - Activate solenoid on active extruder
  189. * M381 - Disable all solenoids
  190. * M400 - Finish all moves
  191. * M401 - Lower Z probe if present
  192. * M402 - Raise Z probe if present
  193. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  194. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  195. * M406 - Turn off Filament Sensor extrusion control
  196. * M407 - Display measured filament diameter
  197. * M410 - Quickstop. Abort all the planned moves
  198. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  199. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  200. * M428 - Set the home_offset logically based on the current_position
  201. * M500 - Store parameters in EEPROM
  202. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  203. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  204. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  205. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  206. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  207. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  208. * M666 - Set delta endstop adjustment
  209. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  210. * M907 - Set digital trimpot motor current using axis codes.
  211. * M908 - Control digital trimpot directly.
  212. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  213. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  214. * M350 - Set microstepping mode.
  215. * M351 - Toggle MS1 MS2 pins directly.
  216. *
  217. * ************ SCARA Specific - This can change to suit future G-code regulations
  218. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  219. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  220. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  221. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  222. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  223. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  224. * ************* SCARA End ***************
  225. *
  226. * ************ Custom codes - This can change to suit future G-code regulations
  227. * M100 - Watch Free Memory (For Debugging Only)
  228. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  229. * M928 - Start SD logging (M928 filename.g) - ended by M29
  230. * M999 - Restart after being stopped by error
  231. *
  232. * "T" Codes
  233. *
  234. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  235. *
  236. */
  237. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  238. void gcode_M100();
  239. #endif
  240. #if ENABLED(SDSUPPORT)
  241. CardReader card;
  242. #endif
  243. #if ENABLED(EXPERIMENTAL_I2CBUS)
  244. TWIBus i2c;
  245. #endif
  246. bool Running = true;
  247. uint8_t marlin_debug_flags = DEBUG_NONE;
  248. static float feedrate = 1500.0, saved_feedrate;
  249. float current_position[NUM_AXIS] = { 0.0 };
  250. static float destination[NUM_AXIS] = { 0.0 };
  251. bool axis_known_position[3] = { false };
  252. bool axis_homed[3] = { false };
  253. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  254. static char* current_command, *current_command_args;
  255. static int cmd_queue_index_r = 0;
  256. static int cmd_queue_index_w = 0;
  257. static int commands_in_queue = 0;
  258. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  259. const float homing_feedrate[] = HOMING_FEEDRATE;
  260. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  261. int feedrate_multiplier = 100; //100->1 200->2
  262. int saved_feedrate_multiplier;
  263. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  264. bool volumetric_enabled = false;
  265. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  266. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  267. // The distance that XYZ has been offset by G92. Reset by G28.
  268. float position_shift[3] = { 0 };
  269. // This offset is added to the configured home position.
  270. // Set by M206, M428, or menu item. Saved to EEPROM.
  271. float home_offset[3] = { 0 };
  272. // Software Endstops. Default to configured limits.
  273. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  274. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  275. #if FAN_COUNT > 0
  276. int fanSpeeds[FAN_COUNT] = { 0 };
  277. #endif
  278. // The active extruder (tool). Set with T<extruder> command.
  279. uint8_t active_extruder = 0;
  280. // Relative Mode. Enable with G91, disable with G90.
  281. static bool relative_mode = false;
  282. bool cancel_heatup = false;
  283. const char errormagic[] PROGMEM = "Error:";
  284. const char echomagic[] PROGMEM = "echo:";
  285. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  286. static int serial_count = 0;
  287. // GCode parameter pointer used by code_seen(), code_value(), etc.
  288. static char* seen_pointer;
  289. // Next Immediate GCode Command pointer. NULL if none.
  290. const char* queued_commands_P = NULL;
  291. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  292. // Inactivity shutdown
  293. millis_t previous_cmd_ms = 0;
  294. static millis_t max_inactive_time = 0;
  295. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  296. // Print Job Timer
  297. #if ENABLED(PRINTCOUNTER)
  298. PrintCounter print_job_timer = PrintCounter();
  299. #else
  300. Stopwatch print_job_timer = Stopwatch();
  301. #endif
  302. static uint8_t target_extruder;
  303. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  304. int xy_travel_speed = XY_TRAVEL_SPEED;
  305. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  306. #endif
  307. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  308. float z_endstop_adj = 0;
  309. #endif
  310. // Extruder offsets
  311. #if EXTRUDERS > 1
  312. #ifndef EXTRUDER_OFFSET_X
  313. #define EXTRUDER_OFFSET_X { 0 } // X offsets for each extruder
  314. #endif
  315. #ifndef EXTRUDER_OFFSET_Y
  316. #define EXTRUDER_OFFSET_Y { 0 } // Y offsets for each extruder
  317. #endif
  318. float extruder_offset[][EXTRUDERS] = {
  319. EXTRUDER_OFFSET_X,
  320. EXTRUDER_OFFSET_Y
  321. #if ENABLED(DUAL_X_CARRIAGE)
  322. , { 0 } // Z offsets for each extruder
  323. #endif
  324. };
  325. #endif
  326. #if HAS_SERVO_ENDSTOPS
  327. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  328. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  329. #endif
  330. #if ENABLED(BARICUDA)
  331. int baricuda_valve_pressure = 0;
  332. int baricuda_e_to_p_pressure = 0;
  333. #endif
  334. #if ENABLED(FWRETRACT)
  335. bool autoretract_enabled = false;
  336. bool retracted[EXTRUDERS] = { false };
  337. bool retracted_swap[EXTRUDERS] = { false };
  338. float retract_length = RETRACT_LENGTH;
  339. float retract_length_swap = RETRACT_LENGTH_SWAP;
  340. float retract_feedrate = RETRACT_FEEDRATE;
  341. float retract_zlift = RETRACT_ZLIFT;
  342. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  343. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  344. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  345. #endif // FWRETRACT
  346. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  347. bool powersupply =
  348. #if ENABLED(PS_DEFAULT_OFF)
  349. false
  350. #else
  351. true
  352. #endif
  353. ;
  354. #endif
  355. #if ENABLED(DELTA)
  356. #define TOWER_1 X_AXIS
  357. #define TOWER_2 Y_AXIS
  358. #define TOWER_3 Z_AXIS
  359. float delta[3] = { 0 };
  360. #define SIN_60 0.8660254037844386
  361. #define COS_60 0.5
  362. float endstop_adj[3] = { 0 };
  363. // these are the default values, can be overriden with M665
  364. float delta_radius = DELTA_RADIUS;
  365. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  366. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  367. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  368. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  369. float delta_tower3_x = 0; // back middle tower
  370. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  371. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  372. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  373. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  374. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  375. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  376. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  377. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  378. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  379. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  380. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  381. int delta_grid_spacing[2] = { 0, 0 };
  382. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  383. #endif
  384. #else
  385. static bool home_all_axis = true;
  386. #endif
  387. #if ENABLED(SCARA)
  388. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  389. static float delta[3] = { 0 };
  390. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  391. #endif
  392. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  393. //Variables for Filament Sensor input
  394. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  395. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  396. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  397. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  398. int filwidth_delay_index1 = 0; //index into ring buffer
  399. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  400. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  401. #endif
  402. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  403. static bool filament_ran_out = false;
  404. #endif
  405. static bool send_ok[BUFSIZE];
  406. #if HAS_SERVOS
  407. Servo servo[NUM_SERVOS];
  408. #endif
  409. #ifdef CHDK
  410. millis_t chdkHigh = 0;
  411. boolean chdkActive = false;
  412. #endif
  413. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  414. int lpq_len = 20;
  415. #endif
  416. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  417. // States for managing Marlin and host communication
  418. // Marlin sends messages if blocked or busy
  419. enum MarlinBusyState {
  420. NOT_BUSY, // Not in a handler
  421. IN_HANDLER, // Processing a GCode
  422. IN_PROCESS, // Known to be blocking command input (as in G29)
  423. PAUSED_FOR_USER, // Blocking pending any input
  424. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  425. };
  426. static MarlinBusyState busy_state = NOT_BUSY;
  427. static millis_t next_busy_signal_ms = 0;
  428. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  429. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  430. #else
  431. #define host_keepalive() ;
  432. #define KEEPALIVE_STATE(n) ;
  433. #endif // HOST_KEEPALIVE_FEATURE
  434. /**
  435. * ***************************************************************************
  436. * ******************************** FUNCTIONS ********************************
  437. * ***************************************************************************
  438. */
  439. void stop();
  440. void get_available_commands();
  441. void process_next_command();
  442. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  443. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  444. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  445. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  446. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  447. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  448. static void report_current_position();
  449. #if ENABLED(DEBUG_LEVELING_FEATURE)
  450. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  451. SERIAL_ECHO(prefix);
  452. SERIAL_ECHOPAIR(": (", x);
  453. SERIAL_ECHOPAIR(", ", y);
  454. SERIAL_ECHOPAIR(", ", z);
  455. SERIAL_ECHOLNPGM(")");
  456. }
  457. void print_xyz(const char* prefix, const float xyz[]) {
  458. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  459. }
  460. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  461. void print_xyz(const char* prefix, const vector_3 &xyz) {
  462. print_xyz(prefix, xyz.x, xyz.y, xyz.z);
  463. }
  464. #endif
  465. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  466. #endif
  467. #if ENABLED(DELTA) || ENABLED(SCARA)
  468. inline void sync_plan_position_delta() {
  469. #if ENABLED(DEBUG_LEVELING_FEATURE)
  470. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  471. #endif
  472. calculate_delta(current_position);
  473. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  474. }
  475. #endif
  476. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  477. float extrude_min_temp = EXTRUDE_MINTEMP;
  478. #endif
  479. #if ENABLED(HAS_Z_MIN_PROBE)
  480. extern volatile bool z_probe_is_active;
  481. #endif
  482. #if ENABLED(SDSUPPORT)
  483. #include "SdFatUtil.h"
  484. int freeMemory() { return SdFatUtil::FreeRam(); }
  485. #else
  486. extern "C" {
  487. extern unsigned int __bss_end;
  488. extern unsigned int __heap_start;
  489. extern void* __brkval;
  490. int freeMemory() {
  491. int free_memory;
  492. if ((int)__brkval == 0)
  493. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  494. else
  495. free_memory = ((int)&free_memory) - ((int)__brkval);
  496. return free_memory;
  497. }
  498. }
  499. #endif //!SDSUPPORT
  500. /**
  501. * Inject the next "immediate" command, when possible.
  502. * Return true if any immediate commands remain to inject.
  503. */
  504. static bool drain_queued_commands_P() {
  505. if (queued_commands_P != NULL) {
  506. size_t i = 0;
  507. char c, cmd[30];
  508. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  509. cmd[sizeof(cmd) - 1] = '\0';
  510. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  511. cmd[i] = '\0';
  512. if (enqueue_and_echo_command(cmd)) { // success?
  513. if (c) // newline char?
  514. queued_commands_P += i + 1; // advance to the next command
  515. else
  516. queued_commands_P = NULL; // nul char? no more commands
  517. }
  518. }
  519. return (queued_commands_P != NULL); // return whether any more remain
  520. }
  521. /**
  522. * Record one or many commands to run from program memory.
  523. * Aborts the current queue, if any.
  524. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  525. */
  526. void enqueue_and_echo_commands_P(const char* pgcode) {
  527. queued_commands_P = pgcode;
  528. drain_queued_commands_P(); // first command executed asap (when possible)
  529. }
  530. /**
  531. * Once a new command is in the ring buffer, call this to commit it
  532. */
  533. inline void _commit_command(bool say_ok) {
  534. send_ok[cmd_queue_index_w] = say_ok;
  535. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  536. commands_in_queue++;
  537. }
  538. /**
  539. * Copy a command directly into the main command buffer, from RAM.
  540. * Returns true if successfully adds the command
  541. */
  542. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  543. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  544. strcpy(command_queue[cmd_queue_index_w], cmd);
  545. _commit_command(say_ok);
  546. return true;
  547. }
  548. void enqueue_and_echo_command_now(const char* cmd) {
  549. while (!enqueue_and_echo_command(cmd)) idle();
  550. }
  551. /**
  552. * Enqueue with Serial Echo
  553. */
  554. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  555. if (_enqueuecommand(cmd, say_ok)) {
  556. SERIAL_ECHO_START;
  557. SERIAL_ECHOPGM(MSG_Enqueueing);
  558. SERIAL_ECHO(cmd);
  559. SERIAL_ECHOLNPGM("\"");
  560. return true;
  561. }
  562. return false;
  563. }
  564. void setup_killpin() {
  565. #if HAS_KILL
  566. SET_INPUT(KILL_PIN);
  567. WRITE(KILL_PIN, HIGH);
  568. #endif
  569. }
  570. void setup_filrunoutpin() {
  571. #if HAS_FILRUNOUT
  572. pinMode(FILRUNOUT_PIN, INPUT);
  573. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  574. WRITE(FILRUNOUT_PIN, HIGH);
  575. #endif
  576. #endif
  577. }
  578. // Set home pin
  579. void setup_homepin(void) {
  580. #if HAS_HOME
  581. SET_INPUT(HOME_PIN);
  582. WRITE(HOME_PIN, HIGH);
  583. #endif
  584. }
  585. void setup_photpin() {
  586. #if HAS_PHOTOGRAPH
  587. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  588. #endif
  589. }
  590. void setup_powerhold() {
  591. #if HAS_SUICIDE
  592. OUT_WRITE(SUICIDE_PIN, HIGH);
  593. #endif
  594. #if HAS_POWER_SWITCH
  595. #if ENABLED(PS_DEFAULT_OFF)
  596. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  597. #else
  598. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  599. #endif
  600. #endif
  601. }
  602. void suicide() {
  603. #if HAS_SUICIDE
  604. OUT_WRITE(SUICIDE_PIN, LOW);
  605. #endif
  606. }
  607. void servo_init() {
  608. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  609. servo[0].attach(SERVO0_PIN);
  610. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  611. #endif
  612. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  613. servo[1].attach(SERVO1_PIN);
  614. servo[1].detach();
  615. #endif
  616. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  617. servo[2].attach(SERVO2_PIN);
  618. servo[2].detach();
  619. #endif
  620. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  621. servo[3].attach(SERVO3_PIN);
  622. servo[3].detach();
  623. #endif
  624. #if HAS_SERVO_ENDSTOPS
  625. z_probe_is_active = false;
  626. /**
  627. * Set position of all defined Servo Endstops
  628. *
  629. * ** UNSAFE! - NEEDS UPDATE! **
  630. *
  631. * The servo might be deployed and positioned too low to stow
  632. * when starting up the machine or rebooting the board.
  633. * There's no way to know where the nozzle is positioned until
  634. * homing has been done - no homing with z-probe without init!
  635. *
  636. */
  637. for (int i = 0; i < 3; i++)
  638. if (servo_endstop_id[i] >= 0)
  639. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  640. #endif // HAS_SERVO_ENDSTOPS
  641. }
  642. /**
  643. * Stepper Reset (RigidBoard, et.al.)
  644. */
  645. #if HAS_STEPPER_RESET
  646. void disableStepperDrivers() {
  647. pinMode(STEPPER_RESET_PIN, OUTPUT);
  648. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  649. }
  650. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  651. #endif
  652. /**
  653. * Marlin entry-point: Set up before the program loop
  654. * - Set up the kill pin, filament runout, power hold
  655. * - Start the serial port
  656. * - Print startup messages and diagnostics
  657. * - Get EEPROM or default settings
  658. * - Initialize managers for:
  659. * • temperature
  660. * • planner
  661. * • watchdog
  662. * • stepper
  663. * • photo pin
  664. * • servos
  665. * • LCD controller
  666. * • Digipot I2C
  667. * • Z probe sled
  668. * • status LEDs
  669. */
  670. void setup() {
  671. #ifdef DISABLE_JTAG
  672. // Disable JTAG on AT90USB chips to free up pins for IO
  673. MCUCR = 0x80;
  674. MCUCR = 0x80;
  675. #endif
  676. setup_killpin();
  677. setup_filrunoutpin();
  678. setup_powerhold();
  679. #if HAS_STEPPER_RESET
  680. disableStepperDrivers();
  681. #endif
  682. MYSERIAL.begin(BAUDRATE);
  683. SERIAL_PROTOCOLLNPGM("start");
  684. SERIAL_ECHO_START;
  685. // Check startup - does nothing if bootloader sets MCUSR to 0
  686. byte mcu = MCUSR;
  687. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  688. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  689. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  690. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  691. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  692. MCUSR = 0;
  693. SERIAL_ECHOPGM(MSG_MARLIN);
  694. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  695. #ifdef STRING_DISTRIBUTION_DATE
  696. #ifdef STRING_CONFIG_H_AUTHOR
  697. SERIAL_ECHO_START;
  698. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  699. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  700. SERIAL_ECHOPGM(MSG_AUTHOR);
  701. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  702. SERIAL_ECHOPGM("Compiled: ");
  703. SERIAL_ECHOLNPGM(__DATE__);
  704. #endif // STRING_CONFIG_H_AUTHOR
  705. #endif // STRING_DISTRIBUTION_DATE
  706. SERIAL_ECHO_START;
  707. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  708. SERIAL_ECHO(freeMemory());
  709. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  710. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  711. // Send "ok" after commands by default
  712. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  713. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  714. Config_RetrieveSettings();
  715. lcd_init();
  716. tp_init(); // Initialize temperature loop
  717. plan_init(); // Initialize planner;
  718. #if ENABLED(DELTA) || ENABLED(SCARA)
  719. // Vital to init kinematic equivalent for X0 Y0 Z0
  720. sync_plan_position_delta();
  721. #endif
  722. #if ENABLED(USE_WATCHDOG)
  723. watchdog_init();
  724. #endif
  725. st_init(); // Initialize stepper, this enables interrupts!
  726. setup_photpin();
  727. servo_init();
  728. #if HAS_CONTROLLERFAN
  729. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  730. #endif
  731. #if HAS_STEPPER_RESET
  732. enableStepperDrivers();
  733. #endif
  734. #if ENABLED(DIGIPOT_I2C)
  735. digipot_i2c_init();
  736. #endif
  737. #if ENABLED(Z_PROBE_SLED)
  738. pinMode(SLED_PIN, OUTPUT);
  739. digitalWrite(SLED_PIN, LOW); // turn it off
  740. #endif // Z_PROBE_SLED
  741. setup_homepin();
  742. #ifdef STAT_LED_RED
  743. pinMode(STAT_LED_RED, OUTPUT);
  744. digitalWrite(STAT_LED_RED, LOW); // turn it off
  745. #endif
  746. #ifdef STAT_LED_BLUE
  747. pinMode(STAT_LED_BLUE, OUTPUT);
  748. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  749. #endif
  750. }
  751. /**
  752. * The main Marlin program loop
  753. *
  754. * - Save or log commands to SD
  755. * - Process available commands (if not saving)
  756. * - Call heater manager
  757. * - Call inactivity manager
  758. * - Call endstop manager
  759. * - Call LCD update
  760. */
  761. void loop() {
  762. if (commands_in_queue < BUFSIZE) get_available_commands();
  763. #if ENABLED(SDSUPPORT)
  764. card.checkautostart(false);
  765. #endif
  766. if (commands_in_queue) {
  767. #if ENABLED(SDSUPPORT)
  768. if (card.saving) {
  769. char* command = command_queue[cmd_queue_index_r];
  770. if (strstr_P(command, PSTR("M29"))) {
  771. // M29 closes the file
  772. card.closefile();
  773. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  774. ok_to_send();
  775. }
  776. else {
  777. // Write the string from the read buffer to SD
  778. card.write_command(command);
  779. if (card.logging)
  780. process_next_command(); // The card is saving because it's logging
  781. else
  782. ok_to_send();
  783. }
  784. }
  785. else
  786. process_next_command();
  787. #else
  788. process_next_command();
  789. #endif // SDSUPPORT
  790. commands_in_queue--;
  791. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  792. }
  793. checkHitEndstops();
  794. idle();
  795. }
  796. void gcode_line_error(const char* err, bool doFlush = true) {
  797. SERIAL_ERROR_START;
  798. serialprintPGM(err);
  799. SERIAL_ERRORLN(gcode_LastN);
  800. //Serial.println(gcode_N);
  801. if (doFlush) FlushSerialRequestResend();
  802. serial_count = 0;
  803. }
  804. inline void get_serial_commands() {
  805. static char serial_line_buffer[MAX_CMD_SIZE];
  806. static boolean serial_comment_mode = false;
  807. // If the command buffer is empty for too long,
  808. // send "wait" to indicate Marlin is still waiting.
  809. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  810. static millis_t last_command_time = 0;
  811. millis_t ms = millis();
  812. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  813. SERIAL_ECHOLNPGM(MSG_WAIT);
  814. last_command_time = ms;
  815. }
  816. #endif
  817. /**
  818. * Loop while serial characters are incoming and the queue is not full
  819. */
  820. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  821. char serial_char = MYSERIAL.read();
  822. /**
  823. * If the character ends the line
  824. */
  825. if (serial_char == '\n' || serial_char == '\r') {
  826. serial_comment_mode = false; // end of line == end of comment
  827. if (!serial_count) continue; // skip empty lines
  828. serial_line_buffer[serial_count] = 0; // terminate string
  829. serial_count = 0; //reset buffer
  830. char* command = serial_line_buffer;
  831. while (*command == ' ') command++; // skip any leading spaces
  832. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  833. char* apos = strchr(command, '*');
  834. if (npos) {
  835. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  836. if (M110) {
  837. char* n2pos = strchr(command + 4, 'N');
  838. if (n2pos) npos = n2pos;
  839. }
  840. gcode_N = strtol(npos + 1, NULL, 10);
  841. if (gcode_N != gcode_LastN + 1 && !M110) {
  842. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  843. return;
  844. }
  845. if (apos) {
  846. byte checksum = 0, count = 0;
  847. while (command[count] != '*') checksum ^= command[count++];
  848. if (strtol(apos + 1, NULL, 10) != checksum) {
  849. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  850. return;
  851. }
  852. // if no errors, continue parsing
  853. }
  854. else {
  855. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  856. return;
  857. }
  858. gcode_LastN = gcode_N;
  859. // if no errors, continue parsing
  860. }
  861. else if (apos) { // No '*' without 'N'
  862. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  863. return;
  864. }
  865. // Movement commands alert when stopped
  866. if (IsStopped()) {
  867. char* gpos = strchr(command, 'G');
  868. if (gpos) {
  869. int codenum = strtol(gpos + 1, NULL, 10);
  870. switch (codenum) {
  871. case 0:
  872. case 1:
  873. case 2:
  874. case 3:
  875. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  876. LCD_MESSAGEPGM(MSG_STOPPED);
  877. break;
  878. }
  879. }
  880. }
  881. // If command was e-stop process now
  882. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  883. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  884. last_command_time = ms;
  885. #endif
  886. // Add the command to the queue
  887. _enqueuecommand(serial_line_buffer, true);
  888. }
  889. else if (serial_count >= MAX_CMD_SIZE - 1) {
  890. // Keep fetching, but ignore normal characters beyond the max length
  891. // The command will be injected when EOL is reached
  892. }
  893. else if (serial_char == '\\') { // Handle escapes
  894. if (MYSERIAL.available() > 0) {
  895. // if we have one more character, copy it over
  896. serial_char = MYSERIAL.read();
  897. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  898. }
  899. // otherwise do nothing
  900. }
  901. else { // it's not a newline, carriage return or escape char
  902. if (serial_char == ';') serial_comment_mode = true;
  903. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  904. }
  905. } // queue has space, serial has data
  906. }
  907. #if ENABLED(SDSUPPORT)
  908. inline void get_sdcard_commands() {
  909. static bool stop_buffering = false,
  910. sd_comment_mode = false;
  911. if (!card.sdprinting) return;
  912. /**
  913. * '#' stops reading from SD to the buffer prematurely, so procedural
  914. * macro calls are possible. If it occurs, stop_buffering is triggered
  915. * and the buffer is run dry; this character _can_ occur in serial com
  916. * due to checksums, however, no checksums are used in SD printing.
  917. */
  918. if (commands_in_queue == 0) stop_buffering = false;
  919. uint16_t sd_count = 0;
  920. bool card_eof = card.eof();
  921. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  922. int16_t n = card.get();
  923. char sd_char = (char)n;
  924. card_eof = card.eof();
  925. if (card_eof || n == -1
  926. || sd_char == '\n' || sd_char == '\r'
  927. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  928. ) {
  929. if (card_eof) {
  930. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  931. print_job_timer.stop();
  932. char time[30];
  933. millis_t t = print_job_timer.duration();
  934. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  935. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  936. SERIAL_ECHO_START;
  937. SERIAL_ECHOLN(time);
  938. lcd_setstatus(time, true);
  939. card.printingHasFinished();
  940. card.checkautostart(true);
  941. }
  942. if (sd_char == '#') stop_buffering = true;
  943. sd_comment_mode = false; //for new command
  944. if (!sd_count) continue; //skip empty lines
  945. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  946. sd_count = 0; //clear buffer
  947. _commit_command(false);
  948. }
  949. else if (sd_count >= MAX_CMD_SIZE - 1) {
  950. /**
  951. * Keep fetching, but ignore normal characters beyond the max length
  952. * The command will be injected when EOL is reached
  953. */
  954. }
  955. else {
  956. if (sd_char == ';') sd_comment_mode = true;
  957. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  958. }
  959. }
  960. }
  961. #endif // SDSUPPORT
  962. /**
  963. * Add to the circular command queue the next command from:
  964. * - The command-injection queue (queued_commands_P)
  965. * - The active serial input (usually USB)
  966. * - The SD card file being actively printed
  967. */
  968. void get_available_commands() {
  969. // if any immediate commands remain, don't get other commands yet
  970. if (drain_queued_commands_P()) return;
  971. get_serial_commands();
  972. #if ENABLED(SDSUPPORT)
  973. get_sdcard_commands();
  974. #endif
  975. }
  976. bool code_has_value() {
  977. int i = 1;
  978. char c = seen_pointer[i];
  979. while (c == ' ') c = seen_pointer[++i];
  980. if (c == '-' || c == '+') c = seen_pointer[++i];
  981. if (c == '.') c = seen_pointer[++i];
  982. return NUMERIC(c);
  983. }
  984. float code_value() {
  985. float ret;
  986. char* e = strchr(seen_pointer, 'E');
  987. if (e) {
  988. *e = 0;
  989. ret = strtod(seen_pointer + 1, NULL);
  990. *e = 'E';
  991. }
  992. else
  993. ret = strtod(seen_pointer + 1, NULL);
  994. return ret;
  995. }
  996. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  997. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  998. bool code_seen(char code) {
  999. seen_pointer = strchr(current_command_args, code);
  1000. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1001. }
  1002. /**
  1003. * Set target_extruder from the T parameter or the active_extruder
  1004. *
  1005. * Returns TRUE if the target is invalid
  1006. */
  1007. bool get_target_extruder_from_command(int code) {
  1008. if (code_seen('T')) {
  1009. short t = code_value_short();
  1010. if (t >= EXTRUDERS) {
  1011. SERIAL_ECHO_START;
  1012. SERIAL_CHAR('M');
  1013. SERIAL_ECHO(code);
  1014. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", t);
  1015. SERIAL_EOL;
  1016. return true;
  1017. }
  1018. target_extruder = t;
  1019. }
  1020. else
  1021. target_extruder = active_extruder;
  1022. return false;
  1023. }
  1024. #define DEFINE_PGM_READ_ANY(type, reader) \
  1025. static inline type pgm_read_any(const type *p) \
  1026. { return pgm_read_##reader##_near(p); }
  1027. DEFINE_PGM_READ_ANY(float, float);
  1028. DEFINE_PGM_READ_ANY(signed char, byte);
  1029. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1030. static const PROGMEM type array##_P[3] = \
  1031. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1032. static inline type array(int axis) \
  1033. { return pgm_read_any(&array##_P[axis]); }
  1034. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1035. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1036. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1037. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1038. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1039. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1040. #if ENABLED(DUAL_X_CARRIAGE)
  1041. #define DXC_FULL_CONTROL_MODE 0
  1042. #define DXC_AUTO_PARK_MODE 1
  1043. #define DXC_DUPLICATION_MODE 2
  1044. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1045. static float x_home_pos(int extruder) {
  1046. if (extruder == 0)
  1047. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1048. else
  1049. /**
  1050. * In dual carriage mode the extruder offset provides an override of the
  1051. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1052. * This allow soft recalibration of the second extruder offset position
  1053. * without firmware reflash (through the M218 command).
  1054. */
  1055. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  1056. }
  1057. static int x_home_dir(int extruder) {
  1058. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1059. }
  1060. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1061. static bool active_extruder_parked = false; // used in mode 1 & 2
  1062. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1063. static millis_t delayed_move_time = 0; // used in mode 1
  1064. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1065. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1066. bool extruder_duplication_enabled = false; // used in mode 2
  1067. #endif //DUAL_X_CARRIAGE
  1068. /**
  1069. * Software endstops can be used to monitor the open end of
  1070. * an axis that has a hardware endstop on the other end. Or
  1071. * they can prevent axes from moving past endstops and grinding.
  1072. *
  1073. * To keep doing their job as the coordinate system changes,
  1074. * the software endstop positions must be refreshed to remain
  1075. * at the same positions relative to the machine.
  1076. */
  1077. static void update_software_endstops(AxisEnum axis) {
  1078. float offs = home_offset[axis] + position_shift[axis];
  1079. #if ENABLED(DUAL_X_CARRIAGE)
  1080. if (axis == X_AXIS) {
  1081. float dual_max_x = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  1082. if (active_extruder != 0) {
  1083. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1084. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1085. return;
  1086. }
  1087. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1088. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1089. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1090. return;
  1091. }
  1092. }
  1093. else
  1094. #endif
  1095. {
  1096. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1097. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1098. }
  1099. }
  1100. /**
  1101. * Change the home offset for an axis, update the current
  1102. * position and the software endstops to retain the same
  1103. * relative distance to the new home.
  1104. *
  1105. * Since this changes the current_position, code should
  1106. * call sync_plan_position soon after this.
  1107. */
  1108. static void set_home_offset(AxisEnum axis, float v) {
  1109. current_position[axis] += v - home_offset[axis];
  1110. home_offset[axis] = v;
  1111. update_software_endstops(axis);
  1112. }
  1113. static void set_axis_is_at_home(AxisEnum axis) {
  1114. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1115. if (DEBUGGING(LEVELING)) {
  1116. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1117. SERIAL_ECHOLNPGM(") >>>");
  1118. }
  1119. #endif
  1120. position_shift[axis] = 0;
  1121. #if ENABLED(DUAL_X_CARRIAGE)
  1122. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1123. if (active_extruder != 0)
  1124. current_position[X_AXIS] = x_home_pos(active_extruder);
  1125. else
  1126. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1127. update_software_endstops(X_AXIS);
  1128. return;
  1129. }
  1130. #endif
  1131. #if ENABLED(SCARA)
  1132. if (axis == X_AXIS || axis == Y_AXIS) {
  1133. float homeposition[3];
  1134. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1135. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1136. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1137. /**
  1138. * Works out real Homeposition angles using inverse kinematics,
  1139. * and calculates homing offset using forward kinematics
  1140. */
  1141. calculate_delta(homeposition);
  1142. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1143. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1144. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1145. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1146. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1147. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1148. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1149. calculate_SCARA_forward_Transform(delta);
  1150. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1151. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1152. current_position[axis] = delta[axis];
  1153. /**
  1154. * SCARA home positions are based on configuration since the actual
  1155. * limits are determined by the inverse kinematic transform.
  1156. */
  1157. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1158. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1159. }
  1160. else
  1161. #endif
  1162. {
  1163. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1164. update_software_endstops(axis);
  1165. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1166. if (axis == Z_AXIS) {
  1167. current_position[Z_AXIS] -= zprobe_zoffset;
  1168. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1169. if (DEBUGGING(LEVELING)) {
  1170. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1171. SERIAL_EOL;
  1172. }
  1173. #endif
  1174. }
  1175. #endif
  1176. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1177. if (DEBUGGING(LEVELING)) {
  1178. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1179. DEBUG_POS("", current_position);
  1180. }
  1181. #endif
  1182. }
  1183. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1184. if (DEBUGGING(LEVELING)) {
  1185. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1186. SERIAL_ECHOLNPGM(")");
  1187. }
  1188. #endif
  1189. }
  1190. /**
  1191. * Some planner shorthand inline functions
  1192. */
  1193. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1194. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1195. int hbd = homing_bump_divisor[axis];
  1196. if (hbd < 1) {
  1197. hbd = 10;
  1198. SERIAL_ECHO_START;
  1199. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1200. }
  1201. feedrate = homing_feedrate[axis] / hbd;
  1202. }
  1203. //
  1204. // line_to_current_position
  1205. // Move the planner to the current position from wherever it last moved
  1206. // (or from wherever it has been told it is located).
  1207. //
  1208. inline void line_to_current_position() {
  1209. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1210. }
  1211. inline void line_to_z(float zPosition) {
  1212. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1213. }
  1214. //
  1215. // line_to_destination
  1216. // Move the planner, not necessarily synced with current_position
  1217. //
  1218. inline void line_to_destination(float mm_m) {
  1219. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1220. }
  1221. inline void line_to_destination() {
  1222. line_to_destination(feedrate);
  1223. }
  1224. /**
  1225. * sync_plan_position
  1226. * Set planner / stepper positions to the cartesian current_position.
  1227. * The stepper code translates these coordinates into step units.
  1228. * Allows translation between steps and units (mm) for cartesian & core robots
  1229. */
  1230. inline void sync_plan_position() {
  1231. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1232. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1233. #endif
  1234. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1235. }
  1236. inline void sync_plan_position_e() { plan_set_e_position(current_position[E_AXIS]); }
  1237. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1238. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1239. static void setup_for_endstop_move() {
  1240. saved_feedrate = feedrate;
  1241. saved_feedrate_multiplier = feedrate_multiplier;
  1242. feedrate_multiplier = 100;
  1243. refresh_cmd_timeout();
  1244. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1245. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
  1246. #endif
  1247. enable_endstops(true);
  1248. }
  1249. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1250. #if ENABLED(DELTA)
  1251. /**
  1252. * Calculate delta, start a line, and set current_position to destination
  1253. */
  1254. void prepare_move_raw() {
  1255. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1256. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_raw", destination);
  1257. #endif
  1258. refresh_cmd_timeout();
  1259. calculate_delta(destination);
  1260. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1261. set_current_to_destination();
  1262. }
  1263. #endif
  1264. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1265. #if DISABLED(DELTA)
  1266. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1267. //plan_bed_level_matrix.debug("bed level before");
  1268. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1269. plan_bed_level_matrix.set_to_identity();
  1270. if (DEBUGGING(LEVELING)) {
  1271. vector_3 uncorrected_position = plan_get_position();
  1272. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1273. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1274. }
  1275. #endif
  1276. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1277. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1278. vector_3 corrected_position = plan_get_position();
  1279. current_position[X_AXIS] = corrected_position.x;
  1280. current_position[Y_AXIS] = corrected_position.y;
  1281. current_position[Z_AXIS] = corrected_position.z;
  1282. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1283. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1284. #endif
  1285. sync_plan_position();
  1286. }
  1287. #endif // !DELTA
  1288. #else // !AUTO_BED_LEVELING_GRID
  1289. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1290. plan_bed_level_matrix.set_to_identity();
  1291. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1292. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1293. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1294. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1295. if (planeNormal.z < 0) {
  1296. planeNormal.x = -planeNormal.x;
  1297. planeNormal.y = -planeNormal.y;
  1298. planeNormal.z = -planeNormal.z;
  1299. }
  1300. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1301. vector_3 corrected_position = plan_get_position();
  1302. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1303. if (DEBUGGING(LEVELING)) {
  1304. vector_3 uncorrected_position = corrected_position;
  1305. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1306. }
  1307. #endif
  1308. current_position[X_AXIS] = corrected_position.x;
  1309. current_position[Y_AXIS] = corrected_position.y;
  1310. current_position[Z_AXIS] = corrected_position.z;
  1311. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1312. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1313. #endif
  1314. sync_plan_position();
  1315. }
  1316. #endif // !AUTO_BED_LEVELING_GRID
  1317. static void run_z_probe() {
  1318. /**
  1319. * To prevent stepper_inactive_time from running out and
  1320. * EXTRUDER_RUNOUT_PREVENT from extruding
  1321. */
  1322. refresh_cmd_timeout();
  1323. #if ENABLED(DELTA)
  1324. float start_z = current_position[Z_AXIS];
  1325. long start_steps = st_get_position(Z_AXIS);
  1326. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1327. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1328. #endif
  1329. // move down slowly until you find the bed
  1330. feedrate = homing_feedrate[Z_AXIS] / 4;
  1331. destination[Z_AXIS] = -10;
  1332. prepare_move_raw(); // this will also set_current_to_destination
  1333. st_synchronize();
  1334. endstops_hit_on_purpose(); // clear endstop hit flags
  1335. /**
  1336. * We have to let the planner know where we are right now as it
  1337. * is not where we said to go.
  1338. */
  1339. long stop_steps = st_get_position(Z_AXIS);
  1340. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1341. current_position[Z_AXIS] = mm;
  1342. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1343. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1344. #endif
  1345. sync_plan_position_delta();
  1346. #else // !DELTA
  1347. plan_bed_level_matrix.set_to_identity();
  1348. feedrate = homing_feedrate[Z_AXIS];
  1349. // Move down until the Z probe (or endstop?) is triggered
  1350. float zPosition = -(Z_MAX_LENGTH + 10);
  1351. line_to_z(zPosition);
  1352. st_synchronize();
  1353. // Tell the planner where we ended up - Get this from the stepper handler
  1354. zPosition = st_get_axis_position_mm(Z_AXIS);
  1355. plan_set_position(
  1356. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1357. current_position[E_AXIS]
  1358. );
  1359. // move up the retract distance
  1360. zPosition += home_bump_mm(Z_AXIS);
  1361. line_to_z(zPosition);
  1362. st_synchronize();
  1363. endstops_hit_on_purpose(); // clear endstop hit flags
  1364. // move back down slowly to find bed
  1365. set_homing_bump_feedrate(Z_AXIS);
  1366. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1367. line_to_z(zPosition);
  1368. st_synchronize();
  1369. endstops_hit_on_purpose(); // clear endstop hit flags
  1370. // Get the current stepper position after bumping an endstop
  1371. current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  1372. sync_plan_position();
  1373. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1374. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1375. #endif
  1376. #endif // !DELTA
  1377. }
  1378. /**
  1379. * Plan a move to (X, Y, Z) and set the current_position
  1380. * The final current_position may not be the one that was requested
  1381. */
  1382. static void do_blocking_move_to(float x, float y, float z) {
  1383. float oldFeedRate = feedrate;
  1384. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1385. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1386. #endif
  1387. #if ENABLED(DELTA)
  1388. feedrate = XY_TRAVEL_SPEED;
  1389. destination[X_AXIS] = x;
  1390. destination[Y_AXIS] = y;
  1391. destination[Z_AXIS] = z;
  1392. prepare_move_raw(); // this will also set_current_to_destination
  1393. st_synchronize();
  1394. #else
  1395. feedrate = homing_feedrate[Z_AXIS];
  1396. current_position[Z_AXIS] = z;
  1397. line_to_current_position();
  1398. st_synchronize();
  1399. feedrate = xy_travel_speed;
  1400. current_position[X_AXIS] = x;
  1401. current_position[Y_AXIS] = y;
  1402. line_to_current_position();
  1403. st_synchronize();
  1404. #endif
  1405. feedrate = oldFeedRate;
  1406. }
  1407. inline void do_blocking_move_to_xy(float x, float y) {
  1408. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1409. }
  1410. inline void do_blocking_move_to_x(float x) {
  1411. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1412. }
  1413. inline void do_blocking_move_to_z(float z) {
  1414. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1415. }
  1416. inline void raise_z_after_probing() {
  1417. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1418. }
  1419. static void clean_up_after_endstop_move() {
  1420. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1421. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops_not_homing()");
  1422. #endif
  1423. endstops_not_homing();
  1424. feedrate = saved_feedrate;
  1425. feedrate_multiplier = saved_feedrate_multiplier;
  1426. refresh_cmd_timeout();
  1427. }
  1428. #if ENABLED(HAS_Z_MIN_PROBE)
  1429. static void deploy_z_probe() {
  1430. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1431. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1432. #endif
  1433. if (z_probe_is_active) return;
  1434. #if HAS_SERVO_ENDSTOPS
  1435. // Engage Z Servo endstop if enabled
  1436. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1437. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1438. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1439. // If endstop is already false, the Z probe is deployed
  1440. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1441. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1442. if (z_probe_endstop)
  1443. #else
  1444. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1445. if (z_min_endstop)
  1446. #endif
  1447. {
  1448. // Move to the start position to initiate deployment
  1449. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1450. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1451. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1452. prepare_move_raw(); // this will also set_current_to_destination
  1453. // Move to engage deployment
  1454. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1455. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1456. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1457. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1458. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1459. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1460. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1461. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1462. prepare_move_raw();
  1463. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1464. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1465. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1466. // Move to trigger deployment
  1467. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1468. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1469. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1470. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1471. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1472. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1473. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1474. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1475. prepare_move_raw();
  1476. #endif
  1477. }
  1478. // Partially Home X,Y for safety
  1479. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1480. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1481. prepare_move_raw(); // this will also set_current_to_destination
  1482. st_synchronize();
  1483. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1484. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1485. if (z_probe_endstop)
  1486. #else
  1487. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1488. if (z_min_endstop)
  1489. #endif
  1490. {
  1491. if (IsRunning()) {
  1492. SERIAL_ERROR_START;
  1493. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1494. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1495. }
  1496. stop();
  1497. }
  1498. #endif // Z_PROBE_ALLEN_KEY
  1499. #if ENABLED(FIX_MOUNTED_PROBE)
  1500. // Noting to be done. Just set z_probe_is_active
  1501. #endif
  1502. z_probe_is_active = true;
  1503. }
  1504. static void stow_z_probe(bool doRaise = true) {
  1505. #if !(HAS_SERVO_ENDSTOPS && (Z_RAISE_AFTER_PROBING > 0))
  1506. UNUSED(doRaise);
  1507. #endif
  1508. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1509. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1510. #endif
  1511. if (!z_probe_is_active) return;
  1512. #if HAS_SERVO_ENDSTOPS
  1513. // Retract Z Servo endstop if enabled
  1514. if (servo_endstop_id[Z_AXIS] >= 0) {
  1515. #if Z_RAISE_AFTER_PROBING > 0
  1516. if (doRaise) {
  1517. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1518. if (DEBUGGING(LEVELING)) {
  1519. SERIAL_ECHOPAIR("Raise Z (after) by ", Z_RAISE_AFTER_PROBING);
  1520. SERIAL_EOL;
  1521. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1522. SERIAL_EOL;
  1523. }
  1524. #endif
  1525. raise_z_after_probing(); // this also updates current_position
  1526. st_synchronize();
  1527. }
  1528. #endif
  1529. // Change the Z servo angle
  1530. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1531. }
  1532. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1533. // Move up for safety
  1534. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1535. #if Z_RAISE_AFTER_PROBING > 0
  1536. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1537. prepare_move_raw(); // this will also set_current_to_destination
  1538. #endif
  1539. // Move to the start position to initiate retraction
  1540. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1541. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1542. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1543. prepare_move_raw();
  1544. // Move the nozzle down to push the Z probe into retracted position
  1545. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1546. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1547. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1548. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1549. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1550. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1551. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1552. prepare_move_raw();
  1553. // Move up for safety
  1554. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1555. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1556. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1557. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1558. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1559. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1560. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1561. prepare_move_raw();
  1562. // Home XY for safety
  1563. feedrate = homing_feedrate[X_AXIS] / 2;
  1564. destination[X_AXIS] = 0;
  1565. destination[Y_AXIS] = 0;
  1566. prepare_move_raw(); // this will also set_current_to_destination
  1567. st_synchronize();
  1568. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1569. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1570. if (!z_probe_endstop)
  1571. #else
  1572. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1573. if (!z_min_endstop)
  1574. #endif
  1575. {
  1576. if (IsRunning()) {
  1577. SERIAL_ERROR_START;
  1578. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1579. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1580. }
  1581. stop();
  1582. }
  1583. #endif // Z_PROBE_ALLEN_KEY
  1584. #if ENABLED(FIX_MOUNTED_PROBE)
  1585. // Nothing to do here. Just clear z_probe_is_active
  1586. #endif
  1587. z_probe_is_active = false;
  1588. }
  1589. #endif // HAS_Z_MIN_PROBE
  1590. enum ProbeAction {
  1591. ProbeStay = 0,
  1592. ProbeDeploy = _BV(0),
  1593. ProbeStow = _BV(1),
  1594. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1595. };
  1596. // Probe bed height at position (x,y), returns the measured z value
  1597. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1598. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1599. if (DEBUGGING(LEVELING)) {
  1600. SERIAL_ECHOLNPGM("probe_pt >>>");
  1601. SERIAL_ECHOPAIR("> ProbeAction:", probe_action);
  1602. SERIAL_EOL;
  1603. DEBUG_POS("", current_position);
  1604. }
  1605. #endif
  1606. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1607. if (DEBUGGING(LEVELING)) {
  1608. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1609. SERIAL_EOL;
  1610. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1611. SERIAL_EOL;
  1612. }
  1613. #endif
  1614. // Move Z up to the z_before height, then move the Z probe to the given XY
  1615. do_blocking_move_to_z(z_before); // this also updates current_position
  1616. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1617. if (DEBUGGING(LEVELING)) {
  1618. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1619. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1620. SERIAL_EOL;
  1621. }
  1622. #endif
  1623. // this also updates current_position
  1624. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1625. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1626. if (probe_action & ProbeDeploy) {
  1627. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1628. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1629. #endif
  1630. deploy_z_probe();
  1631. }
  1632. #endif
  1633. run_z_probe();
  1634. float measured_z = current_position[Z_AXIS];
  1635. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1636. if (probe_action & ProbeStow) {
  1637. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1638. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1639. #endif
  1640. stow_z_probe();
  1641. }
  1642. #endif
  1643. if (verbose_level > 2) {
  1644. SERIAL_PROTOCOLPGM("Bed X: ");
  1645. SERIAL_PROTOCOL_F(x, 3);
  1646. SERIAL_PROTOCOLPGM(" Y: ");
  1647. SERIAL_PROTOCOL_F(y, 3);
  1648. SERIAL_PROTOCOLPGM(" Z: ");
  1649. SERIAL_PROTOCOL_F(measured_z, 3);
  1650. SERIAL_EOL;
  1651. }
  1652. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1653. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1654. #endif
  1655. return measured_z;
  1656. }
  1657. #if ENABLED(DELTA)
  1658. /**
  1659. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1660. */
  1661. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1662. if (bed_level[x][y] != 0.0) {
  1663. return; // Don't overwrite good values.
  1664. }
  1665. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1666. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1667. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1668. float median = c; // Median is robust (ignores outliers).
  1669. if (a < b) {
  1670. if (b < c) median = b;
  1671. if (c < a) median = a;
  1672. }
  1673. else { // b <= a
  1674. if (c < b) median = b;
  1675. if (a < c) median = a;
  1676. }
  1677. bed_level[x][y] = median;
  1678. }
  1679. /**
  1680. * Fill in the unprobed points (corners of circular print surface)
  1681. * using linear extrapolation, away from the center.
  1682. */
  1683. static void extrapolate_unprobed_bed_level() {
  1684. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1685. for (int y = 0; y <= half; y++) {
  1686. for (int x = 0; x <= half; x++) {
  1687. if (x + y < 3) continue;
  1688. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1689. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1690. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1691. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1692. }
  1693. }
  1694. }
  1695. /**
  1696. * Print calibration results for plotting or manual frame adjustment.
  1697. */
  1698. static void print_bed_level() {
  1699. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1700. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1701. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1702. SERIAL_PROTOCOLCHAR(' ');
  1703. }
  1704. SERIAL_EOL;
  1705. }
  1706. }
  1707. /**
  1708. * Reset calibration results to zero.
  1709. */
  1710. void reset_bed_level() {
  1711. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1712. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1713. #endif
  1714. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1715. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1716. bed_level[x][y] = 0.0;
  1717. }
  1718. }
  1719. }
  1720. #endif // DELTA
  1721. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1722. void raise_z_for_servo() {
  1723. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1724. /**
  1725. * The zprobe_zoffset is negative any switch below the nozzle, so
  1726. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1727. */
  1728. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1729. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1730. }
  1731. #endif
  1732. #endif // AUTO_BED_LEVELING_FEATURE
  1733. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1734. static void axis_unhomed_error() {
  1735. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1736. SERIAL_ECHO_START;
  1737. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1738. }
  1739. #endif
  1740. #if ENABLED(Z_PROBE_SLED)
  1741. #ifndef SLED_DOCKING_OFFSET
  1742. #define SLED_DOCKING_OFFSET 0
  1743. #endif
  1744. /**
  1745. * Method to dock/undock a sled designed by Charles Bell.
  1746. *
  1747. * dock[in] If true, move to MAX_X and engage the electromagnet
  1748. * offset[in] The additional distance to move to adjust docking location
  1749. */
  1750. static void dock_sled(bool dock, int offset = 0) {
  1751. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1752. if (DEBUGGING(LEVELING)) {
  1753. SERIAL_ECHOPAIR("dock_sled(", dock);
  1754. SERIAL_ECHOLNPGM(")");
  1755. }
  1756. #endif
  1757. if (z_probe_is_active == dock) return;
  1758. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  1759. axis_unhomed_error();
  1760. return;
  1761. }
  1762. float oldXpos = current_position[X_AXIS]; // save x position
  1763. if (dock) {
  1764. #if Z_RAISE_AFTER_PROBING > 0
  1765. raise_z_after_probing(); // raise Z
  1766. #endif
  1767. // Dock sled a bit closer to ensure proper capturing
  1768. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1769. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1770. }
  1771. else {
  1772. float z_loc = current_position[Z_AXIS];
  1773. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1774. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1775. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1776. }
  1777. do_blocking_move_to_x(oldXpos); // return to position before docking
  1778. z_probe_is_active = dock;
  1779. }
  1780. #endif // Z_PROBE_SLED
  1781. /**
  1782. * Home an individual axis
  1783. */
  1784. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1785. static void homeaxis(AxisEnum axis) {
  1786. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1787. if (DEBUGGING(LEVELING)) {
  1788. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1789. SERIAL_ECHOLNPGM(")");
  1790. }
  1791. #endif
  1792. #define HOMEAXIS_DO(LETTER) \
  1793. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1794. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1795. int axis_home_dir =
  1796. #if ENABLED(DUAL_X_CARRIAGE)
  1797. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1798. #endif
  1799. home_dir(axis);
  1800. // Set the axis position as setup for the move
  1801. current_position[axis] = 0;
  1802. sync_plan_position();
  1803. #if ENABLED(Z_PROBE_SLED)
  1804. #define _Z_SERVO_TEST (axis != Z_AXIS) // deploy Z, servo.move XY
  1805. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1806. #define _Z_DEPLOY (dock_sled(false))
  1807. #define _Z_STOW (dock_sled(true))
  1808. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1809. #define _Z_SERVO_TEST (axis != Z_AXIS) // servo.move XY
  1810. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1811. #define _Z_DEPLOY (deploy_z_probe())
  1812. #define _Z_STOW (stow_z_probe())
  1813. #elif HAS_SERVO_ENDSTOPS
  1814. #define _Z_SERVO_TEST true // servo.move X, Y, Z
  1815. #define _Z_PROBE_SUBTEST (axis == Z_AXIS) // Z is a probe
  1816. #endif
  1817. if (axis == Z_AXIS) {
  1818. // If there's a Z probe that needs deployment...
  1819. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1820. // ...and homing Z towards the bed? Deploy it.
  1821. if (axis_home_dir < 0) _Z_DEPLOY;
  1822. #endif
  1823. }
  1824. #if HAS_SERVO_ENDSTOPS
  1825. // Engage an X or Y Servo endstop if enabled
  1826. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1827. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1828. if (_Z_PROBE_SUBTEST) z_probe_is_active = true;
  1829. }
  1830. #endif
  1831. // Set a flag for Z motor locking
  1832. #if ENABLED(Z_DUAL_ENDSTOPS)
  1833. if (axis == Z_AXIS) In_Homing_Process(true);
  1834. #endif
  1835. // Move towards the endstop until an endstop is triggered
  1836. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1837. feedrate = homing_feedrate[axis];
  1838. line_to_destination();
  1839. st_synchronize();
  1840. // Set the axis position as setup for the move
  1841. current_position[axis] = 0;
  1842. sync_plan_position();
  1843. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1844. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1845. #endif
  1846. enable_endstops(false); // Disable endstops while moving away
  1847. // Move away from the endstop by the axis HOME_BUMP_MM
  1848. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1849. line_to_destination();
  1850. st_synchronize();
  1851. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1852. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1853. #endif
  1854. enable_endstops(true); // Enable endstops for next homing move
  1855. // Slow down the feedrate for the next move
  1856. set_homing_bump_feedrate(axis);
  1857. // Move slowly towards the endstop until triggered
  1858. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1859. line_to_destination();
  1860. st_synchronize();
  1861. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1862. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1863. #endif
  1864. #if ENABLED(Z_DUAL_ENDSTOPS)
  1865. if (axis == Z_AXIS) {
  1866. float adj = fabs(z_endstop_adj);
  1867. bool lockZ1;
  1868. if (axis_home_dir > 0) {
  1869. adj = -adj;
  1870. lockZ1 = (z_endstop_adj > 0);
  1871. }
  1872. else
  1873. lockZ1 = (z_endstop_adj < 0);
  1874. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1875. sync_plan_position();
  1876. // Move to the adjusted endstop height
  1877. feedrate = homing_feedrate[axis];
  1878. destination[Z_AXIS] = adj;
  1879. line_to_destination();
  1880. st_synchronize();
  1881. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1882. In_Homing_Process(false);
  1883. } // Z_AXIS
  1884. #endif
  1885. #if ENABLED(DELTA)
  1886. // retrace by the amount specified in endstop_adj
  1887. if (endstop_adj[axis] * axis_home_dir < 0) {
  1888. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1889. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1890. #endif
  1891. enable_endstops(false); // Disable endstops while moving away
  1892. sync_plan_position();
  1893. destination[axis] = endstop_adj[axis];
  1894. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1895. if (DEBUGGING(LEVELING)) {
  1896. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1897. DEBUG_POS("", destination);
  1898. }
  1899. #endif
  1900. line_to_destination();
  1901. st_synchronize();
  1902. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1903. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1904. #endif
  1905. enable_endstops(true); // Enable endstops for next homing move
  1906. }
  1907. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1908. else {
  1909. if (DEBUGGING(LEVELING)) {
  1910. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1911. SERIAL_EOL;
  1912. }
  1913. }
  1914. #endif
  1915. #endif
  1916. // Set the axis position to its home position (plus home offsets)
  1917. set_axis_is_at_home(axis);
  1918. sync_plan_position();
  1919. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1920. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1921. #endif
  1922. destination[axis] = current_position[axis];
  1923. feedrate = 0.0;
  1924. endstops_hit_on_purpose(); // clear endstop hit flags
  1925. axis_known_position[axis] = true;
  1926. axis_homed[axis] = true;
  1927. // Put away the Z probe
  1928. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1929. if (axis == Z_AXIS && axis_home_dir < 0) {
  1930. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1931. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
  1932. #endif
  1933. _Z_STOW;
  1934. }
  1935. #endif
  1936. // Retract Servo endstop if enabled
  1937. #if HAS_SERVO_ENDSTOPS
  1938. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1939. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1940. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1941. #endif
  1942. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1943. if (_Z_PROBE_SUBTEST) z_probe_is_active = false;
  1944. }
  1945. #endif
  1946. }
  1947. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1948. if (DEBUGGING(LEVELING)) {
  1949. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  1950. SERIAL_ECHOLNPGM(")");
  1951. }
  1952. #endif
  1953. }
  1954. #if ENABLED(FWRETRACT)
  1955. void retract(bool retracting, bool swapping = false) {
  1956. if (retracting == retracted[active_extruder]) return;
  1957. float oldFeedrate = feedrate;
  1958. set_destination_to_current();
  1959. if (retracting) {
  1960. feedrate = retract_feedrate * 60;
  1961. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1962. sync_plan_position_e();
  1963. prepare_move();
  1964. if (retract_zlift > 0.01) {
  1965. current_position[Z_AXIS] -= retract_zlift;
  1966. #if ENABLED(DELTA)
  1967. sync_plan_position_delta();
  1968. #else
  1969. sync_plan_position();
  1970. #endif
  1971. prepare_move();
  1972. }
  1973. }
  1974. else {
  1975. if (retract_zlift > 0.01) {
  1976. current_position[Z_AXIS] += retract_zlift;
  1977. #if ENABLED(DELTA)
  1978. sync_plan_position_delta();
  1979. #else
  1980. sync_plan_position();
  1981. #endif
  1982. }
  1983. feedrate = retract_recover_feedrate * 60;
  1984. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1985. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1986. sync_plan_position_e();
  1987. prepare_move();
  1988. }
  1989. feedrate = oldFeedrate;
  1990. retracted[active_extruder] = retracting;
  1991. } // retract()
  1992. #endif // FWRETRACT
  1993. /**
  1994. * ***************************************************************************
  1995. * ***************************** G-CODE HANDLING *****************************
  1996. * ***************************************************************************
  1997. */
  1998. /**
  1999. * Set XYZE destination and feedrate from the current GCode command
  2000. *
  2001. * - Set destination from included axis codes
  2002. * - Set to current for missing axis codes
  2003. * - Set the feedrate, if included
  2004. */
  2005. void gcode_get_destination() {
  2006. for (int i = 0; i < NUM_AXIS; i++) {
  2007. if (code_seen(axis_codes[i]))
  2008. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2009. else
  2010. destination[i] = current_position[i];
  2011. }
  2012. if (code_seen('F')) {
  2013. float next_feedrate = code_value();
  2014. if (next_feedrate > 0.0) feedrate = next_feedrate;
  2015. }
  2016. }
  2017. void unknown_command_error() {
  2018. SERIAL_ECHO_START;
  2019. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2020. SERIAL_ECHO(current_command);
  2021. SERIAL_ECHOPGM("\"\n");
  2022. }
  2023. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2024. /**
  2025. * Output a "busy" message at regular intervals
  2026. * while the machine is not accepting commands.
  2027. */
  2028. void host_keepalive() {
  2029. millis_t ms = millis();
  2030. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2031. if (PENDING(ms, next_busy_signal_ms)) return;
  2032. switch (busy_state) {
  2033. case IN_HANDLER:
  2034. case IN_PROCESS:
  2035. SERIAL_ECHO_START;
  2036. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2037. break;
  2038. case PAUSED_FOR_USER:
  2039. SERIAL_ECHO_START;
  2040. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2041. break;
  2042. case PAUSED_FOR_INPUT:
  2043. SERIAL_ECHO_START;
  2044. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2045. break;
  2046. default:
  2047. break;
  2048. }
  2049. }
  2050. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2051. }
  2052. #endif //HOST_KEEPALIVE_FEATURE
  2053. /**
  2054. * G0, G1: Coordinated movement of X Y Z E axes
  2055. */
  2056. inline void gcode_G0_G1() {
  2057. if (IsRunning()) {
  2058. gcode_get_destination(); // For X Y Z E F
  2059. #if ENABLED(FWRETRACT)
  2060. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2061. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2062. // Is this move an attempt to retract or recover?
  2063. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2064. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2065. sync_plan_position_e(); // AND from the planner
  2066. retract(!retracted[active_extruder]);
  2067. return;
  2068. }
  2069. }
  2070. #endif //FWRETRACT
  2071. prepare_move();
  2072. }
  2073. }
  2074. /**
  2075. * G2: Clockwise Arc
  2076. * G3: Counterclockwise Arc
  2077. */
  2078. inline void gcode_G2_G3(bool clockwise) {
  2079. if (IsRunning()) {
  2080. #if ENABLED(SF_ARC_FIX)
  2081. bool relative_mode_backup = relative_mode;
  2082. relative_mode = true;
  2083. #endif
  2084. gcode_get_destination();
  2085. #if ENABLED(SF_ARC_FIX)
  2086. relative_mode = relative_mode_backup;
  2087. #endif
  2088. // Center of arc as offset from current_position
  2089. float arc_offset[2] = {
  2090. code_seen('I') ? code_value() : 0,
  2091. code_seen('J') ? code_value() : 0
  2092. };
  2093. // Send an arc to the planner
  2094. plan_arc(destination, arc_offset, clockwise);
  2095. refresh_cmd_timeout();
  2096. }
  2097. }
  2098. /**
  2099. * G4: Dwell S<seconds> or P<milliseconds>
  2100. */
  2101. inline void gcode_G4() {
  2102. millis_t codenum = 0;
  2103. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  2104. if (code_seen('S')) codenum = code_value() * 1000UL; // seconds to wait
  2105. st_synchronize();
  2106. refresh_cmd_timeout();
  2107. codenum += previous_cmd_ms; // keep track of when we started waiting
  2108. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2109. while (PENDING(millis(), codenum)) idle();
  2110. }
  2111. #if ENABLED(FWRETRACT)
  2112. /**
  2113. * G10 - Retract filament according to settings of M207
  2114. * G11 - Recover filament according to settings of M208
  2115. */
  2116. inline void gcode_G10_G11(bool doRetract=false) {
  2117. #if EXTRUDERS > 1
  2118. if (doRetract) {
  2119. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  2120. }
  2121. #endif
  2122. retract(doRetract
  2123. #if EXTRUDERS > 1
  2124. , retracted_swap[active_extruder]
  2125. #endif
  2126. );
  2127. }
  2128. #endif //FWRETRACT
  2129. /**
  2130. * G28: Home all axes according to settings
  2131. *
  2132. * Parameters
  2133. *
  2134. * None Home to all axes with no parameters.
  2135. * With QUICK_HOME enabled XY will home together, then Z.
  2136. *
  2137. * Cartesian parameters
  2138. *
  2139. * X Home to the X endstop
  2140. * Y Home to the Y endstop
  2141. * Z Home to the Z endstop
  2142. *
  2143. */
  2144. inline void gcode_G28() {
  2145. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2146. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2147. #endif
  2148. // Wait for planner moves to finish!
  2149. st_synchronize();
  2150. // For auto bed leveling, clear the level matrix
  2151. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2152. plan_bed_level_matrix.set_to_identity();
  2153. #if ENABLED(DELTA)
  2154. reset_bed_level();
  2155. #endif
  2156. #endif
  2157. /**
  2158. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2159. * on again when homing all axis
  2160. */
  2161. #if ENABLED(MESH_BED_LEVELING)
  2162. uint8_t mbl_was_active = mbl.active;
  2163. mbl.active = false;
  2164. #endif
  2165. setup_for_endstop_move();
  2166. /**
  2167. * Directly after a reset this is all 0. Later we get a hint if we have
  2168. * to raise z or not.
  2169. */
  2170. set_destination_to_current();
  2171. feedrate = 0.0;
  2172. #if ENABLED(DELTA)
  2173. /**
  2174. * A delta can only safely home all axis at the same time
  2175. * all axis have to home at the same time
  2176. */
  2177. // Pretend the current position is 0,0,0
  2178. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2179. sync_plan_position();
  2180. // Move all carriages up together until the first endstop is hit.
  2181. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2182. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2183. line_to_destination();
  2184. st_synchronize();
  2185. endstops_hit_on_purpose(); // clear endstop hit flags
  2186. // Destination reached
  2187. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2188. // take care of back off and rehome now we are all at the top
  2189. HOMEAXIS(X);
  2190. HOMEAXIS(Y);
  2191. HOMEAXIS(Z);
  2192. sync_plan_position_delta();
  2193. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2194. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2195. #endif
  2196. #else // NOT DELTA
  2197. bool homeX = code_seen(axis_codes[X_AXIS]),
  2198. homeY = code_seen(axis_codes[Y_AXIS]),
  2199. homeZ = code_seen(axis_codes[Z_AXIS]);
  2200. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2201. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2202. if (home_all_axis || homeZ) {
  2203. HOMEAXIS(Z);
  2204. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2205. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2206. #endif
  2207. }
  2208. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2209. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2210. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2211. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2212. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2213. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2214. if (DEBUGGING(LEVELING)) {
  2215. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2216. SERIAL_EOL;
  2217. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2218. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2219. }
  2220. #endif
  2221. line_to_destination();
  2222. st_synchronize();
  2223. /**
  2224. * Update the current Z position even if it currently not real from
  2225. * Z-home otherwise each call to line_to_destination() will want to
  2226. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2227. */
  2228. current_position[Z_AXIS] = destination[Z_AXIS];
  2229. }
  2230. #endif
  2231. #if ENABLED(QUICK_HOME)
  2232. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2233. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2234. #if ENABLED(DUAL_X_CARRIAGE)
  2235. int x_axis_home_dir = x_home_dir(active_extruder);
  2236. extruder_duplication_enabled = false;
  2237. #else
  2238. int x_axis_home_dir = home_dir(X_AXIS);
  2239. #endif
  2240. sync_plan_position();
  2241. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2242. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2243. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2244. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2245. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2246. line_to_destination();
  2247. st_synchronize();
  2248. set_axis_is_at_home(X_AXIS);
  2249. set_axis_is_at_home(Y_AXIS);
  2250. sync_plan_position();
  2251. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2252. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2253. #endif
  2254. destination[X_AXIS] = current_position[X_AXIS];
  2255. destination[Y_AXIS] = current_position[Y_AXIS];
  2256. line_to_destination();
  2257. feedrate = 0.0;
  2258. st_synchronize();
  2259. endstops_hit_on_purpose(); // clear endstop hit flags
  2260. current_position[X_AXIS] = destination[X_AXIS];
  2261. current_position[Y_AXIS] = destination[Y_AXIS];
  2262. #if DISABLED(SCARA)
  2263. current_position[Z_AXIS] = destination[Z_AXIS];
  2264. #endif
  2265. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2266. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2267. #endif
  2268. }
  2269. #endif // QUICK_HOME
  2270. #if ENABLED(HOME_Y_BEFORE_X)
  2271. // Home Y
  2272. if (home_all_axis || homeY) HOMEAXIS(Y);
  2273. #endif
  2274. // Home X
  2275. if (home_all_axis || homeX) {
  2276. #if ENABLED(DUAL_X_CARRIAGE)
  2277. int tmp_extruder = active_extruder;
  2278. extruder_duplication_enabled = false;
  2279. active_extruder = !active_extruder;
  2280. HOMEAXIS(X);
  2281. inactive_extruder_x_pos = current_position[X_AXIS];
  2282. active_extruder = tmp_extruder;
  2283. HOMEAXIS(X);
  2284. // reset state used by the different modes
  2285. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2286. delayed_move_time = 0;
  2287. active_extruder_parked = true;
  2288. #else
  2289. HOMEAXIS(X);
  2290. #endif
  2291. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2292. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2293. #endif
  2294. }
  2295. #if DISABLED(HOME_Y_BEFORE_X)
  2296. // Home Y
  2297. if (home_all_axis || homeY) {
  2298. HOMEAXIS(Y);
  2299. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2300. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2301. #endif
  2302. }
  2303. #endif
  2304. // Home Z last if homing towards the bed
  2305. #if Z_HOME_DIR < 0
  2306. if (home_all_axis || homeZ) {
  2307. #if ENABLED(Z_SAFE_HOMING)
  2308. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2309. if (DEBUGGING(LEVELING)) {
  2310. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2311. }
  2312. #endif
  2313. if (home_all_axis) {
  2314. /**
  2315. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2316. * No need to move Z any more as this height should already be safe
  2317. * enough to reach Z_SAFE_HOMING XY positions.
  2318. * Just make sure the planner is in sync.
  2319. */
  2320. sync_plan_position();
  2321. /**
  2322. * Set the Z probe (or just the nozzle) destination to the safe
  2323. * homing point
  2324. */
  2325. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2326. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2327. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2328. feedrate = XY_TRAVEL_SPEED;
  2329. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2330. if (DEBUGGING(LEVELING)) {
  2331. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2332. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2333. }
  2334. #endif
  2335. // Move in the XY plane
  2336. line_to_destination();
  2337. st_synchronize();
  2338. /**
  2339. * Update the current positions for XY, Z is still at least at
  2340. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2341. */
  2342. current_position[X_AXIS] = destination[X_AXIS];
  2343. current_position[Y_AXIS] = destination[Y_AXIS];
  2344. // Home the Z axis
  2345. HOMEAXIS(Z);
  2346. }
  2347. else if (homeZ) { // Don't need to Home Z twice
  2348. // Let's see if X and Y are homed
  2349. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2350. /**
  2351. * Make sure the Z probe is within the physical limits
  2352. * NOTE: This doesn't necessarily ensure the Z probe is also
  2353. * within the bed!
  2354. */
  2355. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2356. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2357. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2358. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2359. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2360. // Home the Z axis
  2361. HOMEAXIS(Z);
  2362. }
  2363. else {
  2364. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2365. SERIAL_ECHO_START;
  2366. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2367. }
  2368. }
  2369. else {
  2370. axis_unhomed_error();
  2371. }
  2372. } // !home_all_axes && homeZ
  2373. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2374. if (DEBUGGING(LEVELING)) {
  2375. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2376. }
  2377. #endif
  2378. #else // !Z_SAFE_HOMING
  2379. HOMEAXIS(Z);
  2380. #endif // !Z_SAFE_HOMING
  2381. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2382. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2383. #endif
  2384. } // home_all_axis || homeZ
  2385. #endif // Z_HOME_DIR < 0
  2386. sync_plan_position();
  2387. #endif // else DELTA
  2388. #if ENABLED(SCARA)
  2389. sync_plan_position_delta();
  2390. #endif
  2391. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2392. enable_endstops(false);
  2393. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2394. if (DEBUGGING(LEVELING)) {
  2395. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
  2396. }
  2397. #endif
  2398. #endif
  2399. // For mesh leveling move back to Z=0
  2400. #if ENABLED(MESH_BED_LEVELING)
  2401. if (mbl_was_active && home_all_axis) {
  2402. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2403. sync_plan_position();
  2404. mbl.active = 1;
  2405. current_position[Z_AXIS] = 0.0;
  2406. set_destination_to_current();
  2407. feedrate = homing_feedrate[Z_AXIS];
  2408. line_to_destination();
  2409. st_synchronize();
  2410. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2411. if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position);
  2412. #endif
  2413. }
  2414. #endif
  2415. feedrate = saved_feedrate;
  2416. feedrate_multiplier = saved_feedrate_multiplier;
  2417. refresh_cmd_timeout();
  2418. endstops_hit_on_purpose(); // clear endstop hit flags
  2419. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2420. if (DEBUGGING(LEVELING)) {
  2421. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2422. }
  2423. #endif
  2424. report_current_position();
  2425. }
  2426. #if ENABLED(MESH_BED_LEVELING)
  2427. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset };
  2428. inline void _mbl_goto_xy(float x, float y) {
  2429. saved_feedrate = feedrate;
  2430. feedrate = homing_feedrate[X_AXIS];
  2431. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2432. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2433. + MIN_Z_HEIGHT_FOR_HOMING
  2434. #endif
  2435. ;
  2436. line_to_current_position();
  2437. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2438. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2439. line_to_current_position();
  2440. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2441. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2442. line_to_current_position();
  2443. #endif
  2444. feedrate = saved_feedrate;
  2445. st_synchronize();
  2446. }
  2447. /**
  2448. * G29: Mesh-based Z probe, probes a grid and produces a
  2449. * mesh to compensate for variable bed height
  2450. *
  2451. * Parameters With MESH_BED_LEVELING:
  2452. *
  2453. * S0 Produce a mesh report
  2454. * S1 Start probing mesh points
  2455. * S2 Probe the next mesh point
  2456. * S3 Xn Yn Zn.nn Manually modify a single point
  2457. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2458. *
  2459. * The S0 report the points as below
  2460. *
  2461. * +----> X-axis 1-n
  2462. * |
  2463. * |
  2464. * v Y-axis 1-n
  2465. *
  2466. */
  2467. inline void gcode_G29() {
  2468. static int probe_point = -1;
  2469. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2470. if (state < 0 || state > 4) {
  2471. SERIAL_PROTOCOLLNPGM("S out of range (0-4).");
  2472. return;
  2473. }
  2474. int ix, iy;
  2475. float z;
  2476. switch (state) {
  2477. case MeshReport:
  2478. if (mbl.active) {
  2479. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2480. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2481. SERIAL_PROTOCOLCHAR(',');
  2482. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2483. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2484. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2485. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2486. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2487. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2488. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2489. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2490. SERIAL_PROTOCOLPGM(" ");
  2491. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2492. }
  2493. SERIAL_EOL;
  2494. }
  2495. }
  2496. else
  2497. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2498. break;
  2499. case MeshStart:
  2500. mbl.reset();
  2501. probe_point = 0;
  2502. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2503. break;
  2504. case MeshNext:
  2505. if (probe_point < 0) {
  2506. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2507. return;
  2508. }
  2509. // For each G29 S2...
  2510. if (probe_point == 0) {
  2511. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2512. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2513. sync_plan_position();
  2514. }
  2515. else {
  2516. // For G29 S2 after adjusting Z.
  2517. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2518. }
  2519. // If there's another point to sample, move there with optional lift.
  2520. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2521. mbl.zigzag(probe_point, ix, iy);
  2522. _mbl_goto_xy(mbl.get_x(ix), mbl.get_y(iy));
  2523. probe_point++;
  2524. }
  2525. else {
  2526. // One last "return to the bed" (as originally coded) at completion
  2527. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2528. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2529. + MIN_Z_HEIGHT_FOR_HOMING
  2530. #endif
  2531. ;
  2532. line_to_current_position();
  2533. st_synchronize();
  2534. // After recording the last point, activate the mbl and home
  2535. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2536. probe_point = -1;
  2537. mbl.active = true;
  2538. enqueue_and_echo_commands_P(PSTR("G28"));
  2539. }
  2540. break;
  2541. case MeshSet:
  2542. if (code_seen('X')) {
  2543. ix = code_value_long() - 1;
  2544. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2545. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2546. return;
  2547. }
  2548. }
  2549. else {
  2550. SERIAL_PROTOCOLPGM("X not entered.\n");
  2551. return;
  2552. }
  2553. if (code_seen('Y')) {
  2554. iy = code_value_long() - 1;
  2555. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2556. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2557. return;
  2558. }
  2559. }
  2560. else {
  2561. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2562. return;
  2563. }
  2564. if (code_seen('Z')) {
  2565. z = code_value();
  2566. }
  2567. else {
  2568. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2569. return;
  2570. }
  2571. mbl.z_values[iy][ix] = z;
  2572. break;
  2573. case MeshSetZOffset:
  2574. if (code_seen('Z')) {
  2575. z = code_value();
  2576. }
  2577. else {
  2578. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2579. return;
  2580. }
  2581. mbl.z_offset = z;
  2582. } // switch(state)
  2583. }
  2584. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2585. void out_of_range_error(const char* p_edge) {
  2586. SERIAL_PROTOCOLPGM("?Probe ");
  2587. serialprintPGM(p_edge);
  2588. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2589. }
  2590. /**
  2591. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2592. * Will fail if the printer has not been homed with G28.
  2593. *
  2594. * Enhanced G29 Auto Bed Leveling Probe Routine
  2595. *
  2596. * Parameters With AUTO_BED_LEVELING_GRID:
  2597. *
  2598. * P Set the size of the grid that will be probed (P x P points).
  2599. * Not supported by non-linear delta printer bed leveling.
  2600. * Example: "G29 P4"
  2601. *
  2602. * S Set the XY travel speed between probe points (in mm/min)
  2603. *
  2604. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2605. * or clean the rotation Matrix. Useful to check the topology
  2606. * after a first run of G29.
  2607. *
  2608. * V Set the verbose level (0-4). Example: "G29 V3"
  2609. *
  2610. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2611. * This is useful for manual bed leveling and finding flaws in the bed (to
  2612. * assist with part placement).
  2613. * Not supported by non-linear delta printer bed leveling.
  2614. *
  2615. * F Set the Front limit of the probing grid
  2616. * B Set the Back limit of the probing grid
  2617. * L Set the Left limit of the probing grid
  2618. * R Set the Right limit of the probing grid
  2619. *
  2620. * Global Parameters:
  2621. *
  2622. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2623. * Include "E" to engage/disengage the Z probe for each sample.
  2624. * There's no extra effect if you have a fixed Z probe.
  2625. * Usage: "G29 E" or "G29 e"
  2626. *
  2627. */
  2628. inline void gcode_G29() {
  2629. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2630. if (DEBUGGING(LEVELING)) {
  2631. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2632. DEBUG_POS("", current_position);
  2633. }
  2634. #endif
  2635. // Don't allow auto-leveling without homing first
  2636. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  2637. axis_unhomed_error();
  2638. return;
  2639. }
  2640. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2641. if (verbose_level < 0 || verbose_level > 4) {
  2642. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2643. return;
  2644. }
  2645. bool dryrun = code_seen('D'),
  2646. deploy_probe_for_each_reading = code_seen('E');
  2647. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2648. #if DISABLED(DELTA)
  2649. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2650. #endif
  2651. if (verbose_level > 0) {
  2652. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2653. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2654. }
  2655. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2656. #if DISABLED(DELTA)
  2657. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2658. if (auto_bed_leveling_grid_points < 2) {
  2659. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2660. return;
  2661. }
  2662. #endif
  2663. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2664. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2665. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2666. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2667. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2668. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2669. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2670. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2671. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2672. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2673. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2674. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2675. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2676. if (left_out || right_out || front_out || back_out) {
  2677. if (left_out) {
  2678. out_of_range_error(PSTR("(L)eft"));
  2679. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2680. }
  2681. if (right_out) {
  2682. out_of_range_error(PSTR("(R)ight"));
  2683. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2684. }
  2685. if (front_out) {
  2686. out_of_range_error(PSTR("(F)ront"));
  2687. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2688. }
  2689. if (back_out) {
  2690. out_of_range_error(PSTR("(B)ack"));
  2691. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2692. }
  2693. return;
  2694. }
  2695. #endif // AUTO_BED_LEVELING_GRID
  2696. if (!dryrun) {
  2697. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2698. if (DEBUGGING(LEVELING)) {
  2699. vector_3 corrected_position = plan_get_position();
  2700. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2701. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2702. }
  2703. #endif
  2704. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2705. plan_bed_level_matrix.set_to_identity();
  2706. #if ENABLED(DELTA)
  2707. reset_bed_level();
  2708. #else //!DELTA
  2709. //vector_3 corrected_position = plan_get_position();
  2710. //corrected_position.debug("position before G29");
  2711. vector_3 uncorrected_position = plan_get_position();
  2712. //uncorrected_position.debug("position during G29");
  2713. current_position[X_AXIS] = uncorrected_position.x;
  2714. current_position[Y_AXIS] = uncorrected_position.y;
  2715. current_position[Z_AXIS] = uncorrected_position.z;
  2716. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2717. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2718. #endif
  2719. sync_plan_position();
  2720. #endif // !DELTA
  2721. }
  2722. #if ENABLED(Z_PROBE_SLED)
  2723. dock_sled(false); // engage (un-dock) the Z probe
  2724. #elif ENABLED(MECHANICAL_PROBE) || (ENABLED(DELTA) && SERVO_LEVELING)
  2725. deploy_z_probe();
  2726. #endif
  2727. st_synchronize();
  2728. setup_for_endstop_move();
  2729. feedrate = homing_feedrate[Z_AXIS];
  2730. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2731. // probe at the points of a lattice grid
  2732. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2733. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2734. #if ENABLED(DELTA)
  2735. delta_grid_spacing[0] = xGridSpacing;
  2736. delta_grid_spacing[1] = yGridSpacing;
  2737. float zoffset = zprobe_zoffset;
  2738. if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value();
  2739. #else // !DELTA
  2740. /**
  2741. * solve the plane equation ax + by + d = z
  2742. * A is the matrix with rows [x y 1] for all the probed points
  2743. * B is the vector of the Z positions
  2744. * the normal vector to the plane is formed by the coefficients of the
  2745. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2746. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2747. */
  2748. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2749. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2750. eqnBVector[abl2], // "B" vector of Z points
  2751. mean = 0.0;
  2752. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2753. #endif // !DELTA
  2754. int probePointCounter = 0;
  2755. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2756. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2757. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2758. int xStart, xStop, xInc;
  2759. if (zig) {
  2760. xStart = 0;
  2761. xStop = auto_bed_leveling_grid_points;
  2762. xInc = 1;
  2763. }
  2764. else {
  2765. xStart = auto_bed_leveling_grid_points - 1;
  2766. xStop = -1;
  2767. xInc = -1;
  2768. }
  2769. zig = !zig;
  2770. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2771. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2772. // raise extruder
  2773. float measured_z,
  2774. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS];
  2775. if (probePointCounter) {
  2776. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2777. if (DEBUGGING(LEVELING)) {
  2778. SERIAL_ECHOPAIR("z_before = (between) ", (Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2779. SERIAL_EOL;
  2780. }
  2781. #endif
  2782. }
  2783. else {
  2784. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2785. if (DEBUGGING(LEVELING)) {
  2786. SERIAL_ECHOPAIR("z_before = (before) ", Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS]);
  2787. SERIAL_EOL;
  2788. }
  2789. #endif
  2790. }
  2791. #if ENABLED(DELTA)
  2792. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2793. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2794. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2795. #endif //DELTA
  2796. ProbeAction act;
  2797. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2798. act = ProbeDeployAndStow;
  2799. else if (yCount == 0 && xCount == xStart)
  2800. act = ProbeDeploy;
  2801. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2802. act = ProbeStow;
  2803. else
  2804. act = ProbeStay;
  2805. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2806. #if DISABLED(DELTA)
  2807. mean += measured_z;
  2808. eqnBVector[probePointCounter] = measured_z;
  2809. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2810. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2811. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2812. indexIntoAB[xCount][yCount] = probePointCounter;
  2813. #else
  2814. bed_level[xCount][yCount] = measured_z + zoffset;
  2815. #endif
  2816. probePointCounter++;
  2817. idle();
  2818. } //xProbe
  2819. } //yProbe
  2820. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2821. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  2822. #endif
  2823. clean_up_after_endstop_move();
  2824. #if ENABLED(DELTA)
  2825. if (!dryrun) extrapolate_unprobed_bed_level();
  2826. print_bed_level();
  2827. #else // !DELTA
  2828. // solve lsq problem
  2829. double plane_equation_coefficients[3];
  2830. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2831. mean /= abl2;
  2832. if (verbose_level) {
  2833. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2834. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2835. SERIAL_PROTOCOLPGM(" b: ");
  2836. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2837. SERIAL_PROTOCOLPGM(" d: ");
  2838. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2839. SERIAL_EOL;
  2840. if (verbose_level > 2) {
  2841. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2842. SERIAL_PROTOCOL_F(mean, 8);
  2843. SERIAL_EOL;
  2844. }
  2845. }
  2846. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2847. // Show the Topography map if enabled
  2848. if (do_topography_map) {
  2849. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2850. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2851. SERIAL_PROTOCOLPGM(" | |\n");
  2852. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2853. SERIAL_PROTOCOLPGM(" E | | I\n");
  2854. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2855. SERIAL_PROTOCOLPGM(" T | | H\n");
  2856. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2857. SERIAL_PROTOCOLPGM(" | |\n");
  2858. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2859. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2860. float min_diff = 999;
  2861. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2862. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2863. int ind = indexIntoAB[xx][yy];
  2864. float diff = eqnBVector[ind] - mean;
  2865. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2866. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2867. z_tmp = 0;
  2868. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2869. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2870. if (diff >= 0.0)
  2871. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2872. else
  2873. SERIAL_PROTOCOLCHAR(' ');
  2874. SERIAL_PROTOCOL_F(diff, 5);
  2875. } // xx
  2876. SERIAL_EOL;
  2877. } // yy
  2878. SERIAL_EOL;
  2879. if (verbose_level > 3) {
  2880. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2881. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2882. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2883. int ind = indexIntoAB[xx][yy];
  2884. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2885. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2886. z_tmp = 0;
  2887. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2888. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2889. if (diff >= 0.0)
  2890. SERIAL_PROTOCOLPGM(" +");
  2891. // Include + for column alignment
  2892. else
  2893. SERIAL_PROTOCOLCHAR(' ');
  2894. SERIAL_PROTOCOL_F(diff, 5);
  2895. } // xx
  2896. SERIAL_EOL;
  2897. } // yy
  2898. SERIAL_EOL;
  2899. }
  2900. } //do_topography_map
  2901. #endif //!DELTA
  2902. #else // !AUTO_BED_LEVELING_GRID
  2903. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2904. if (DEBUGGING(LEVELING)) {
  2905. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2906. }
  2907. #endif
  2908. // Actions for each probe
  2909. ProbeAction p1, p2, p3;
  2910. if (deploy_probe_for_each_reading)
  2911. p1 = p2 = p3 = ProbeDeployAndStow;
  2912. else
  2913. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2914. // Probe at 3 arbitrary points
  2915. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  2916. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  2917. Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS],
  2918. p1, verbose_level),
  2919. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  2920. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  2921. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2922. p2, verbose_level),
  2923. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  2924. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  2925. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2926. p3, verbose_level);
  2927. clean_up_after_endstop_move();
  2928. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2929. #endif // !AUTO_BED_LEVELING_GRID
  2930. #if ENABLED(DELTA)
  2931. // Allen Key Probe for Delta
  2932. #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
  2933. stow_z_probe();
  2934. #elif Z_RAISE_AFTER_PROBING > 0
  2935. raise_z_after_probing(); // for non Allen Key probes, such as simple mechanical probe
  2936. #endif
  2937. #else // !DELTA
  2938. if (verbose_level > 0)
  2939. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2940. if (!dryrun) {
  2941. /**
  2942. * Correct the Z height difference from Z probe position and nozzle tip position.
  2943. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  2944. * from the nozzle. When the bed is uneven, this height must be corrected.
  2945. */
  2946. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2947. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2948. z_tmp = current_position[Z_AXIS],
  2949. real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2950. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2951. if (DEBUGGING(LEVELING)) {
  2952. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2953. SERIAL_EOL;
  2954. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2955. SERIAL_EOL;
  2956. }
  2957. #endif
  2958. // Apply the correction sending the Z probe offset
  2959. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2960. /*
  2961. * Get the current Z position and send it to the planner.
  2962. *
  2963. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  2964. * (most recent plan_set_position/sync_plan_position)
  2965. *
  2966. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  2967. * (set by default, M851, EEPROM, or Menu)
  2968. *
  2969. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  2970. * after the last probe
  2971. *
  2972. * >> Should home_offset[Z_AXIS] be included?
  2973. *
  2974. *
  2975. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  2976. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  2977. * not actually "homing" Z... then perhaps it should not be included
  2978. * here. The purpose of home_offset[] is to adjust for inaccurate
  2979. * endstops, not for reasonably accurate probes. If it were added
  2980. * here, it could be seen as a compensating factor for the Z probe.
  2981. */
  2982. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2983. if (DEBUGGING(LEVELING)) {
  2984. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2985. SERIAL_EOL;
  2986. }
  2987. #endif
  2988. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2989. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2990. + Z_RAISE_AFTER_PROBING
  2991. #endif
  2992. ;
  2993. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2994. sync_plan_position();
  2995. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2996. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  2997. #endif
  2998. }
  2999. // Sled assembly for Cartesian bots
  3000. #if ENABLED(Z_PROBE_SLED)
  3001. dock_sled(true); // dock the sled
  3002. #elif Z_RAISE_AFTER_PROBING > 0
  3003. // Raise Z axis for non-delta and non servo based probes
  3004. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  3005. raise_z_after_probing();
  3006. #endif
  3007. #endif
  3008. #endif // !DELTA
  3009. #ifdef Z_PROBE_END_SCRIPT
  3010. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3011. if (DEBUGGING(LEVELING)) {
  3012. SERIAL_ECHO("Z Probe End Script: ");
  3013. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3014. }
  3015. #endif
  3016. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3017. #if ENABLED(HAS_Z_MIN_PROBE)
  3018. z_probe_is_active = false;
  3019. #endif
  3020. st_synchronize();
  3021. #endif
  3022. KEEPALIVE_STATE(IN_HANDLER);
  3023. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3024. if (DEBUGGING(LEVELING)) {
  3025. SERIAL_ECHOLNPGM("<<< gcode_G29");
  3026. }
  3027. #endif
  3028. report_current_position();
  3029. }
  3030. #if DISABLED(Z_PROBE_SLED) // could be avoided
  3031. /**
  3032. * G30: Do a single Z probe at the current XY
  3033. */
  3034. inline void gcode_G30() {
  3035. #if HAS_SERVO_ENDSTOPS
  3036. raise_z_for_servo();
  3037. #endif
  3038. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  3039. st_synchronize();
  3040. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3041. setup_for_endstop_move(); // Too late. Must be done before deploying.
  3042. feedrate = homing_feedrate[Z_AXIS];
  3043. run_z_probe();
  3044. SERIAL_PROTOCOLPGM("Bed X: ");
  3045. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3046. SERIAL_PROTOCOLPGM(" Y: ");
  3047. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3048. SERIAL_PROTOCOLPGM(" Z: ");
  3049. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  3050. SERIAL_EOL;
  3051. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  3052. #if HAS_SERVO_ENDSTOPS
  3053. raise_z_for_servo();
  3054. #endif
  3055. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  3056. report_current_position();
  3057. }
  3058. #endif //!Z_PROBE_SLED
  3059. #endif //AUTO_BED_LEVELING_FEATURE
  3060. /**
  3061. * G92: Set current position to given X Y Z E
  3062. */
  3063. inline void gcode_G92() {
  3064. bool didE = code_seen(axis_codes[E_AXIS]);
  3065. if (!didE) st_synchronize();
  3066. bool didXYZ = false;
  3067. for (int i = 0; i < NUM_AXIS; i++) {
  3068. if (code_seen(axis_codes[i])) {
  3069. float p = current_position[i],
  3070. v = code_value();
  3071. current_position[i] = v;
  3072. if (i != E_AXIS) {
  3073. position_shift[i] += v - p; // Offset the coordinate space
  3074. update_software_endstops((AxisEnum)i);
  3075. didXYZ = true;
  3076. }
  3077. }
  3078. }
  3079. if (didXYZ) {
  3080. #if ENABLED(DELTA) || ENABLED(SCARA)
  3081. sync_plan_position_delta();
  3082. #else
  3083. sync_plan_position();
  3084. #endif
  3085. }
  3086. else if (didE) {
  3087. sync_plan_position_e();
  3088. }
  3089. }
  3090. #if ENABLED(ULTIPANEL)
  3091. /**
  3092. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  3093. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  3094. */
  3095. inline void gcode_M0_M1() {
  3096. char* args = current_command_args;
  3097. uint8_t test_value = 12;
  3098. SERIAL_ECHOPAIR("TEST", test_value);
  3099. millis_t codenum = 0;
  3100. bool hasP = false, hasS = false;
  3101. if (code_seen('P')) {
  3102. codenum = code_value_short(); // milliseconds to wait
  3103. hasP = codenum > 0;
  3104. }
  3105. if (code_seen('S')) {
  3106. codenum = code_value() * 1000UL; // seconds to wait
  3107. hasS = codenum > 0;
  3108. }
  3109. if (!hasP && !hasS && *args != '\0')
  3110. lcd_setstatus(args, true);
  3111. else {
  3112. LCD_MESSAGEPGM(MSG_USERWAIT);
  3113. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3114. dontExpireStatus();
  3115. #endif
  3116. }
  3117. lcd_ignore_click();
  3118. st_synchronize();
  3119. refresh_cmd_timeout();
  3120. if (codenum > 0) {
  3121. codenum += previous_cmd_ms; // wait until this time for a click
  3122. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3123. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3124. KEEPALIVE_STATE(IN_HANDLER);
  3125. lcd_ignore_click(false);
  3126. }
  3127. else {
  3128. if (!lcd_detected()) return;
  3129. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3130. while (!lcd_clicked()) idle();
  3131. KEEPALIVE_STATE(IN_HANDLER);
  3132. }
  3133. if (IS_SD_PRINTING)
  3134. LCD_MESSAGEPGM(MSG_RESUMING);
  3135. else
  3136. LCD_MESSAGEPGM(WELCOME_MSG);
  3137. }
  3138. #endif // ULTIPANEL
  3139. /**
  3140. * M17: Enable power on all stepper motors
  3141. */
  3142. inline void gcode_M17() {
  3143. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3144. enable_all_steppers();
  3145. }
  3146. #if ENABLED(SDSUPPORT)
  3147. /**
  3148. * M20: List SD card to serial output
  3149. */
  3150. inline void gcode_M20() {
  3151. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3152. card.ls();
  3153. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3154. }
  3155. /**
  3156. * M21: Init SD Card
  3157. */
  3158. inline void gcode_M21() {
  3159. card.initsd();
  3160. }
  3161. /**
  3162. * M22: Release SD Card
  3163. */
  3164. inline void gcode_M22() {
  3165. card.release();
  3166. }
  3167. /**
  3168. * M23: Open a file
  3169. */
  3170. inline void gcode_M23() {
  3171. card.openFile(current_command_args, true);
  3172. }
  3173. /**
  3174. * M24: Start SD Print
  3175. */
  3176. inline void gcode_M24() {
  3177. card.startFileprint();
  3178. print_job_timer.start();
  3179. }
  3180. /**
  3181. * M25: Pause SD Print
  3182. */
  3183. inline void gcode_M25() {
  3184. card.pauseSDPrint();
  3185. }
  3186. /**
  3187. * M26: Set SD Card file index
  3188. */
  3189. inline void gcode_M26() {
  3190. if (card.cardOK && code_seen('S'))
  3191. card.setIndex(code_value_short());
  3192. }
  3193. /**
  3194. * M27: Get SD Card status
  3195. */
  3196. inline void gcode_M27() {
  3197. card.getStatus();
  3198. }
  3199. /**
  3200. * M28: Start SD Write
  3201. */
  3202. inline void gcode_M28() {
  3203. card.openFile(current_command_args, false);
  3204. }
  3205. /**
  3206. * M29: Stop SD Write
  3207. * Processed in write to file routine above
  3208. */
  3209. inline void gcode_M29() {
  3210. // card.saving = false;
  3211. }
  3212. /**
  3213. * M30 <filename>: Delete SD Card file
  3214. */
  3215. inline void gcode_M30() {
  3216. if (card.cardOK) {
  3217. card.closefile();
  3218. card.removeFile(current_command_args);
  3219. }
  3220. }
  3221. #endif //SDSUPPORT
  3222. /**
  3223. * M31: Get the time since the start of SD Print (or last M109)
  3224. */
  3225. inline void gcode_M31() {
  3226. millis_t t = print_job_timer.duration();
  3227. int min = t / 60, sec = t % 60;
  3228. char time[30];
  3229. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3230. SERIAL_ECHO_START;
  3231. SERIAL_ECHOLN(time);
  3232. lcd_setstatus(time);
  3233. autotempShutdown();
  3234. }
  3235. #if ENABLED(SDSUPPORT)
  3236. /**
  3237. * M32: Select file and start SD Print
  3238. */
  3239. inline void gcode_M32() {
  3240. if (card.sdprinting)
  3241. st_synchronize();
  3242. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3243. if (!namestartpos)
  3244. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3245. else
  3246. namestartpos++; //to skip the '!'
  3247. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3248. if (card.cardOK) {
  3249. card.openFile(namestartpos, true, call_procedure);
  3250. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3251. card.setIndex(code_value_short());
  3252. card.startFileprint();
  3253. // Procedure calls count as normal print time.
  3254. if (!call_procedure) print_job_timer.start();
  3255. }
  3256. }
  3257. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3258. /**
  3259. * M33: Get the long full path of a file or folder
  3260. *
  3261. * Parameters:
  3262. * <dospath> Case-insensitive DOS-style path to a file or folder
  3263. *
  3264. * Example:
  3265. * M33 miscel~1/armchair/armcha~1.gco
  3266. *
  3267. * Output:
  3268. * /Miscellaneous/Armchair/Armchair.gcode
  3269. */
  3270. inline void gcode_M33() {
  3271. card.printLongPath(current_command_args);
  3272. }
  3273. #endif
  3274. /**
  3275. * M928: Start SD Write
  3276. */
  3277. inline void gcode_M928() {
  3278. card.openLogFile(current_command_args);
  3279. }
  3280. #endif // SDSUPPORT
  3281. /**
  3282. * M42: Change pin status via GCode
  3283. *
  3284. * P<pin> Pin number (LED if omitted)
  3285. * S<byte> Pin status from 0 - 255
  3286. */
  3287. inline void gcode_M42() {
  3288. if (code_seen('S')) {
  3289. int pin_status = code_value_short();
  3290. if (pin_status < 0 || pin_status > 255) return;
  3291. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3292. if (pin_number < 0) return;
  3293. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3294. if (pin_number == sensitive_pins[i]) return;
  3295. pinMode(pin_number, OUTPUT);
  3296. digitalWrite(pin_number, pin_status);
  3297. analogWrite(pin_number, pin_status);
  3298. #if FAN_COUNT > 0
  3299. switch (pin_number) {
  3300. #if HAS_FAN0
  3301. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3302. #endif
  3303. #if HAS_FAN1
  3304. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3305. #endif
  3306. #if HAS_FAN2
  3307. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3308. #endif
  3309. }
  3310. #endif
  3311. } // code_seen('S')
  3312. }
  3313. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3314. /**
  3315. * This is redundant since the SanityCheck.h already checks for a valid
  3316. * Z_MIN_PROBE_PIN, but here for clarity.
  3317. */
  3318. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3319. #if !HAS_Z_PROBE
  3320. #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
  3321. #endif
  3322. #elif !HAS_Z_MIN
  3323. #error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
  3324. #endif
  3325. /**
  3326. * M48: Z probe repeatability measurement function.
  3327. *
  3328. * Usage:
  3329. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3330. * P = Number of sampled points (4-50, default 10)
  3331. * X = Sample X position
  3332. * Y = Sample Y position
  3333. * V = Verbose level (0-4, default=1)
  3334. * E = Engage Z probe for each reading
  3335. * L = Number of legs of movement before probe
  3336. * S = Schizoid (Or Star if you prefer)
  3337. *
  3338. * This function assumes the bed has been homed. Specifically, that a G28 command
  3339. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3340. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3341. * regenerated.
  3342. */
  3343. inline void gcode_M48() {
  3344. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3345. axis_unhomed_error();
  3346. return;
  3347. }
  3348. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3349. int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3350. if (code_seen('V')) {
  3351. verbose_level = code_value_short();
  3352. if (verbose_level < 0 || verbose_level > 4) {
  3353. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3354. return;
  3355. }
  3356. }
  3357. if (verbose_level > 0)
  3358. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3359. if (code_seen('P')) {
  3360. n_samples = code_value_short();
  3361. if (n_samples < 4 || n_samples > 50) {
  3362. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3363. return;
  3364. }
  3365. }
  3366. float X_current = current_position[X_AXIS],
  3367. Y_current = current_position[Y_AXIS],
  3368. Z_current = current_position[Z_AXIS],
  3369. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3370. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3371. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3372. bool deploy_probe_for_each_reading = code_seen('E');
  3373. if (code_seen('X')) {
  3374. X_probe_location = code_value();
  3375. #if DISABLED(DELTA)
  3376. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3377. out_of_range_error(PSTR("X"));
  3378. return;
  3379. }
  3380. #endif
  3381. }
  3382. if (code_seen('Y')) {
  3383. Y_probe_location = code_value();
  3384. #if DISABLED(DELTA)
  3385. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3386. out_of_range_error(PSTR("Y"));
  3387. return;
  3388. }
  3389. #endif
  3390. }
  3391. #if ENABLED(DELTA)
  3392. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3393. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3394. return;
  3395. }
  3396. #endif
  3397. bool seen_L = code_seen('L');
  3398. if (seen_L) {
  3399. n_legs = code_value_short();
  3400. if (n_legs < 0 || n_legs > 15) {
  3401. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3402. return;
  3403. }
  3404. if (n_legs == 1) n_legs = 2;
  3405. }
  3406. if (code_seen('S')) {
  3407. schizoid_flag++;
  3408. if (!seen_L) n_legs = 7;
  3409. }
  3410. /**
  3411. * Now get everything to the specified probe point So we can safely do a
  3412. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3413. * we don't want to use that as a starting point for each probe.
  3414. */
  3415. if (verbose_level > 2)
  3416. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3417. #if ENABLED(DELTA)
  3418. // we don't do bed level correction in M48 because we want the raw data when we probe
  3419. reset_bed_level();
  3420. #else
  3421. // we don't do bed level correction in M48 because we want the raw data when we probe
  3422. plan_bed_level_matrix.set_to_identity();
  3423. #endif
  3424. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3425. do_blocking_move_to_z(Z_start_location);
  3426. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3427. /**
  3428. * OK, do the initial probe to get us close to the bed.
  3429. * Then retrace the right amount and use that in subsequent probes
  3430. */
  3431. setup_for_endstop_move();
  3432. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3433. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3434. verbose_level);
  3435. raise_z_after_probing();
  3436. for (uint8_t n = 0; n < n_samples; n++) {
  3437. randomSeed(millis());
  3438. delay(500);
  3439. if (n_legs) {
  3440. float radius, angle = random(0.0, 360.0);
  3441. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3442. radius = random(
  3443. #if ENABLED(DELTA)
  3444. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3445. #else
  3446. 5, X_MAX_LENGTH / 8
  3447. #endif
  3448. );
  3449. if (verbose_level > 3) {
  3450. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3451. SERIAL_ECHOPAIR(" angle: ", angle);
  3452. delay(100);
  3453. if (dir > 0)
  3454. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3455. else
  3456. SERIAL_ECHO(" Direction: Clockwise \n");
  3457. delay(100);
  3458. }
  3459. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3460. double delta_angle;
  3461. if (schizoid_flag)
  3462. // The points of a 5 point star are 72 degrees apart. We need to
  3463. // skip a point and go to the next one on the star.
  3464. delta_angle = dir * 2.0 * 72.0;
  3465. else
  3466. // If we do this line, we are just trying to move further
  3467. // around the circle.
  3468. delta_angle = dir * (float) random(25, 45);
  3469. angle += delta_angle;
  3470. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3471. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3472. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3473. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3474. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3475. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3476. #if DISABLED(DELTA)
  3477. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3478. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3479. #else
  3480. // If we have gone out too far, we can do a simple fix and scale the numbers
  3481. // back in closer to the origin.
  3482. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3483. X_current /= 1.25;
  3484. Y_current /= 1.25;
  3485. if (verbose_level > 3) {
  3486. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3487. SERIAL_ECHOPAIR(", ", Y_current);
  3488. SERIAL_EOL;
  3489. delay(50);
  3490. }
  3491. }
  3492. #endif
  3493. if (verbose_level > 3) {
  3494. SERIAL_PROTOCOL("Going to:");
  3495. SERIAL_ECHOPAIR("x: ", X_current);
  3496. SERIAL_ECHOPAIR("y: ", Y_current);
  3497. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3498. SERIAL_EOL;
  3499. delay(55);
  3500. }
  3501. do_blocking_move_to_xy(X_current, Y_current);
  3502. } // n_legs loop
  3503. } // n_legs
  3504. /**
  3505. * We don't really have to do this move, but if we don't we can see a
  3506. * funny shift in the Z Height because the user might not have the
  3507. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3508. * height. This gets us back to the probe location at the same height that
  3509. * we have been running around the circle at.
  3510. */
  3511. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3512. if (deploy_probe_for_each_reading)
  3513. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3514. else {
  3515. if (n == n_samples - 1)
  3516. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3517. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3518. }
  3519. /**
  3520. * Get the current mean for the data points we have so far
  3521. */
  3522. sum = 0.0;
  3523. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3524. mean = sum / (n + 1);
  3525. /**
  3526. * Now, use that mean to calculate the standard deviation for the
  3527. * data points we have so far
  3528. */
  3529. sum = 0.0;
  3530. for (uint8_t j = 0; j <= n; j++) {
  3531. float ss = sample_set[j] - mean;
  3532. sum += ss * ss;
  3533. }
  3534. sigma = sqrt(sum / (n + 1));
  3535. if (verbose_level > 1) {
  3536. SERIAL_PROTOCOL(n + 1);
  3537. SERIAL_PROTOCOLPGM(" of ");
  3538. SERIAL_PROTOCOL((int)n_samples);
  3539. SERIAL_PROTOCOLPGM(" z: ");
  3540. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3541. delay(50);
  3542. if (verbose_level > 2) {
  3543. SERIAL_PROTOCOLPGM(" mean: ");
  3544. SERIAL_PROTOCOL_F(mean, 6);
  3545. SERIAL_PROTOCOLPGM(" sigma: ");
  3546. SERIAL_PROTOCOL_F(sigma, 6);
  3547. }
  3548. }
  3549. if (verbose_level > 0) SERIAL_EOL;
  3550. delay(50);
  3551. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3552. } // End of probe loop code
  3553. // raise_z_after_probing();
  3554. if (verbose_level > 0) {
  3555. SERIAL_PROTOCOLPGM("Mean: ");
  3556. SERIAL_PROTOCOL_F(mean, 6);
  3557. SERIAL_EOL;
  3558. delay(25);
  3559. }
  3560. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3561. SERIAL_PROTOCOL_F(sigma, 6);
  3562. SERIAL_EOL; SERIAL_EOL;
  3563. delay(25);
  3564. clean_up_after_endstop_move();
  3565. report_current_position();
  3566. }
  3567. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3568. /**
  3569. * M75: Start print timer
  3570. */
  3571. inline void gcode_M75() {
  3572. print_job_timer.start();
  3573. }
  3574. /**
  3575. * M76: Pause print timer
  3576. */
  3577. inline void gcode_M76() {
  3578. print_job_timer.pause();
  3579. }
  3580. /**
  3581. * M77: Stop print timer
  3582. */
  3583. inline void gcode_M77() {
  3584. print_job_timer.stop();
  3585. }
  3586. #if ENABLED(PRINTCOUNTER)
  3587. /*+
  3588. * M78: Show print statistics
  3589. */
  3590. inline void gcode_M78() {
  3591. print_job_timer.showStats();
  3592. }
  3593. #endif
  3594. /**
  3595. * M104: Set hot end temperature
  3596. */
  3597. inline void gcode_M104() {
  3598. if (get_target_extruder_from_command(104)) return;
  3599. if (DEBUGGING(DRYRUN)) return;
  3600. if (code_seen('S')) {
  3601. float temp = code_value();
  3602. setTargetHotend(temp, target_extruder);
  3603. #if ENABLED(DUAL_X_CARRIAGE)
  3604. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3605. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3606. #endif
  3607. /**
  3608. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3609. * stand by mode, for instance in a dual extruder setup, without affecting
  3610. * the running print timer.
  3611. */
  3612. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3613. print_job_timer.stop();
  3614. LCD_MESSAGEPGM(WELCOME_MSG);
  3615. }
  3616. /**
  3617. * We do not check if the timer is already running because this check will
  3618. * be done for us inside the Stopwatch::start() method thus a running timer
  3619. * will not restart.
  3620. */
  3621. else print_job_timer.start();
  3622. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3623. }
  3624. }
  3625. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3626. void print_heaterstates() {
  3627. #if HAS_TEMP_HOTEND
  3628. SERIAL_PROTOCOLPGM(" T:");
  3629. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  3630. SERIAL_PROTOCOLPGM(" /");
  3631. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  3632. #endif
  3633. #if HAS_TEMP_BED
  3634. SERIAL_PROTOCOLPGM(" B:");
  3635. SERIAL_PROTOCOL_F(degBed(), 1);
  3636. SERIAL_PROTOCOLPGM(" /");
  3637. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  3638. #endif
  3639. #if EXTRUDERS > 1
  3640. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3641. SERIAL_PROTOCOLPGM(" T");
  3642. SERIAL_PROTOCOL(e);
  3643. SERIAL_PROTOCOLCHAR(':');
  3644. SERIAL_PROTOCOL_F(degHotend(e), 1);
  3645. SERIAL_PROTOCOLPGM(" /");
  3646. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  3647. }
  3648. #endif
  3649. #if HAS_TEMP_BED
  3650. SERIAL_PROTOCOLPGM(" B@:");
  3651. #ifdef BED_WATTS
  3652. SERIAL_PROTOCOL(((BED_WATTS) * getHeaterPower(-1)) / 127);
  3653. SERIAL_PROTOCOLCHAR('W');
  3654. #else
  3655. SERIAL_PROTOCOL(getHeaterPower(-1));
  3656. #endif
  3657. #endif
  3658. SERIAL_PROTOCOLPGM(" @:");
  3659. #ifdef EXTRUDER_WATTS
  3660. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(target_extruder)) / 127);
  3661. SERIAL_PROTOCOLCHAR('W');
  3662. #else
  3663. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  3664. #endif
  3665. #if EXTRUDERS > 1
  3666. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3667. SERIAL_PROTOCOLPGM(" @");
  3668. SERIAL_PROTOCOL(e);
  3669. SERIAL_PROTOCOLCHAR(':');
  3670. #ifdef EXTRUDER_WATTS
  3671. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(e)) / 127);
  3672. SERIAL_PROTOCOLCHAR('W');
  3673. #else
  3674. SERIAL_PROTOCOL(getHeaterPower(e));
  3675. #endif
  3676. }
  3677. #endif
  3678. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3679. #if HAS_TEMP_BED
  3680. SERIAL_PROTOCOLPGM(" ADC B:");
  3681. SERIAL_PROTOCOL_F(degBed(), 1);
  3682. SERIAL_PROTOCOLPGM("C->");
  3683. SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
  3684. #endif
  3685. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3686. SERIAL_PROTOCOLPGM(" T");
  3687. SERIAL_PROTOCOL(cur_extruder);
  3688. SERIAL_PROTOCOLCHAR(':');
  3689. SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
  3690. SERIAL_PROTOCOLPGM("C->");
  3691. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3692. }
  3693. #endif
  3694. }
  3695. #endif
  3696. /**
  3697. * M105: Read hot end and bed temperature
  3698. */
  3699. inline void gcode_M105() {
  3700. if (get_target_extruder_from_command(105)) return;
  3701. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3702. SERIAL_PROTOCOLPGM(MSG_OK);
  3703. print_heaterstates();
  3704. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3705. SERIAL_ERROR_START;
  3706. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3707. #endif
  3708. SERIAL_EOL;
  3709. }
  3710. #if FAN_COUNT > 0
  3711. /**
  3712. * M106: Set Fan Speed
  3713. *
  3714. * S<int> Speed between 0-255
  3715. * P<index> Fan index, if more than one fan
  3716. */
  3717. inline void gcode_M106() {
  3718. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3719. p = code_seen('P') ? code_value_short() : 0;
  3720. NOMORE(s, 255);
  3721. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3722. }
  3723. /**
  3724. * M107: Fan Off
  3725. */
  3726. inline void gcode_M107() {
  3727. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3728. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3729. }
  3730. #endif // FAN_COUNT > 0
  3731. /**
  3732. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3733. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3734. */
  3735. inline void gcode_M109() {
  3736. if (get_target_extruder_from_command(109)) return;
  3737. if (DEBUGGING(DRYRUN)) return;
  3738. bool no_wait_for_cooling = code_seen('S');
  3739. if (no_wait_for_cooling || code_seen('R')) {
  3740. float temp = code_value();
  3741. setTargetHotend(temp, target_extruder);
  3742. #if ENABLED(DUAL_X_CARRIAGE)
  3743. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3744. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3745. #endif
  3746. /**
  3747. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3748. * stand by mode, for instance in a dual extruder setup, without affecting
  3749. * the running print timer.
  3750. */
  3751. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3752. print_job_timer.stop();
  3753. LCD_MESSAGEPGM(WELCOME_MSG);
  3754. }
  3755. /**
  3756. * We do not check if the timer is already running because this check will
  3757. * be done for us inside the Stopwatch::start() method thus a running timer
  3758. * will not restart.
  3759. */
  3760. else print_job_timer.start();
  3761. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3762. }
  3763. #if ENABLED(AUTOTEMP)
  3764. autotemp_enabled = code_seen('F');
  3765. if (autotemp_enabled) autotemp_factor = code_value();
  3766. if (code_seen('S')) autotemp_min = code_value();
  3767. if (code_seen('B')) autotemp_max = code_value();
  3768. #endif
  3769. #if TEMP_RESIDENCY_TIME > 0
  3770. millis_t residency_start_ms = 0;
  3771. // Loop until the temperature has stabilized
  3772. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3773. #else
  3774. // Loop until the temperature is very close target
  3775. #define TEMP_CONDITIONS (wants_to_cool ? isCoolingHotend(target_extruder) : isHeatingHotend(target_extruder))
  3776. #endif //TEMP_RESIDENCY_TIME > 0
  3777. float theTarget = -1;
  3778. bool wants_to_cool;
  3779. cancel_heatup = false;
  3780. millis_t now, next_temp_ms = 0;
  3781. KEEPALIVE_STATE(NOT_BUSY);
  3782. do {
  3783. now = millis();
  3784. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3785. next_temp_ms = now + 1000UL;
  3786. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3787. print_heaterstates();
  3788. #endif
  3789. #if TEMP_RESIDENCY_TIME > 0
  3790. SERIAL_PROTOCOLPGM(" W:");
  3791. if (residency_start_ms) {
  3792. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3793. SERIAL_PROTOCOLLN(rem);
  3794. }
  3795. else {
  3796. SERIAL_PROTOCOLLNPGM("?");
  3797. }
  3798. #else
  3799. SERIAL_EOL;
  3800. #endif
  3801. }
  3802. // Target temperature might be changed during the loop
  3803. if (theTarget != degTargetHotend(target_extruder)) {
  3804. theTarget = degTargetHotend(target_extruder);
  3805. wants_to_cool = isCoolingHotend(target_extruder);
  3806. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3807. if (no_wait_for_cooling && wants_to_cool) break;
  3808. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3809. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3810. if (wants_to_cool && theTarget < (EXTRUDE_MINTEMP)/2) break;
  3811. }
  3812. idle();
  3813. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3814. #if TEMP_RESIDENCY_TIME > 0
  3815. float temp_diff = fabs(theTarget - degHotend(target_extruder));
  3816. if (!residency_start_ms) {
  3817. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3818. if (temp_diff < TEMP_WINDOW) residency_start_ms = millis();
  3819. }
  3820. else if (temp_diff > TEMP_HYSTERESIS) {
  3821. // Restart the timer whenever the temperature falls outside the hysteresis.
  3822. residency_start_ms = millis();
  3823. }
  3824. #endif //TEMP_RESIDENCY_TIME > 0
  3825. } while (!cancel_heatup && TEMP_CONDITIONS);
  3826. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3827. KEEPALIVE_STATE(IN_HANDLER);
  3828. }
  3829. #if HAS_TEMP_BED
  3830. /**
  3831. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3832. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3833. */
  3834. inline void gcode_M190() {
  3835. if (DEBUGGING(DRYRUN)) return;
  3836. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3837. bool no_wait_for_cooling = code_seen('S');
  3838. if (no_wait_for_cooling || code_seen('R')) setTargetBed(code_value());
  3839. #if TEMP_BED_RESIDENCY_TIME > 0
  3840. millis_t residency_start_ms = 0;
  3841. // Loop until the temperature has stabilized
  3842. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3843. #else
  3844. // Loop until the temperature is very close target
  3845. #define TEMP_BED_CONDITIONS (wants_to_cool ? isCoolingBed() : isHeatingBed())
  3846. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3847. float theTarget = -1;
  3848. bool wants_to_cool;
  3849. cancel_heatup = false;
  3850. millis_t now, next_temp_ms = 0;
  3851. KEEPALIVE_STATE(NOT_BUSY);
  3852. do {
  3853. now = millis();
  3854. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3855. next_temp_ms = now + 1000UL;
  3856. print_heaterstates();
  3857. #if TEMP_BED_RESIDENCY_TIME > 0
  3858. SERIAL_PROTOCOLPGM(" W:");
  3859. if (residency_start_ms) {
  3860. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3861. SERIAL_PROTOCOLLN(rem);
  3862. }
  3863. else {
  3864. SERIAL_PROTOCOLLNPGM("?");
  3865. }
  3866. #else
  3867. SERIAL_EOL;
  3868. #endif
  3869. }
  3870. // Target temperature might be changed during the loop
  3871. if (theTarget != degTargetBed()) {
  3872. theTarget = degTargetBed();
  3873. wants_to_cool = isCoolingBed();
  3874. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3875. if (no_wait_for_cooling && wants_to_cool) break;
  3876. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  3877. // Simply don't wait for cooling below 30C
  3878. if (wants_to_cool && theTarget < (EXTRUDE_MINTEMP)/2) break;
  3879. }
  3880. idle();
  3881. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3882. #if TEMP_BED_RESIDENCY_TIME > 0
  3883. float temp_diff = fabs(degBed() - degTargetBed());
  3884. if (!residency_start_ms) {
  3885. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3886. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = millis();
  3887. }
  3888. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3889. // Restart the timer whenever the temperature falls outside the hysteresis.
  3890. residency_start_ms = millis();
  3891. }
  3892. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3893. } while (!cancel_heatup && TEMP_BED_CONDITIONS);
  3894. LCD_MESSAGEPGM(MSG_BED_DONE);
  3895. KEEPALIVE_STATE(IN_HANDLER);
  3896. }
  3897. #endif // HAS_TEMP_BED
  3898. /**
  3899. * M110: Set Current Line Number
  3900. */
  3901. inline void gcode_M110() {
  3902. if (code_seen('N')) gcode_N = code_value_long();
  3903. }
  3904. /**
  3905. * M111: Set the debug level
  3906. */
  3907. inline void gcode_M111() {
  3908. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_NONE;
  3909. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3910. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3911. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3912. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3913. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3914. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3915. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3916. #endif
  3917. const static char* const debug_strings[] PROGMEM = {
  3918. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3919. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3920. str_debug_32
  3921. #endif
  3922. };
  3923. SERIAL_ECHO_START;
  3924. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3925. if (marlin_debug_flags) {
  3926. uint8_t comma = 0;
  3927. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3928. if (TEST(marlin_debug_flags, i)) {
  3929. if (comma++) SERIAL_CHAR(',');
  3930. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  3931. }
  3932. }
  3933. }
  3934. else {
  3935. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  3936. }
  3937. SERIAL_EOL;
  3938. }
  3939. /**
  3940. * M112: Emergency Stop
  3941. */
  3942. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3943. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  3944. /**
  3945. * M113: Get or set Host Keepalive interval (0 to disable)
  3946. *
  3947. * S<seconds> Optional. Set the keepalive interval.
  3948. */
  3949. inline void gcode_M113() {
  3950. if (code_seen('S')) {
  3951. host_keepalive_interval = (uint8_t)code_value_short();
  3952. NOMORE(host_keepalive_interval, 60);
  3953. }
  3954. else {
  3955. SERIAL_ECHO_START;
  3956. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  3957. SERIAL_EOL;
  3958. }
  3959. }
  3960. #endif
  3961. #if ENABLED(BARICUDA)
  3962. #if HAS_HEATER_1
  3963. /**
  3964. * M126: Heater 1 valve open
  3965. */
  3966. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3967. /**
  3968. * M127: Heater 1 valve close
  3969. */
  3970. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  3971. #endif
  3972. #if HAS_HEATER_2
  3973. /**
  3974. * M128: Heater 2 valve open
  3975. */
  3976. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3977. /**
  3978. * M129: Heater 2 valve close
  3979. */
  3980. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  3981. #endif
  3982. #endif //BARICUDA
  3983. /**
  3984. * M140: Set bed temperature
  3985. */
  3986. inline void gcode_M140() {
  3987. if (DEBUGGING(DRYRUN)) return;
  3988. if (code_seen('S')) setTargetBed(code_value());
  3989. }
  3990. #if ENABLED(ULTIPANEL)
  3991. /**
  3992. * M145: Set the heatup state for a material in the LCD menu
  3993. * S<material> (0=PLA, 1=ABS)
  3994. * H<hotend temp>
  3995. * B<bed temp>
  3996. * F<fan speed>
  3997. */
  3998. inline void gcode_M145() {
  3999. int8_t material = code_seen('S') ? code_value_short() : 0;
  4000. if (material < 0 || material > 1) {
  4001. SERIAL_ERROR_START;
  4002. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4003. }
  4004. else {
  4005. int v;
  4006. switch (material) {
  4007. case 0:
  4008. if (code_seen('H')) {
  4009. v = code_value_short();
  4010. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4011. }
  4012. if (code_seen('F')) {
  4013. v = code_value_short();
  4014. plaPreheatFanSpeed = constrain(v, 0, 255);
  4015. }
  4016. #if TEMP_SENSOR_BED != 0
  4017. if (code_seen('B')) {
  4018. v = code_value_short();
  4019. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4020. }
  4021. #endif
  4022. break;
  4023. case 1:
  4024. if (code_seen('H')) {
  4025. v = code_value_short();
  4026. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4027. }
  4028. if (code_seen('F')) {
  4029. v = code_value_short();
  4030. absPreheatFanSpeed = constrain(v, 0, 255);
  4031. }
  4032. #if TEMP_SENSOR_BED != 0
  4033. if (code_seen('B')) {
  4034. v = code_value_short();
  4035. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4036. }
  4037. #endif
  4038. break;
  4039. }
  4040. }
  4041. }
  4042. #endif
  4043. #if HAS_POWER_SWITCH
  4044. /**
  4045. * M80: Turn on Power Supply
  4046. */
  4047. inline void gcode_M80() {
  4048. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4049. /**
  4050. * If you have a switch on suicide pin, this is useful
  4051. * if you want to start another print with suicide feature after
  4052. * a print without suicide...
  4053. */
  4054. #if HAS_SUICIDE
  4055. OUT_WRITE(SUICIDE_PIN, HIGH);
  4056. #endif
  4057. #if ENABLED(ULTIPANEL)
  4058. powersupply = true;
  4059. LCD_MESSAGEPGM(WELCOME_MSG);
  4060. lcd_update();
  4061. #endif
  4062. }
  4063. #endif // HAS_POWER_SWITCH
  4064. /**
  4065. * M81: Turn off Power, including Power Supply, if there is one.
  4066. *
  4067. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4068. */
  4069. inline void gcode_M81() {
  4070. disable_all_heaters();
  4071. finishAndDisableSteppers();
  4072. #if FAN_COUNT > 0
  4073. #if FAN_COUNT > 1
  4074. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4075. #else
  4076. fanSpeeds[0] = 0;
  4077. #endif
  4078. #endif
  4079. delay(1000); // Wait 1 second before switching off
  4080. #if HAS_SUICIDE
  4081. st_synchronize();
  4082. suicide();
  4083. #elif HAS_POWER_SWITCH
  4084. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4085. #endif
  4086. #if ENABLED(ULTIPANEL)
  4087. #if HAS_POWER_SWITCH
  4088. powersupply = false;
  4089. #endif
  4090. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4091. lcd_update();
  4092. #endif
  4093. }
  4094. /**
  4095. * M82: Set E codes absolute (default)
  4096. */
  4097. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4098. /**
  4099. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4100. */
  4101. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4102. /**
  4103. * M18, M84: Disable all stepper motors
  4104. */
  4105. inline void gcode_M18_M84() {
  4106. if (code_seen('S')) {
  4107. stepper_inactive_time = code_value() * 1000UL;
  4108. }
  4109. else {
  4110. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  4111. if (all_axis) {
  4112. finishAndDisableSteppers();
  4113. }
  4114. else {
  4115. st_synchronize();
  4116. if (code_seen('X')) disable_x();
  4117. if (code_seen('Y')) disable_y();
  4118. if (code_seen('Z')) disable_z();
  4119. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4120. if (code_seen('E')) {
  4121. disable_e0();
  4122. disable_e1();
  4123. disable_e2();
  4124. disable_e3();
  4125. }
  4126. #endif
  4127. }
  4128. }
  4129. }
  4130. /**
  4131. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4132. */
  4133. inline void gcode_M85() {
  4134. if (code_seen('S')) max_inactive_time = code_value() * 1000UL;
  4135. }
  4136. /**
  4137. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4138. * (Follows the same syntax as G92)
  4139. */
  4140. inline void gcode_M92() {
  4141. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4142. if (code_seen(axis_codes[i])) {
  4143. if (i == E_AXIS) {
  4144. float value = code_value();
  4145. if (value < 20.0) {
  4146. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4147. max_e_jerk *= factor;
  4148. max_feedrate[i] *= factor;
  4149. axis_steps_per_sqr_second[i] *= factor;
  4150. }
  4151. axis_steps_per_unit[i] = value;
  4152. }
  4153. else {
  4154. axis_steps_per_unit[i] = code_value();
  4155. }
  4156. }
  4157. }
  4158. }
  4159. /**
  4160. * Output the current position to serial
  4161. */
  4162. static void report_current_position() {
  4163. SERIAL_PROTOCOLPGM("X:");
  4164. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4165. SERIAL_PROTOCOLPGM(" Y:");
  4166. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4167. SERIAL_PROTOCOLPGM(" Z:");
  4168. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4169. SERIAL_PROTOCOLPGM(" E:");
  4170. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4171. CRITICAL_SECTION_START;
  4172. extern volatile long count_position[NUM_AXIS];
  4173. long xpos = count_position[X_AXIS],
  4174. ypos = count_position[Y_AXIS],
  4175. zpos = count_position[Z_AXIS];
  4176. CRITICAL_SECTION_END;
  4177. #if ENABLED(COREXY) || ENABLED(COREXZ)
  4178. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  4179. #else
  4180. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  4181. #endif
  4182. SERIAL_PROTOCOL(xpos);
  4183. #if ENABLED(COREXY)
  4184. SERIAL_PROTOCOLPGM(" B:");
  4185. #else
  4186. SERIAL_PROTOCOLPGM(" Y:");
  4187. #endif
  4188. SERIAL_PROTOCOL(ypos);
  4189. #if ENABLED(COREXZ)
  4190. SERIAL_PROTOCOLPGM(" C:");
  4191. #else
  4192. SERIAL_PROTOCOLPGM(" Z:");
  4193. #endif
  4194. SERIAL_PROTOCOL(zpos);
  4195. SERIAL_EOL;
  4196. #if ENABLED(SCARA)
  4197. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4198. SERIAL_PROTOCOL(delta[X_AXIS]);
  4199. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4200. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4201. SERIAL_EOL;
  4202. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4203. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4204. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4205. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4206. SERIAL_EOL;
  4207. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4208. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * axis_steps_per_unit[X_AXIS]);
  4209. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4210. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * axis_steps_per_unit[Y_AXIS]);
  4211. SERIAL_EOL; SERIAL_EOL;
  4212. #endif
  4213. }
  4214. /**
  4215. * M114: Output current position to serial port
  4216. */
  4217. inline void gcode_M114() { report_current_position(); }
  4218. /**
  4219. * M115: Capabilities string
  4220. */
  4221. inline void gcode_M115() {
  4222. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4223. }
  4224. /**
  4225. * M117: Set LCD Status Message
  4226. */
  4227. inline void gcode_M117() {
  4228. lcd_setstatus(current_command_args);
  4229. }
  4230. /**
  4231. * M119: Output endstop states to serial output
  4232. */
  4233. inline void gcode_M119() {
  4234. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  4235. #if HAS_X_MIN
  4236. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  4237. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4238. #endif
  4239. #if HAS_X_MAX
  4240. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  4241. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4242. #endif
  4243. #if HAS_Y_MIN
  4244. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  4245. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4246. #endif
  4247. #if HAS_Y_MAX
  4248. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  4249. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4250. #endif
  4251. #if HAS_Z_MIN
  4252. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  4253. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4254. #endif
  4255. #if HAS_Z_MAX
  4256. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  4257. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4258. #endif
  4259. #if HAS_Z2_MAX
  4260. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  4261. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4262. #endif
  4263. #if HAS_Z_PROBE
  4264. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  4265. SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4266. #endif
  4267. }
  4268. /**
  4269. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4270. */
  4271. inline void gcode_M120() { enable_endstops_globally(true); }
  4272. /**
  4273. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4274. */
  4275. inline void gcode_M121() { enable_endstops_globally(false); }
  4276. #if ENABLED(BLINKM)
  4277. /**
  4278. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4279. */
  4280. inline void gcode_M150() {
  4281. SendColors(
  4282. code_seen('R') ? (byte)code_value_short() : 0,
  4283. code_seen('U') ? (byte)code_value_short() : 0,
  4284. code_seen('B') ? (byte)code_value_short() : 0
  4285. );
  4286. }
  4287. #endif // BLINKM
  4288. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4289. /**
  4290. * M155: Send data to a I2C slave device
  4291. *
  4292. * This is a PoC, the formating and arguments for the GCODE will
  4293. * change to be more compatible, the current proposal is:
  4294. *
  4295. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4296. *
  4297. * M155 B<byte-1 value in base 10>
  4298. * M155 B<byte-2 value in base 10>
  4299. * M155 B<byte-3 value in base 10>
  4300. *
  4301. * M155 S1 ; Send the buffered data and reset the buffer
  4302. * M155 R1 ; Reset the buffer without sending data
  4303. *
  4304. */
  4305. inline void gcode_M155() {
  4306. // Set the target address
  4307. if (code_seen('A'))
  4308. i2c.address((uint8_t) code_value_short());
  4309. // Add a new byte to the buffer
  4310. else if (code_seen('B'))
  4311. i2c.addbyte((int) code_value_short());
  4312. // Flush the buffer to the bus
  4313. else if (code_seen('S')) i2c.send();
  4314. // Reset and rewind the buffer
  4315. else if (code_seen('R')) i2c.reset();
  4316. }
  4317. /**
  4318. * M156: Request X bytes from I2C slave device
  4319. *
  4320. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4321. */
  4322. inline void gcode_M156() {
  4323. uint8_t addr = code_seen('A') ? code_value_short() : 0;
  4324. int bytes = code_seen('B') ? code_value_short() : 0;
  4325. if (addr && bytes) {
  4326. i2c.address(addr);
  4327. i2c.reqbytes(bytes);
  4328. }
  4329. }
  4330. #endif //EXPERIMENTAL_I2CBUS
  4331. /**
  4332. * M200: Set filament diameter and set E axis units to cubic millimeters
  4333. *
  4334. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4335. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  4336. */
  4337. inline void gcode_M200() {
  4338. if (get_target_extruder_from_command(200)) return;
  4339. if (code_seen('D')) {
  4340. float diameter = code_value();
  4341. // setting any extruder filament size disables volumetric on the assumption that
  4342. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4343. // for all extruders
  4344. volumetric_enabled = (diameter != 0.0);
  4345. if (volumetric_enabled) {
  4346. filament_size[target_extruder] = diameter;
  4347. // make sure all extruders have some sane value for the filament size
  4348. for (int i = 0; i < EXTRUDERS; i++)
  4349. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4350. }
  4351. }
  4352. else {
  4353. //reserved for setting filament diameter via UFID or filament measuring device
  4354. return;
  4355. }
  4356. calculate_volumetric_multipliers();
  4357. }
  4358. /**
  4359. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4360. */
  4361. inline void gcode_M201() {
  4362. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4363. if (code_seen(axis_codes[i])) {
  4364. max_acceleration_units_per_sq_second[i] = code_value();
  4365. }
  4366. }
  4367. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4368. reset_acceleration_rates();
  4369. }
  4370. #if 0 // Not used for Sprinter/grbl gen6
  4371. inline void gcode_M202() {
  4372. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4373. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4374. }
  4375. }
  4376. #endif
  4377. /**
  4378. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4379. */
  4380. inline void gcode_M203() {
  4381. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4382. if (code_seen(axis_codes[i])) {
  4383. max_feedrate[i] = code_value();
  4384. }
  4385. }
  4386. }
  4387. /**
  4388. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4389. *
  4390. * P = Printing moves
  4391. * R = Retract only (no X, Y, Z) moves
  4392. * T = Travel (non printing) moves
  4393. *
  4394. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4395. */
  4396. inline void gcode_M204() {
  4397. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4398. travel_acceleration = acceleration = code_value();
  4399. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  4400. SERIAL_EOL;
  4401. }
  4402. if (code_seen('P')) {
  4403. acceleration = code_value();
  4404. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration);
  4405. SERIAL_EOL;
  4406. }
  4407. if (code_seen('R')) {
  4408. retract_acceleration = code_value();
  4409. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration);
  4410. SERIAL_EOL;
  4411. }
  4412. if (code_seen('T')) {
  4413. travel_acceleration = code_value();
  4414. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration);
  4415. SERIAL_EOL;
  4416. }
  4417. }
  4418. /**
  4419. * M205: Set Advanced Settings
  4420. *
  4421. * S = Min Feed Rate (mm/s)
  4422. * T = Min Travel Feed Rate (mm/s)
  4423. * B = Min Segment Time (µs)
  4424. * X = Max XY Jerk (mm/s/s)
  4425. * Z = Max Z Jerk (mm/s/s)
  4426. * E = Max E Jerk (mm/s/s)
  4427. */
  4428. inline void gcode_M205() {
  4429. if (code_seen('S')) minimumfeedrate = code_value();
  4430. if (code_seen('T')) mintravelfeedrate = code_value();
  4431. if (code_seen('B')) minsegmenttime = code_value();
  4432. if (code_seen('X')) max_xy_jerk = code_value();
  4433. if (code_seen('Z')) max_z_jerk = code_value();
  4434. if (code_seen('E')) max_e_jerk = code_value();
  4435. }
  4436. /**
  4437. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4438. */
  4439. inline void gcode_M206() {
  4440. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4441. if (code_seen(axis_codes[i]))
  4442. set_home_offset((AxisEnum)i, code_value());
  4443. #if ENABLED(SCARA)
  4444. if (code_seen('T')) set_home_offset(X_AXIS, code_value()); // Theta
  4445. if (code_seen('P')) set_home_offset(Y_AXIS, code_value()); // Psi
  4446. #endif
  4447. sync_plan_position();
  4448. report_current_position();
  4449. }
  4450. #if ENABLED(DELTA)
  4451. /**
  4452. * M665: Set delta configurations
  4453. *
  4454. * L = diagonal rod
  4455. * R = delta radius
  4456. * S = segments per second
  4457. * A = Alpha (Tower 1) diagonal rod trim
  4458. * B = Beta (Tower 2) diagonal rod trim
  4459. * C = Gamma (Tower 3) diagonal rod trim
  4460. */
  4461. inline void gcode_M665() {
  4462. if (code_seen('L')) delta_diagonal_rod = code_value();
  4463. if (code_seen('R')) delta_radius = code_value();
  4464. if (code_seen('S')) delta_segments_per_second = code_value();
  4465. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  4466. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  4467. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  4468. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4469. }
  4470. /**
  4471. * M666: Set delta endstop adjustment
  4472. */
  4473. inline void gcode_M666() {
  4474. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4475. if (DEBUGGING(LEVELING)) {
  4476. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4477. }
  4478. #endif
  4479. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4480. if (code_seen(axis_codes[i])) {
  4481. endstop_adj[i] = code_value();
  4482. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4483. if (DEBUGGING(LEVELING)) {
  4484. SERIAL_ECHOPGM("endstop_adj[");
  4485. SERIAL_ECHO(axis_codes[i]);
  4486. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4487. SERIAL_EOL;
  4488. }
  4489. #endif
  4490. }
  4491. }
  4492. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4493. if (DEBUGGING(LEVELING)) {
  4494. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4495. }
  4496. #endif
  4497. }
  4498. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4499. /**
  4500. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4501. */
  4502. inline void gcode_M666() {
  4503. if (code_seen('Z')) z_endstop_adj = code_value();
  4504. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4505. SERIAL_EOL;
  4506. }
  4507. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4508. #if ENABLED(FWRETRACT)
  4509. /**
  4510. * M207: Set firmware retraction values
  4511. *
  4512. * S[+mm] retract_length
  4513. * W[+mm] retract_length_swap (multi-extruder)
  4514. * F[mm/min] retract_feedrate
  4515. * Z[mm] retract_zlift
  4516. */
  4517. inline void gcode_M207() {
  4518. if (code_seen('S')) retract_length = code_value();
  4519. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4520. if (code_seen('Z')) retract_zlift = code_value();
  4521. #if EXTRUDERS > 1
  4522. if (code_seen('W')) retract_length_swap = code_value();
  4523. #endif
  4524. }
  4525. /**
  4526. * M208: Set firmware un-retraction values
  4527. *
  4528. * S[+mm] retract_recover_length (in addition to M207 S*)
  4529. * W[+mm] retract_recover_length_swap (multi-extruder)
  4530. * F[mm/min] retract_recover_feedrate
  4531. */
  4532. inline void gcode_M208() {
  4533. if (code_seen('S')) retract_recover_length = code_value();
  4534. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4535. #if EXTRUDERS > 1
  4536. if (code_seen('W')) retract_recover_length_swap = code_value();
  4537. #endif
  4538. }
  4539. /**
  4540. * M209: Enable automatic retract (M209 S1)
  4541. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4542. */
  4543. inline void gcode_M209() {
  4544. if (code_seen('S')) {
  4545. int t = code_value_short();
  4546. switch (t) {
  4547. case 0:
  4548. autoretract_enabled = false;
  4549. break;
  4550. case 1:
  4551. autoretract_enabled = true;
  4552. break;
  4553. default:
  4554. unknown_command_error();
  4555. return;
  4556. }
  4557. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4558. }
  4559. }
  4560. #endif // FWRETRACT
  4561. #if EXTRUDERS > 1
  4562. /**
  4563. * M218 - set hotend offset (in mm)
  4564. *
  4565. * T<tool>
  4566. * X<xoffset>
  4567. * Y<yoffset>
  4568. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4569. */
  4570. inline void gcode_M218() {
  4571. if (get_target_extruder_from_command(218)) return;
  4572. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4573. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4574. #if ENABLED(DUAL_X_CARRIAGE)
  4575. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4576. #endif
  4577. SERIAL_ECHO_START;
  4578. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4579. for (int e = 0; e < EXTRUDERS; e++) {
  4580. SERIAL_CHAR(' ');
  4581. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4582. SERIAL_CHAR(',');
  4583. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4584. #if ENABLED(DUAL_X_CARRIAGE)
  4585. SERIAL_CHAR(',');
  4586. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4587. #endif
  4588. }
  4589. SERIAL_EOL;
  4590. }
  4591. #endif // EXTRUDERS > 1
  4592. /**
  4593. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4594. */
  4595. inline void gcode_M220() {
  4596. if (code_seen('S')) feedrate_multiplier = code_value();
  4597. }
  4598. /**
  4599. * M221: Set extrusion percentage (M221 T0 S95)
  4600. */
  4601. inline void gcode_M221() {
  4602. if (code_seen('S')) {
  4603. int sval = code_value();
  4604. if (get_target_extruder_from_command(221)) return;
  4605. extruder_multiplier[target_extruder] = sval;
  4606. }
  4607. }
  4608. /**
  4609. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4610. */
  4611. inline void gcode_M226() {
  4612. if (code_seen('P')) {
  4613. int pin_number = code_value();
  4614. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4615. if (pin_state >= -1 && pin_state <= 1) {
  4616. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4617. if (sensitive_pins[i] == pin_number) {
  4618. pin_number = -1;
  4619. break;
  4620. }
  4621. }
  4622. if (pin_number > -1) {
  4623. int target = LOW;
  4624. st_synchronize();
  4625. pinMode(pin_number, INPUT);
  4626. switch (pin_state) {
  4627. case 1:
  4628. target = HIGH;
  4629. break;
  4630. case 0:
  4631. target = LOW;
  4632. break;
  4633. case -1:
  4634. target = !digitalRead(pin_number);
  4635. break;
  4636. }
  4637. while (digitalRead(pin_number) != target) idle();
  4638. } // pin_number > -1
  4639. } // pin_state -1 0 1
  4640. } // code_seen('P')
  4641. }
  4642. #if HAS_SERVOS
  4643. /**
  4644. * M280: Get or set servo position. P<index> S<angle>
  4645. */
  4646. inline void gcode_M280() {
  4647. int servo_index = code_seen('P') ? code_value_short() : -1;
  4648. int servo_position = 0;
  4649. if (code_seen('S')) {
  4650. servo_position = code_value_short();
  4651. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4652. servo[servo_index].move(servo_position);
  4653. else {
  4654. SERIAL_ERROR_START;
  4655. SERIAL_ERROR("Servo ");
  4656. SERIAL_ERROR(servo_index);
  4657. SERIAL_ERRORLN(" out of range");
  4658. }
  4659. }
  4660. else if (servo_index >= 0) {
  4661. SERIAL_ECHO_START;
  4662. SERIAL_ECHO(" Servo ");
  4663. SERIAL_ECHO(servo_index);
  4664. SERIAL_ECHO(": ");
  4665. SERIAL_ECHOLN(servo[servo_index].read());
  4666. }
  4667. }
  4668. #endif // HAS_SERVOS
  4669. #if HAS_BUZZER
  4670. /**
  4671. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4672. */
  4673. inline void gcode_M300() {
  4674. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4675. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4676. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4677. buzz(beepP, beepS);
  4678. }
  4679. #endif // HAS_BUZZER
  4680. #if ENABLED(PIDTEMP)
  4681. /**
  4682. * M301: Set PID parameters P I D (and optionally C, L)
  4683. *
  4684. * P[float] Kp term
  4685. * I[float] Ki term (unscaled)
  4686. * D[float] Kd term (unscaled)
  4687. *
  4688. * With PID_ADD_EXTRUSION_RATE:
  4689. *
  4690. * C[float] Kc term
  4691. * L[float] LPQ length
  4692. */
  4693. inline void gcode_M301() {
  4694. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4695. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4696. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4697. if (e < EXTRUDERS) { // catch bad input value
  4698. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4699. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4700. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4701. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4702. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4703. if (code_seen('L')) lpq_len = code_value();
  4704. NOMORE(lpq_len, LPQ_MAX_LEN);
  4705. #endif
  4706. updatePID();
  4707. SERIAL_ECHO_START;
  4708. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4709. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4710. SERIAL_ECHO(e);
  4711. #endif // PID_PARAMS_PER_EXTRUDER
  4712. SERIAL_ECHO(" p:");
  4713. SERIAL_ECHO(PID_PARAM(Kp, e));
  4714. SERIAL_ECHO(" i:");
  4715. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4716. SERIAL_ECHO(" d:");
  4717. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4718. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4719. SERIAL_ECHO(" c:");
  4720. //Kc does not have scaling applied above, or in resetting defaults
  4721. SERIAL_ECHO(PID_PARAM(Kc, e));
  4722. #endif
  4723. SERIAL_EOL;
  4724. }
  4725. else {
  4726. SERIAL_ERROR_START;
  4727. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4728. }
  4729. }
  4730. #endif // PIDTEMP
  4731. #if ENABLED(PIDTEMPBED)
  4732. inline void gcode_M304() {
  4733. if (code_seen('P')) bedKp = code_value();
  4734. if (code_seen('I')) bedKi = scalePID_i(code_value());
  4735. if (code_seen('D')) bedKd = scalePID_d(code_value());
  4736. updatePID();
  4737. SERIAL_ECHO_START;
  4738. SERIAL_ECHO(" p:");
  4739. SERIAL_ECHO(bedKp);
  4740. SERIAL_ECHO(" i:");
  4741. SERIAL_ECHO(unscalePID_i(bedKi));
  4742. SERIAL_ECHO(" d:");
  4743. SERIAL_ECHOLN(unscalePID_d(bedKd));
  4744. }
  4745. #endif // PIDTEMPBED
  4746. #if defined(CHDK) || HAS_PHOTOGRAPH
  4747. /**
  4748. * M240: Trigger a camera by emulating a Canon RC-1
  4749. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4750. */
  4751. inline void gcode_M240() {
  4752. #ifdef CHDK
  4753. OUT_WRITE(CHDK, HIGH);
  4754. chdkHigh = millis();
  4755. chdkActive = true;
  4756. #elif HAS_PHOTOGRAPH
  4757. const uint8_t NUM_PULSES = 16;
  4758. const float PULSE_LENGTH = 0.01524;
  4759. for (int i = 0; i < NUM_PULSES; i++) {
  4760. WRITE(PHOTOGRAPH_PIN, HIGH);
  4761. _delay_ms(PULSE_LENGTH);
  4762. WRITE(PHOTOGRAPH_PIN, LOW);
  4763. _delay_ms(PULSE_LENGTH);
  4764. }
  4765. delay(7.33);
  4766. for (int i = 0; i < NUM_PULSES; i++) {
  4767. WRITE(PHOTOGRAPH_PIN, HIGH);
  4768. _delay_ms(PULSE_LENGTH);
  4769. WRITE(PHOTOGRAPH_PIN, LOW);
  4770. _delay_ms(PULSE_LENGTH);
  4771. }
  4772. #endif // !CHDK && HAS_PHOTOGRAPH
  4773. }
  4774. #endif // CHDK || PHOTOGRAPH_PIN
  4775. #if ENABLED(HAS_LCD_CONTRAST)
  4776. /**
  4777. * M250: Read and optionally set the LCD contrast
  4778. */
  4779. inline void gcode_M250() {
  4780. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4781. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4782. SERIAL_PROTOCOL(lcd_contrast);
  4783. SERIAL_EOL;
  4784. }
  4785. #endif // HAS_LCD_CONTRAST
  4786. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4787. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  4788. /**
  4789. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4790. */
  4791. inline void gcode_M302() {
  4792. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  4793. }
  4794. #endif // PREVENT_DANGEROUS_EXTRUDE
  4795. /**
  4796. * M303: PID relay autotune
  4797. *
  4798. * S<temperature> sets the target temperature. (default 150C)
  4799. * E<extruder> (-1 for the bed) (default 0)
  4800. * C<cycles>
  4801. * U<bool> with a non-zero value will apply the result to current settings
  4802. */
  4803. inline void gcode_M303() {
  4804. #if HAS_PID_HEATING
  4805. int e = code_seen('E') ? code_value_short() : 0;
  4806. int c = code_seen('C') ? code_value_short() : 5;
  4807. bool u = code_seen('U') && code_value_short() != 0;
  4808. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4809. if (e >= 0 && e < EXTRUDERS)
  4810. target_extruder = e;
  4811. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4812. PID_autotune(temp, e, c, u);
  4813. KEEPALIVE_STATE(IN_HANDLER);
  4814. #else
  4815. SERIAL_ERROR_START;
  4816. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4817. #endif
  4818. }
  4819. #if ENABLED(SCARA)
  4820. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4821. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4822. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4823. if (IsRunning()) {
  4824. //gcode_get_destination(); // For X Y Z E F
  4825. delta[X_AXIS] = delta_x;
  4826. delta[Y_AXIS] = delta_y;
  4827. calculate_SCARA_forward_Transform(delta);
  4828. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4829. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4830. prepare_move();
  4831. //ok_to_send();
  4832. return true;
  4833. }
  4834. return false;
  4835. }
  4836. /**
  4837. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4838. */
  4839. inline bool gcode_M360() {
  4840. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4841. return SCARA_move_to_cal(0, 120);
  4842. }
  4843. /**
  4844. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4845. */
  4846. inline bool gcode_M361() {
  4847. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4848. return SCARA_move_to_cal(90, 130);
  4849. }
  4850. /**
  4851. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4852. */
  4853. inline bool gcode_M362() {
  4854. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4855. return SCARA_move_to_cal(60, 180);
  4856. }
  4857. /**
  4858. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4859. */
  4860. inline bool gcode_M363() {
  4861. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4862. return SCARA_move_to_cal(50, 90);
  4863. }
  4864. /**
  4865. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4866. */
  4867. inline bool gcode_M364() {
  4868. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4869. return SCARA_move_to_cal(45, 135);
  4870. }
  4871. /**
  4872. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4873. */
  4874. inline void gcode_M365() {
  4875. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4876. if (code_seen(axis_codes[i])) {
  4877. axis_scaling[i] = code_value();
  4878. }
  4879. }
  4880. }
  4881. #endif // SCARA
  4882. #if ENABLED(EXT_SOLENOID)
  4883. void enable_solenoid(uint8_t num) {
  4884. switch (num) {
  4885. case 0:
  4886. OUT_WRITE(SOL0_PIN, HIGH);
  4887. break;
  4888. #if HAS_SOLENOID_1
  4889. case 1:
  4890. OUT_WRITE(SOL1_PIN, HIGH);
  4891. break;
  4892. #endif
  4893. #if HAS_SOLENOID_2
  4894. case 2:
  4895. OUT_WRITE(SOL2_PIN, HIGH);
  4896. break;
  4897. #endif
  4898. #if HAS_SOLENOID_3
  4899. case 3:
  4900. OUT_WRITE(SOL3_PIN, HIGH);
  4901. break;
  4902. #endif
  4903. default:
  4904. SERIAL_ECHO_START;
  4905. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4906. break;
  4907. }
  4908. }
  4909. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4910. void disable_all_solenoids() {
  4911. OUT_WRITE(SOL0_PIN, LOW);
  4912. OUT_WRITE(SOL1_PIN, LOW);
  4913. OUT_WRITE(SOL2_PIN, LOW);
  4914. OUT_WRITE(SOL3_PIN, LOW);
  4915. }
  4916. /**
  4917. * M380: Enable solenoid on the active extruder
  4918. */
  4919. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4920. /**
  4921. * M381: Disable all solenoids
  4922. */
  4923. inline void gcode_M381() { disable_all_solenoids(); }
  4924. #endif // EXT_SOLENOID
  4925. /**
  4926. * M400: Finish all moves
  4927. */
  4928. inline void gcode_M400() { st_synchronize(); }
  4929. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4930. /**
  4931. * M401: Engage Z Servo endstop if available
  4932. */
  4933. inline void gcode_M401() {
  4934. #if HAS_SERVO_ENDSTOPS
  4935. raise_z_for_servo();
  4936. #endif
  4937. deploy_z_probe();
  4938. }
  4939. /**
  4940. * M402: Retract Z Servo endstop if enabled
  4941. */
  4942. inline void gcode_M402() {
  4943. #if HAS_SERVO_ENDSTOPS
  4944. raise_z_for_servo();
  4945. #endif
  4946. stow_z_probe(false);
  4947. }
  4948. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4949. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4950. /**
  4951. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4952. */
  4953. inline void gcode_M404() {
  4954. if (code_seen('W')) {
  4955. filament_width_nominal = code_value();
  4956. }
  4957. else {
  4958. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4959. SERIAL_PROTOCOLLN(filament_width_nominal);
  4960. }
  4961. }
  4962. /**
  4963. * M405: Turn on filament sensor for control
  4964. */
  4965. inline void gcode_M405() {
  4966. if (code_seen('D')) meas_delay_cm = code_value();
  4967. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4968. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  4969. int temp_ratio = widthFil_to_size_ratio();
  4970. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  4971. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  4972. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  4973. }
  4974. filament_sensor = true;
  4975. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4976. //SERIAL_PROTOCOL(filament_width_meas);
  4977. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4978. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4979. }
  4980. /**
  4981. * M406: Turn off filament sensor for control
  4982. */
  4983. inline void gcode_M406() { filament_sensor = false; }
  4984. /**
  4985. * M407: Get measured filament diameter on serial output
  4986. */
  4987. inline void gcode_M407() {
  4988. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4989. SERIAL_PROTOCOLLN(filament_width_meas);
  4990. }
  4991. #endif // FILAMENT_WIDTH_SENSOR
  4992. /**
  4993. * M410: Quickstop - Abort all planned moves
  4994. *
  4995. * This will stop the carriages mid-move, so most likely they
  4996. * will be out of sync with the stepper position after this.
  4997. */
  4998. inline void gcode_M410() { quickStop(); }
  4999. #if ENABLED(MESH_BED_LEVELING)
  5000. /**
  5001. * M420: Enable/Disable Mesh Bed Leveling
  5002. */
  5003. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  5004. /**
  5005. * M421: Set a single Mesh Bed Leveling Z coordinate
  5006. */
  5007. inline void gcode_M421() {
  5008. float x = 0, y = 0, z = 0;
  5009. bool err = false, hasX, hasY, hasZ;
  5010. if ((hasX = code_seen('X'))) x = code_value();
  5011. if ((hasY = code_seen('Y'))) y = code_value();
  5012. if ((hasZ = code_seen('Z'))) z = code_value();
  5013. if (!hasX || !hasY || !hasZ) {
  5014. SERIAL_ERROR_START;
  5015. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  5016. err = true;
  5017. }
  5018. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  5019. SERIAL_ERROR_START;
  5020. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  5021. err = true;
  5022. }
  5023. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  5024. }
  5025. #endif
  5026. /**
  5027. * M428: Set home_offset based on the distance between the
  5028. * current_position and the nearest "reference point."
  5029. * If an axis is past center its endstop position
  5030. * is the reference-point. Otherwise it uses 0. This allows
  5031. * the Z offset to be set near the bed when using a max endstop.
  5032. *
  5033. * M428 can't be used more than 2cm away from 0 or an endstop.
  5034. *
  5035. * Use M206 to set these values directly.
  5036. */
  5037. inline void gcode_M428() {
  5038. bool err = false;
  5039. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5040. if (axis_homed[i]) {
  5041. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5042. diff = current_position[i] - base;
  5043. if (diff > -20 && diff < 20) {
  5044. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5045. }
  5046. else {
  5047. SERIAL_ERROR_START;
  5048. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5049. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5050. #if HAS_BUZZER
  5051. buzz(200, 40);
  5052. #endif
  5053. err = true;
  5054. break;
  5055. }
  5056. }
  5057. }
  5058. if (!err) {
  5059. sync_plan_position();
  5060. report_current_position();
  5061. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5062. #if HAS_BUZZER
  5063. buzz(200, 659);
  5064. buzz(200, 698);
  5065. #endif
  5066. }
  5067. }
  5068. /**
  5069. * M500: Store settings in EEPROM
  5070. */
  5071. inline void gcode_M500() {
  5072. Config_StoreSettings();
  5073. }
  5074. /**
  5075. * M501: Read settings from EEPROM
  5076. */
  5077. inline void gcode_M501() {
  5078. Config_RetrieveSettings();
  5079. }
  5080. /**
  5081. * M502: Revert to default settings
  5082. */
  5083. inline void gcode_M502() {
  5084. Config_ResetDefault();
  5085. }
  5086. /**
  5087. * M503: print settings currently in memory
  5088. */
  5089. inline void gcode_M503() {
  5090. Config_PrintSettings(code_seen('S') && code_value() == 0);
  5091. }
  5092. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5093. /**
  5094. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5095. */
  5096. inline void gcode_M540() {
  5097. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  5098. }
  5099. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5100. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5101. inline void gcode_SET_Z_PROBE_OFFSET() {
  5102. SERIAL_ECHO_START;
  5103. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5104. SERIAL_CHAR(' ');
  5105. if (code_seen('Z')) {
  5106. float value = code_value();
  5107. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5108. zprobe_zoffset = value;
  5109. SERIAL_ECHO(zprobe_zoffset);
  5110. }
  5111. else {
  5112. SERIAL_ECHOPGM(MSG_Z_MIN);
  5113. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5114. SERIAL_ECHOPGM(MSG_Z_MAX);
  5115. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5116. }
  5117. }
  5118. else {
  5119. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5120. }
  5121. SERIAL_EOL;
  5122. }
  5123. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5124. #if ENABLED(FILAMENTCHANGEENABLE)
  5125. /**
  5126. * M600: Pause for filament change
  5127. *
  5128. * E[distance] - Retract the filament this far (negative value)
  5129. * Z[distance] - Move the Z axis by this distance
  5130. * X[position] - Move to this X position, with Y
  5131. * Y[position] - Move to this Y position, with X
  5132. * L[distance] - Retract distance for removal (manual reload)
  5133. *
  5134. * Default values are used for omitted arguments.
  5135. *
  5136. */
  5137. inline void gcode_M600() {
  5138. if (degHotend(active_extruder) < extrude_min_temp) {
  5139. SERIAL_ERROR_START;
  5140. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5141. return;
  5142. }
  5143. float lastpos[NUM_AXIS];
  5144. #if ENABLED(DELTA)
  5145. float fr60 = feedrate / 60;
  5146. #endif
  5147. for (int i = 0; i < NUM_AXIS; i++)
  5148. lastpos[i] = destination[i] = current_position[i];
  5149. #if ENABLED(DELTA)
  5150. #define RUNPLAN calculate_delta(destination); \
  5151. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5152. #else
  5153. #define RUNPLAN line_to_destination();
  5154. #endif
  5155. //retract by E
  5156. if (code_seen('E')) destination[E_AXIS] += code_value();
  5157. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5158. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  5159. #endif
  5160. RUNPLAN;
  5161. //lift Z
  5162. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  5163. #ifdef FILAMENTCHANGE_ZADD
  5164. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  5165. #endif
  5166. RUNPLAN;
  5167. //move xy
  5168. if (code_seen('X')) destination[X_AXIS] = code_value();
  5169. #ifdef FILAMENTCHANGE_XPOS
  5170. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  5171. #endif
  5172. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  5173. #ifdef FILAMENTCHANGE_YPOS
  5174. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  5175. #endif
  5176. RUNPLAN;
  5177. if (code_seen('L')) destination[E_AXIS] += code_value();
  5178. #ifdef FILAMENTCHANGE_FINALRETRACT
  5179. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5180. #endif
  5181. RUNPLAN;
  5182. //finish moves
  5183. st_synchronize();
  5184. //disable extruder steppers so filament can be removed
  5185. disable_e0();
  5186. disable_e1();
  5187. disable_e2();
  5188. disable_e3();
  5189. delay(100);
  5190. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  5191. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5192. millis_t next_tick = 0;
  5193. #endif
  5194. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5195. while (!lcd_clicked()) {
  5196. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5197. millis_t ms = millis();
  5198. if (ELAPSED(ms, next_tick)) {
  5199. lcd_quick_feedback();
  5200. next_tick = ms + 2500UL; // feedback every 2.5s while waiting
  5201. }
  5202. idle(true);
  5203. #else
  5204. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  5205. destination[E_AXIS] = current_position[E_AXIS];
  5206. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  5207. st_synchronize();
  5208. #endif
  5209. } // while(!lcd_clicked)
  5210. KEEPALIVE_STATE(IN_HANDLER);
  5211. lcd_quick_feedback(); // click sound feedback
  5212. #if ENABLED(AUTO_FILAMENT_CHANGE)
  5213. current_position[E_AXIS] = 0;
  5214. st_synchronize();
  5215. #endif
  5216. //return to normal
  5217. if (code_seen('L')) destination[E_AXIS] -= code_value();
  5218. #ifdef FILAMENTCHANGE_FINALRETRACT
  5219. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5220. #endif
  5221. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  5222. sync_plan_position_e();
  5223. RUNPLAN; //should do nothing
  5224. lcd_reset_alert_level();
  5225. #if ENABLED(DELTA)
  5226. // Move XYZ to starting position, then E
  5227. calculate_delta(lastpos);
  5228. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5229. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  5230. #else
  5231. // Move XY to starting position, then Z, then E
  5232. destination[X_AXIS] = lastpos[X_AXIS];
  5233. destination[Y_AXIS] = lastpos[Y_AXIS];
  5234. line_to_destination();
  5235. destination[Z_AXIS] = lastpos[Z_AXIS];
  5236. line_to_destination();
  5237. destination[E_AXIS] = lastpos[E_AXIS];
  5238. line_to_destination();
  5239. #endif
  5240. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5241. filament_ran_out = false;
  5242. #endif
  5243. }
  5244. #endif // FILAMENTCHANGEENABLE
  5245. #if ENABLED(DUAL_X_CARRIAGE)
  5246. /**
  5247. * M605: Set dual x-carriage movement mode
  5248. *
  5249. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5250. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5251. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5252. * millimeters x-offset and an optional differential hotend temperature of
  5253. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5254. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5255. *
  5256. * Note: the X axis should be homed after changing dual x-carriage mode.
  5257. */
  5258. inline void gcode_M605() {
  5259. st_synchronize();
  5260. if (code_seen('S')) dual_x_carriage_mode = code_value();
  5261. switch (dual_x_carriage_mode) {
  5262. case DXC_DUPLICATION_MODE:
  5263. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  5264. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  5265. SERIAL_ECHO_START;
  5266. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5267. SERIAL_CHAR(' ');
  5268. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  5269. SERIAL_CHAR(',');
  5270. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  5271. SERIAL_CHAR(' ');
  5272. SERIAL_ECHO(duplicate_extruder_x_offset);
  5273. SERIAL_CHAR(',');
  5274. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  5275. break;
  5276. case DXC_FULL_CONTROL_MODE:
  5277. case DXC_AUTO_PARK_MODE:
  5278. break;
  5279. default:
  5280. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5281. break;
  5282. }
  5283. active_extruder_parked = false;
  5284. extruder_duplication_enabled = false;
  5285. delayed_move_time = 0;
  5286. }
  5287. #endif // DUAL_X_CARRIAGE
  5288. /**
  5289. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5290. */
  5291. inline void gcode_M907() {
  5292. #if HAS_DIGIPOTSS
  5293. for (int i = 0; i < NUM_AXIS; i++)
  5294. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  5295. if (code_seen('B')) digipot_current(4, code_value());
  5296. if (code_seen('S')) for (int i = 0; i <= 4; i++) digipot_current(i, code_value());
  5297. #endif
  5298. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5299. if (code_seen('X')) digipot_current(0, code_value());
  5300. #endif
  5301. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5302. if (code_seen('Z')) digipot_current(1, code_value());
  5303. #endif
  5304. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5305. if (code_seen('E')) digipot_current(2, code_value());
  5306. #endif
  5307. #if ENABLED(DIGIPOT_I2C)
  5308. // this one uses actual amps in floating point
  5309. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5310. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5311. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  5312. #endif
  5313. #if ENABLED(DAC_STEPPER_CURRENT)
  5314. if (code_seen('S')) {
  5315. float dac_percent = code_value();
  5316. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5317. }
  5318. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  5319. #endif
  5320. }
  5321. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5322. /**
  5323. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5324. */
  5325. inline void gcode_M908() {
  5326. #if HAS_DIGIPOTSS
  5327. digitalPotWrite(
  5328. code_seen('P') ? code_value() : 0,
  5329. code_seen('S') ? code_value() : 0
  5330. );
  5331. #endif
  5332. #ifdef DAC_STEPPER_CURRENT
  5333. dac_current_raw(
  5334. code_seen('P') ? code_value_long() : -1,
  5335. code_seen('S') ? code_value_short() : 0
  5336. );
  5337. #endif
  5338. }
  5339. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5340. inline void gcode_M909() { dac_print_values(); }
  5341. inline void gcode_M910() { dac_commit_eeprom(); }
  5342. #endif
  5343. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5344. #if HAS_MICROSTEPS
  5345. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5346. inline void gcode_M350() {
  5347. if (code_seen('S')) for (int i = 0; i <= 4; i++) microstep_mode(i, code_value());
  5348. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_mode(i, (uint8_t)code_value());
  5349. if (code_seen('B')) microstep_mode(4, code_value());
  5350. microstep_readings();
  5351. }
  5352. /**
  5353. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5354. * S# determines MS1 or MS2, X# sets the pin high/low.
  5355. */
  5356. inline void gcode_M351() {
  5357. if (code_seen('S')) switch (code_value_short()) {
  5358. case 1:
  5359. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  5360. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  5361. break;
  5362. case 2:
  5363. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  5364. if (code_seen('B')) microstep_ms(4, -1, code_value());
  5365. break;
  5366. }
  5367. microstep_readings();
  5368. }
  5369. #endif // HAS_MICROSTEPS
  5370. /**
  5371. * M999: Restart after being stopped
  5372. */
  5373. inline void gcode_M999() {
  5374. Running = true;
  5375. lcd_reset_alert_level();
  5376. // gcode_LastN = Stopped_gcode_LastN;
  5377. FlushSerialRequestResend();
  5378. }
  5379. /**
  5380. * T0-T3: Switch tool, usually switching extruders
  5381. *
  5382. * F[mm/min] Set the movement feedrate
  5383. */
  5384. inline void gcode_T(uint8_t tmp_extruder) {
  5385. if (tmp_extruder >= EXTRUDERS) {
  5386. SERIAL_ECHO_START;
  5387. SERIAL_CHAR('T');
  5388. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5389. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5390. return;
  5391. }
  5392. float stored_feedrate = feedrate;
  5393. if (code_seen('F')) {
  5394. float next_feedrate = code_value();
  5395. if (next_feedrate > 0.0) stored_feedrate = feedrate = next_feedrate;
  5396. }
  5397. else {
  5398. #ifdef XY_TRAVEL_SPEED
  5399. feedrate = XY_TRAVEL_SPEED;
  5400. #else
  5401. feedrate = min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]);
  5402. #endif
  5403. }
  5404. #if EXTRUDERS > 1
  5405. if (tmp_extruder != active_extruder) {
  5406. // Save current position to return to after applying extruder offset
  5407. set_destination_to_current();
  5408. #if ENABLED(DUAL_X_CARRIAGE)
  5409. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5410. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5411. // Park old head: 1) raise 2) move to park position 3) lower
  5412. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5413. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5414. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5415. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  5416. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5417. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5418. st_synchronize();
  5419. }
  5420. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5421. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  5422. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  5423. active_extruder = tmp_extruder;
  5424. // This function resets the max/min values - the current position may be overwritten below.
  5425. set_axis_is_at_home(X_AXIS);
  5426. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5427. current_position[X_AXIS] = inactive_extruder_x_pos;
  5428. inactive_extruder_x_pos = destination[X_AXIS];
  5429. }
  5430. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5431. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5432. if (active_extruder_parked)
  5433. current_position[X_AXIS] = inactive_extruder_x_pos;
  5434. else
  5435. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5436. inactive_extruder_x_pos = destination[X_AXIS];
  5437. extruder_duplication_enabled = false;
  5438. }
  5439. else {
  5440. // record raised toolhead position for use by unpark
  5441. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5442. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5443. active_extruder_parked = true;
  5444. delayed_move_time = 0;
  5445. }
  5446. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5447. #else // !DUAL_X_CARRIAGE
  5448. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5449. // Offset extruder, make sure to apply the bed level rotation matrix
  5450. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  5451. extruder_offset[Y_AXIS][tmp_extruder],
  5452. 0),
  5453. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  5454. extruder_offset[Y_AXIS][active_extruder],
  5455. 0),
  5456. offset_vec = tmp_offset_vec - act_offset_vec;
  5457. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5458. if (DEBUGGING(LEVELING)) {
  5459. SERIAL_ECHOLNPGM(">>> gcode_T");
  5460. tmp_offset_vec.debug("tmp_offset_vec");
  5461. act_offset_vec.debug("act_offset_vec");
  5462. offset_vec.debug("offset_vec (BEFORE)");
  5463. DEBUG_POS("BEFORE rotation", current_position);
  5464. }
  5465. #endif
  5466. offset_vec.apply_rotation(plan_bed_level_matrix.transpose(plan_bed_level_matrix));
  5467. current_position[X_AXIS] += offset_vec.x;
  5468. current_position[Y_AXIS] += offset_vec.y;
  5469. current_position[Z_AXIS] += offset_vec.z;
  5470. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5471. if (DEBUGGING(LEVELING)) {
  5472. offset_vec.debug("offset_vec (AFTER)");
  5473. DEBUG_POS("AFTER rotation", current_position);
  5474. SERIAL_ECHOLNPGM("<<< gcode_T");
  5475. }
  5476. #endif
  5477. #else // !AUTO_BED_LEVELING_FEATURE
  5478. // Offset extruder (only by XY)
  5479. for (int i=X_AXIS; i<=Y_AXIS; i++)
  5480. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  5481. #endif // !AUTO_BED_LEVELING_FEATURE
  5482. // Set the new active extruder and position
  5483. active_extruder = tmp_extruder;
  5484. #endif // !DUAL_X_CARRIAGE
  5485. #if ENABLED(DELTA)
  5486. sync_plan_position_delta();
  5487. #else
  5488. sync_plan_position();
  5489. #endif
  5490. // Move to the old position
  5491. if (IsRunning()) prepare_move();
  5492. } // (tmp_extruder != active_extruder)
  5493. #if ENABLED(EXT_SOLENOID)
  5494. st_synchronize();
  5495. disable_all_solenoids();
  5496. enable_solenoid_on_active_extruder();
  5497. #endif // EXT_SOLENOID
  5498. #endif // EXTRUDERS > 1
  5499. feedrate = stored_feedrate;
  5500. SERIAL_ECHO_START;
  5501. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5502. SERIAL_PROTOCOLLN((int)active_extruder);
  5503. }
  5504. /**
  5505. * Process a single command and dispatch it to its handler
  5506. * This is called from the main loop()
  5507. */
  5508. void process_next_command() {
  5509. current_command = command_queue[cmd_queue_index_r];
  5510. if (DEBUGGING(ECHO)) {
  5511. SERIAL_ECHO_START;
  5512. SERIAL_ECHOLN(current_command);
  5513. }
  5514. // Sanitize the current command:
  5515. // - Skip leading spaces
  5516. // - Bypass N[-0-9][0-9]*[ ]*
  5517. // - Overwrite * with nul to mark the end
  5518. while (*current_command == ' ') ++current_command;
  5519. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5520. current_command += 2; // skip N[-0-9]
  5521. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5522. while (*current_command == ' ') ++current_command; // skip [ ]*
  5523. }
  5524. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5525. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5526. char *cmd_ptr = current_command;
  5527. // Get the command code, which must be G, M, or T
  5528. char command_code = *cmd_ptr++;
  5529. // Skip spaces to get the numeric part
  5530. while (*cmd_ptr == ' ') cmd_ptr++;
  5531. uint16_t codenum = 0; // define ahead of goto
  5532. // Bail early if there's no code
  5533. bool code_is_good = NUMERIC(*cmd_ptr);
  5534. if (!code_is_good) goto ExitUnknownCommand;
  5535. // Get and skip the code number
  5536. do {
  5537. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5538. cmd_ptr++;
  5539. } while (NUMERIC(*cmd_ptr));
  5540. // Skip all spaces to get to the first argument, or nul
  5541. while (*cmd_ptr == ' ') cmd_ptr++;
  5542. // The command's arguments (if any) start here, for sure!
  5543. current_command_args = cmd_ptr;
  5544. KEEPALIVE_STATE(IN_HANDLER);
  5545. // Handle a known G, M, or T
  5546. switch (command_code) {
  5547. case 'G': switch (codenum) {
  5548. // G0, G1
  5549. case 0:
  5550. case 1:
  5551. gcode_G0_G1();
  5552. break;
  5553. // G2, G3
  5554. #if DISABLED(SCARA)
  5555. case 2: // G2 - CW ARC
  5556. case 3: // G3 - CCW ARC
  5557. gcode_G2_G3(codenum == 2);
  5558. break;
  5559. #endif
  5560. // G4 Dwell
  5561. case 4:
  5562. gcode_G4();
  5563. break;
  5564. #if ENABLED(FWRETRACT)
  5565. case 10: // G10: retract
  5566. case 11: // G11: retract_recover
  5567. gcode_G10_G11(codenum == 10);
  5568. break;
  5569. #endif //FWRETRACT
  5570. case 28: // G28: Home all axes, one at a time
  5571. gcode_G28();
  5572. break;
  5573. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5574. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5575. gcode_G29();
  5576. break;
  5577. #endif
  5578. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5579. #if DISABLED(Z_PROBE_SLED)
  5580. case 30: // G30 Single Z probe
  5581. gcode_G30();
  5582. break;
  5583. #else // Z_PROBE_SLED
  5584. case 31: // G31: dock the sled
  5585. case 32: // G32: undock the sled
  5586. dock_sled(codenum == 31);
  5587. break;
  5588. #endif // Z_PROBE_SLED
  5589. #endif // AUTO_BED_LEVELING_FEATURE
  5590. case 90: // G90
  5591. relative_mode = false;
  5592. break;
  5593. case 91: // G91
  5594. relative_mode = true;
  5595. break;
  5596. case 92: // G92
  5597. gcode_G92();
  5598. break;
  5599. }
  5600. break;
  5601. case 'M': switch (codenum) {
  5602. #if ENABLED(ULTIPANEL)
  5603. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5604. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5605. gcode_M0_M1();
  5606. break;
  5607. #endif // ULTIPANEL
  5608. case 17:
  5609. gcode_M17();
  5610. break;
  5611. #if ENABLED(SDSUPPORT)
  5612. case 20: // M20 - list SD card
  5613. gcode_M20(); break;
  5614. case 21: // M21 - init SD card
  5615. gcode_M21(); break;
  5616. case 22: //M22 - release SD card
  5617. gcode_M22(); break;
  5618. case 23: //M23 - Select file
  5619. gcode_M23(); break;
  5620. case 24: //M24 - Start SD print
  5621. gcode_M24(); break;
  5622. case 25: //M25 - Pause SD print
  5623. gcode_M25(); break;
  5624. case 26: //M26 - Set SD index
  5625. gcode_M26(); break;
  5626. case 27: //M27 - Get SD status
  5627. gcode_M27(); break;
  5628. case 28: //M28 - Start SD write
  5629. gcode_M28(); break;
  5630. case 29: //M29 - Stop SD write
  5631. gcode_M29(); break;
  5632. case 30: //M30 <filename> Delete File
  5633. gcode_M30(); break;
  5634. case 32: //M32 - Select file and start SD print
  5635. gcode_M32(); break;
  5636. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5637. case 33: //M33 - Get the long full path to a file or folder
  5638. gcode_M33(); break;
  5639. #endif // LONG_FILENAME_HOST_SUPPORT
  5640. case 928: //M928 - Start SD write
  5641. gcode_M928(); break;
  5642. #endif //SDSUPPORT
  5643. case 31: //M31 take time since the start of the SD print or an M109 command
  5644. gcode_M31();
  5645. break;
  5646. case 42: //M42 -Change pin status via gcode
  5647. gcode_M42();
  5648. break;
  5649. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5650. case 48: // M48 Z probe repeatability
  5651. gcode_M48();
  5652. break;
  5653. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5654. case 75: // Start print timer
  5655. gcode_M75();
  5656. break;
  5657. case 76: // Pause print timer
  5658. gcode_M76();
  5659. break;
  5660. case 77: // Stop print timer
  5661. gcode_M77();
  5662. break;
  5663. #if ENABLED(PRINTCOUNTER)
  5664. case 78: // Show print statistics
  5665. gcode_M78();
  5666. break;
  5667. #endif
  5668. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5669. case 100:
  5670. gcode_M100();
  5671. break;
  5672. #endif
  5673. case 104: // M104
  5674. gcode_M104();
  5675. break;
  5676. case 110: // M110: Set Current Line Number
  5677. gcode_M110();
  5678. break;
  5679. case 111: // M111: Set debug level
  5680. gcode_M111();
  5681. break;
  5682. case 112: // M112: Emergency Stop
  5683. gcode_M112();
  5684. break;
  5685. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5686. case 113: // M113: Set Host Keepalive interval
  5687. gcode_M113();
  5688. break;
  5689. #endif
  5690. case 140: // M140: Set bed temp
  5691. gcode_M140();
  5692. break;
  5693. case 105: // M105: Read current temperature
  5694. gcode_M105();
  5695. KEEPALIVE_STATE(NOT_BUSY);
  5696. return; // "ok" already printed
  5697. case 109: // M109: Wait for temperature
  5698. gcode_M109();
  5699. break;
  5700. #if HAS_TEMP_BED
  5701. case 190: // M190: Wait for bed heater to reach target
  5702. gcode_M190();
  5703. break;
  5704. #endif // HAS_TEMP_BED
  5705. #if FAN_COUNT > 0
  5706. case 106: // M106: Fan On
  5707. gcode_M106();
  5708. break;
  5709. case 107: // M107: Fan Off
  5710. gcode_M107();
  5711. break;
  5712. #endif // FAN_COUNT > 0
  5713. #if ENABLED(BARICUDA)
  5714. // PWM for HEATER_1_PIN
  5715. #if HAS_HEATER_1
  5716. case 126: // M126: valve open
  5717. gcode_M126();
  5718. break;
  5719. case 127: // M127: valve closed
  5720. gcode_M127();
  5721. break;
  5722. #endif // HAS_HEATER_1
  5723. // PWM for HEATER_2_PIN
  5724. #if HAS_HEATER_2
  5725. case 128: // M128: valve open
  5726. gcode_M128();
  5727. break;
  5728. case 129: // M129: valve closed
  5729. gcode_M129();
  5730. break;
  5731. #endif // HAS_HEATER_2
  5732. #endif // BARICUDA
  5733. #if HAS_POWER_SWITCH
  5734. case 80: // M80: Turn on Power Supply
  5735. gcode_M80();
  5736. break;
  5737. #endif // HAS_POWER_SWITCH
  5738. case 81: // M81: Turn off Power, including Power Supply, if possible
  5739. gcode_M81();
  5740. break;
  5741. case 82:
  5742. gcode_M82();
  5743. break;
  5744. case 83:
  5745. gcode_M83();
  5746. break;
  5747. case 18: // (for compatibility)
  5748. case 84: // M84
  5749. gcode_M18_M84();
  5750. break;
  5751. case 85: // M85
  5752. gcode_M85();
  5753. break;
  5754. case 92: // M92: Set the steps-per-unit for one or more axes
  5755. gcode_M92();
  5756. break;
  5757. case 115: // M115: Report capabilities
  5758. gcode_M115();
  5759. break;
  5760. case 117: // M117: Set LCD message text, if possible
  5761. gcode_M117();
  5762. break;
  5763. case 114: // M114: Report current position
  5764. gcode_M114();
  5765. break;
  5766. case 120: // M120: Enable endstops
  5767. gcode_M120();
  5768. break;
  5769. case 121: // M121: Disable endstops
  5770. gcode_M121();
  5771. break;
  5772. case 119: // M119: Report endstop states
  5773. gcode_M119();
  5774. break;
  5775. #if ENABLED(ULTIPANEL)
  5776. case 145: // M145: Set material heatup parameters
  5777. gcode_M145();
  5778. break;
  5779. #endif
  5780. #if ENABLED(BLINKM)
  5781. case 150: // M150
  5782. gcode_M150();
  5783. break;
  5784. #endif //BLINKM
  5785. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5786. case 155:
  5787. gcode_M155();
  5788. break;
  5789. case 156:
  5790. gcode_M156();
  5791. break;
  5792. #endif //EXPERIMENTAL_I2CBUS
  5793. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5794. gcode_M200();
  5795. break;
  5796. case 201: // M201
  5797. gcode_M201();
  5798. break;
  5799. #if 0 // Not used for Sprinter/grbl gen6
  5800. case 202: // M202
  5801. gcode_M202();
  5802. break;
  5803. #endif
  5804. case 203: // M203 max feedrate mm/sec
  5805. gcode_M203();
  5806. break;
  5807. case 204: // M204 acclereration S normal moves T filmanent only moves
  5808. gcode_M204();
  5809. break;
  5810. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5811. gcode_M205();
  5812. break;
  5813. case 206: // M206 additional homing offset
  5814. gcode_M206();
  5815. break;
  5816. #if ENABLED(DELTA)
  5817. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5818. gcode_M665();
  5819. break;
  5820. #endif
  5821. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5822. case 666: // M666 set delta / dual endstop adjustment
  5823. gcode_M666();
  5824. break;
  5825. #endif
  5826. #if ENABLED(FWRETRACT)
  5827. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5828. gcode_M207();
  5829. break;
  5830. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5831. gcode_M208();
  5832. break;
  5833. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5834. gcode_M209();
  5835. break;
  5836. #endif // FWRETRACT
  5837. #if EXTRUDERS > 1
  5838. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5839. gcode_M218();
  5840. break;
  5841. #endif
  5842. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5843. gcode_M220();
  5844. break;
  5845. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5846. gcode_M221();
  5847. break;
  5848. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5849. gcode_M226();
  5850. break;
  5851. #if HAS_SERVOS
  5852. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5853. gcode_M280();
  5854. break;
  5855. #endif // HAS_SERVOS
  5856. #if HAS_BUZZER
  5857. case 300: // M300 - Play beep tone
  5858. gcode_M300();
  5859. break;
  5860. #endif // HAS_BUZZER
  5861. #if ENABLED(PIDTEMP)
  5862. case 301: // M301
  5863. gcode_M301();
  5864. break;
  5865. #endif // PIDTEMP
  5866. #if ENABLED(PIDTEMPBED)
  5867. case 304: // M304
  5868. gcode_M304();
  5869. break;
  5870. #endif // PIDTEMPBED
  5871. #if defined(CHDK) || HAS_PHOTOGRAPH
  5872. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5873. gcode_M240();
  5874. break;
  5875. #endif // CHDK || PHOTOGRAPH_PIN
  5876. #if ENABLED(HAS_LCD_CONTRAST)
  5877. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5878. gcode_M250();
  5879. break;
  5880. #endif // HAS_LCD_CONTRAST
  5881. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5882. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5883. gcode_M302();
  5884. break;
  5885. #endif // PREVENT_DANGEROUS_EXTRUDE
  5886. case 303: // M303 PID autotune
  5887. gcode_M303();
  5888. break;
  5889. #if ENABLED(SCARA)
  5890. case 360: // M360 SCARA Theta pos1
  5891. if (gcode_M360()) return;
  5892. break;
  5893. case 361: // M361 SCARA Theta pos2
  5894. if (gcode_M361()) return;
  5895. break;
  5896. case 362: // M362 SCARA Psi pos1
  5897. if (gcode_M362()) return;
  5898. break;
  5899. case 363: // M363 SCARA Psi pos2
  5900. if (gcode_M363()) return;
  5901. break;
  5902. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5903. if (gcode_M364()) return;
  5904. break;
  5905. case 365: // M365 Set SCARA scaling for X Y Z
  5906. gcode_M365();
  5907. break;
  5908. #endif // SCARA
  5909. case 400: // M400 finish all moves
  5910. gcode_M400();
  5911. break;
  5912. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5913. case 401:
  5914. gcode_M401();
  5915. break;
  5916. case 402:
  5917. gcode_M402();
  5918. break;
  5919. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5920. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5921. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5922. gcode_M404();
  5923. break;
  5924. case 405: //M405 Turn on filament sensor for control
  5925. gcode_M405();
  5926. break;
  5927. case 406: //M406 Turn off filament sensor for control
  5928. gcode_M406();
  5929. break;
  5930. case 407: //M407 Display measured filament diameter
  5931. gcode_M407();
  5932. break;
  5933. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  5934. case 410: // M410 quickstop - Abort all the planned moves.
  5935. gcode_M410();
  5936. break;
  5937. #if ENABLED(MESH_BED_LEVELING)
  5938. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5939. gcode_M420();
  5940. break;
  5941. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5942. gcode_M421();
  5943. break;
  5944. #endif
  5945. case 428: // M428 Apply current_position to home_offset
  5946. gcode_M428();
  5947. break;
  5948. case 500: // M500 Store settings in EEPROM
  5949. gcode_M500();
  5950. break;
  5951. case 501: // M501 Read settings from EEPROM
  5952. gcode_M501();
  5953. break;
  5954. case 502: // M502 Revert to default settings
  5955. gcode_M502();
  5956. break;
  5957. case 503: // M503 print settings currently in memory
  5958. gcode_M503();
  5959. break;
  5960. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5961. case 540:
  5962. gcode_M540();
  5963. break;
  5964. #endif
  5965. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5966. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5967. gcode_SET_Z_PROBE_OFFSET();
  5968. break;
  5969. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5970. #if ENABLED(FILAMENTCHANGEENABLE)
  5971. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5972. gcode_M600();
  5973. break;
  5974. #endif // FILAMENTCHANGEENABLE
  5975. #if ENABLED(DUAL_X_CARRIAGE)
  5976. case 605:
  5977. gcode_M605();
  5978. break;
  5979. #endif // DUAL_X_CARRIAGE
  5980. case 907: // M907 Set digital trimpot motor current using axis codes.
  5981. gcode_M907();
  5982. break;
  5983. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5984. case 908: // M908 Control digital trimpot directly.
  5985. gcode_M908();
  5986. break;
  5987. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5988. case 909: // M909 Print digipot/DAC current value
  5989. gcode_M909();
  5990. break;
  5991. case 910: // M910 Commit digipot/DAC value to external EEPROM
  5992. gcode_M910();
  5993. break;
  5994. #endif
  5995. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5996. #if HAS_MICROSTEPS
  5997. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5998. gcode_M350();
  5999. break;
  6000. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6001. gcode_M351();
  6002. break;
  6003. #endif // HAS_MICROSTEPS
  6004. case 999: // M999: Restart after being Stopped
  6005. gcode_M999();
  6006. break;
  6007. }
  6008. break;
  6009. case 'T':
  6010. gcode_T(codenum);
  6011. break;
  6012. default: code_is_good = false;
  6013. }
  6014. KEEPALIVE_STATE(NOT_BUSY);
  6015. ExitUnknownCommand:
  6016. // Still unknown command? Throw an error
  6017. if (!code_is_good) unknown_command_error();
  6018. ok_to_send();
  6019. }
  6020. void FlushSerialRequestResend() {
  6021. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6022. MYSERIAL.flush();
  6023. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6024. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6025. ok_to_send();
  6026. }
  6027. void ok_to_send() {
  6028. refresh_cmd_timeout();
  6029. if (!send_ok[cmd_queue_index_r]) return;
  6030. SERIAL_PROTOCOLPGM(MSG_OK);
  6031. #if ENABLED(ADVANCED_OK)
  6032. char* p = command_queue[cmd_queue_index_r];
  6033. if (*p == 'N') {
  6034. SERIAL_PROTOCOL(' ');
  6035. SERIAL_ECHO(*p++);
  6036. while (NUMERIC_SIGNED(*p))
  6037. SERIAL_ECHO(*p++);
  6038. }
  6039. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  6040. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6041. #endif
  6042. SERIAL_EOL;
  6043. }
  6044. void clamp_to_software_endstops(float target[3]) {
  6045. if (min_software_endstops) {
  6046. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6047. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6048. float negative_z_offset = 0;
  6049. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6050. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  6051. if (home_offset[Z_AXIS] < 0) {
  6052. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6053. if (DEBUGGING(LEVELING)) {
  6054. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  6055. SERIAL_EOL;
  6056. }
  6057. #endif
  6058. negative_z_offset += home_offset[Z_AXIS];
  6059. }
  6060. #endif
  6061. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS] + negative_z_offset);
  6062. }
  6063. if (max_software_endstops) {
  6064. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6065. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6066. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6067. }
  6068. }
  6069. #if ENABLED(DELTA)
  6070. void recalc_delta_settings(float radius, float diagonal_rod) {
  6071. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6072. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6073. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6074. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6075. delta_tower3_x = 0.0; // back middle tower
  6076. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6077. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6078. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6079. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6080. }
  6081. void calculate_delta(float cartesian[3]) {
  6082. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6083. - sq(delta_tower1_x - cartesian[X_AXIS])
  6084. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6085. ) + cartesian[Z_AXIS];
  6086. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6087. - sq(delta_tower2_x - cartesian[X_AXIS])
  6088. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6089. ) + cartesian[Z_AXIS];
  6090. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6091. - sq(delta_tower3_x - cartesian[X_AXIS])
  6092. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6093. ) + cartesian[Z_AXIS];
  6094. /**
  6095. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6096. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6097. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6098. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6099. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6100. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6101. */
  6102. }
  6103. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6104. // Adjust print surface height by linear interpolation over the bed_level array.
  6105. void adjust_delta(float cartesian[3]) {
  6106. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6107. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6108. float h1 = 0.001 - half, h2 = half - 0.001,
  6109. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6110. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6111. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6112. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6113. z1 = bed_level[floor_x + half][floor_y + half],
  6114. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6115. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6116. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6117. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6118. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6119. offset = (1 - ratio_x) * left + ratio_x * right;
  6120. delta[X_AXIS] += offset;
  6121. delta[Y_AXIS] += offset;
  6122. delta[Z_AXIS] += offset;
  6123. /**
  6124. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6125. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6126. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6127. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6128. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6129. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6130. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6131. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6132. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6133. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6134. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6135. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6136. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6137. */
  6138. }
  6139. #endif // AUTO_BED_LEVELING_FEATURE
  6140. #endif // DELTA
  6141. #if ENABLED(MESH_BED_LEVELING)
  6142. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6143. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6144. if (!mbl.active) {
  6145. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6146. set_current_to_destination();
  6147. return;
  6148. }
  6149. int pix = mbl.select_x_index(current_position[X_AXIS] - home_offset[X_AXIS]);
  6150. int piy = mbl.select_y_index(current_position[Y_AXIS] - home_offset[Y_AXIS]);
  6151. int ix = mbl.select_x_index(x - home_offset[X_AXIS]);
  6152. int iy = mbl.select_y_index(y - home_offset[Y_AXIS]);
  6153. pix = min(pix, MESH_NUM_X_POINTS - 2);
  6154. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  6155. ix = min(ix, MESH_NUM_X_POINTS - 2);
  6156. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  6157. if (pix == ix && piy == iy) {
  6158. // Start and end on same mesh square
  6159. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6160. set_current_to_destination();
  6161. return;
  6162. }
  6163. float nx, ny, nz, ne, normalized_dist;
  6164. if (ix > pix && TEST(x_splits, ix)) {
  6165. nx = mbl.get_x(ix) + home_offset[X_AXIS];
  6166. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6167. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6168. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6169. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6170. CBI(x_splits, ix);
  6171. }
  6172. else if (ix < pix && TEST(x_splits, pix)) {
  6173. nx = mbl.get_x(pix) + home_offset[X_AXIS];
  6174. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6175. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6176. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6177. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6178. CBI(x_splits, pix);
  6179. }
  6180. else if (iy > piy && TEST(y_splits, iy)) {
  6181. ny = mbl.get_y(iy) + home_offset[Y_AXIS];
  6182. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6183. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6184. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6185. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6186. CBI(y_splits, iy);
  6187. }
  6188. else if (iy < piy && TEST(y_splits, piy)) {
  6189. ny = mbl.get_y(piy) + home_offset[Y_AXIS];
  6190. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6191. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6192. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6193. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6194. CBI(y_splits, piy);
  6195. }
  6196. else {
  6197. // Already split on a border
  6198. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6199. set_current_to_destination();
  6200. return;
  6201. }
  6202. // Do the split and look for more borders
  6203. destination[X_AXIS] = nx;
  6204. destination[Y_AXIS] = ny;
  6205. destination[Z_AXIS] = nz;
  6206. destination[E_AXIS] = ne;
  6207. mesh_plan_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6208. destination[X_AXIS] = x;
  6209. destination[Y_AXIS] = y;
  6210. destination[Z_AXIS] = z;
  6211. destination[E_AXIS] = e;
  6212. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6213. }
  6214. #endif // MESH_BED_LEVELING
  6215. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6216. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6217. if (DEBUGGING(DRYRUN)) return;
  6218. float de = dest_e - curr_e;
  6219. if (de) {
  6220. if (degHotend(active_extruder) < extrude_min_temp) {
  6221. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6222. SERIAL_ECHO_START;
  6223. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6224. }
  6225. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6226. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6227. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6228. SERIAL_ECHO_START;
  6229. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6230. }
  6231. #endif
  6232. }
  6233. }
  6234. #endif // PREVENT_DANGEROUS_EXTRUDE
  6235. #if ENABLED(DELTA) || ENABLED(SCARA)
  6236. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  6237. float difference[NUM_AXIS];
  6238. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6239. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6240. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6241. if (cartesian_mm < 0.000001) return false;
  6242. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  6243. int steps = max(1, int(delta_segments_per_second * seconds));
  6244. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6245. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6246. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6247. for (int s = 1; s <= steps; s++) {
  6248. float fraction = float(s) / float(steps);
  6249. for (int8_t i = 0; i < NUM_AXIS; i++)
  6250. target[i] = current_position[i] + difference[i] * fraction;
  6251. calculate_delta(target);
  6252. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6253. adjust_delta(target);
  6254. #endif
  6255. //DEBUG_POS("prepare_move_delta", target);
  6256. //DEBUG_POS("prepare_move_delta", delta);
  6257. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
  6258. }
  6259. return true;
  6260. }
  6261. #endif // DELTA || SCARA
  6262. #if ENABLED(SCARA)
  6263. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  6264. #endif
  6265. #if ENABLED(DUAL_X_CARRIAGE)
  6266. inline bool prepare_move_dual_x_carriage() {
  6267. if (active_extruder_parked) {
  6268. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6269. // move duplicate extruder into correct duplication position.
  6270. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6271. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6272. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  6273. sync_plan_position();
  6274. st_synchronize();
  6275. extruder_duplication_enabled = true;
  6276. active_extruder_parked = false;
  6277. }
  6278. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6279. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6280. // This is a travel move (with no extrusion)
  6281. // Skip it, but keep track of the current position
  6282. // (so it can be used as the start of the next non-travel move)
  6283. if (delayed_move_time != 0xFFFFFFFFUL) {
  6284. set_current_to_destination();
  6285. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6286. delayed_move_time = millis();
  6287. return false;
  6288. }
  6289. }
  6290. delayed_move_time = 0;
  6291. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6292. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  6293. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  6294. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  6295. active_extruder_parked = false;
  6296. }
  6297. }
  6298. return true;
  6299. }
  6300. #endif // DUAL_X_CARRIAGE
  6301. #if DISABLED(DELTA) && DISABLED(SCARA)
  6302. inline bool prepare_move_cartesian() {
  6303. // Do not use feedrate_multiplier for E or Z only moves
  6304. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6305. line_to_destination();
  6306. }
  6307. else {
  6308. #if ENABLED(MESH_BED_LEVELING)
  6309. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6310. return false;
  6311. #else
  6312. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6313. #endif
  6314. }
  6315. return true;
  6316. }
  6317. #endif // !DELTA && !SCARA
  6318. /**
  6319. * Prepare a single move and get ready for the next one
  6320. *
  6321. * (This may call plan_buffer_line several times to put
  6322. * smaller moves into the planner for DELTA or SCARA.)
  6323. */
  6324. void prepare_move() {
  6325. clamp_to_software_endstops(destination);
  6326. refresh_cmd_timeout();
  6327. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6328. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6329. #endif
  6330. #if ENABLED(SCARA)
  6331. if (!prepare_move_scara(destination)) return;
  6332. #elif ENABLED(DELTA)
  6333. if (!prepare_move_delta(destination)) return;
  6334. #else
  6335. #if ENABLED(DUAL_X_CARRIAGE)
  6336. if (!prepare_move_dual_x_carriage()) return;
  6337. #endif
  6338. if (!prepare_move_cartesian()) return;
  6339. #endif
  6340. set_current_to_destination();
  6341. }
  6342. /**
  6343. * Plan an arc in 2 dimensions
  6344. *
  6345. * The arc is approximated by generating many small linear segments.
  6346. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6347. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6348. * larger segments will tend to be more efficient. Your slicer should have
  6349. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6350. */
  6351. void plan_arc(
  6352. float target[NUM_AXIS], // Destination position
  6353. float* offset, // Center of rotation relative to current_position
  6354. uint8_t clockwise // Clockwise?
  6355. ) {
  6356. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6357. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6358. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6359. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6360. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6361. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6362. r_Y = -offset[Y_AXIS],
  6363. rt_X = target[X_AXIS] - center_X,
  6364. rt_Y = target[Y_AXIS] - center_Y;
  6365. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6366. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6367. if (angular_travel < 0) angular_travel += RADIANS(360);
  6368. if (clockwise) angular_travel -= RADIANS(360);
  6369. // Make a circle if the angular rotation is 0
  6370. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6371. angular_travel += RADIANS(360);
  6372. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6373. if (mm_of_travel < 0.001) return;
  6374. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6375. if (segments == 0) segments = 1;
  6376. float theta_per_segment = angular_travel / segments;
  6377. float linear_per_segment = linear_travel / segments;
  6378. float extruder_per_segment = extruder_travel / segments;
  6379. /**
  6380. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6381. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6382. * r_T = [cos(phi) -sin(phi);
  6383. * sin(phi) cos(phi] * r ;
  6384. *
  6385. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6386. * defined from the circle center to the initial position. Each line segment is formed by successive
  6387. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6388. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6389. * all double numbers are single precision on the Arduino. (True double precision will not have
  6390. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6391. * tool precision in some cases. Therefore, arc path correction is implemented.
  6392. *
  6393. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6394. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6395. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6396. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6397. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6398. * issue for CNC machines with the single precision Arduino calculations.
  6399. *
  6400. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6401. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6402. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6403. * This is important when there are successive arc motions.
  6404. */
  6405. // Vector rotation matrix values
  6406. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6407. float sin_T = theta_per_segment;
  6408. float arc_target[NUM_AXIS];
  6409. float sin_Ti, cos_Ti, r_new_Y;
  6410. uint16_t i;
  6411. int8_t count = 0;
  6412. // Initialize the linear axis
  6413. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6414. // Initialize the extruder axis
  6415. arc_target[E_AXIS] = current_position[E_AXIS];
  6416. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6417. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6418. if (++count < N_ARC_CORRECTION) {
  6419. // Apply vector rotation matrix to previous r_X / 1
  6420. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6421. r_X = r_X * cos_T - r_Y * sin_T;
  6422. r_Y = r_new_Y;
  6423. }
  6424. else {
  6425. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6426. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6427. // To reduce stuttering, the sin and cos could be computed at different times.
  6428. // For now, compute both at the same time.
  6429. cos_Ti = cos(i * theta_per_segment);
  6430. sin_Ti = sin(i * theta_per_segment);
  6431. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6432. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6433. count = 0;
  6434. }
  6435. // Update arc_target location
  6436. arc_target[X_AXIS] = center_X + r_X;
  6437. arc_target[Y_AXIS] = center_Y + r_Y;
  6438. arc_target[Z_AXIS] += linear_per_segment;
  6439. arc_target[E_AXIS] += extruder_per_segment;
  6440. clamp_to_software_endstops(arc_target);
  6441. #if ENABLED(DELTA) || ENABLED(SCARA)
  6442. calculate_delta(arc_target);
  6443. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6444. adjust_delta(arc_target);
  6445. #endif
  6446. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6447. #else
  6448. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6449. #endif
  6450. }
  6451. // Ensure last segment arrives at target location.
  6452. #if ENABLED(DELTA) || ENABLED(SCARA)
  6453. calculate_delta(target);
  6454. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6455. adjust_delta(target);
  6456. #endif
  6457. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6458. #else
  6459. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6460. #endif
  6461. // As far as the parser is concerned, the position is now == target. In reality the
  6462. // motion control system might still be processing the action and the real tool position
  6463. // in any intermediate location.
  6464. set_current_to_destination();
  6465. }
  6466. #if HAS_CONTROLLERFAN
  6467. void controllerFan() {
  6468. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6469. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6470. millis_t ms = millis();
  6471. if (ELAPSED(ms, nextMotorCheck)) {
  6472. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6473. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  6474. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6475. #if EXTRUDERS > 1
  6476. || E1_ENABLE_READ == E_ENABLE_ON
  6477. #if HAS_X2_ENABLE
  6478. || X2_ENABLE_READ == X_ENABLE_ON
  6479. #endif
  6480. #if EXTRUDERS > 2
  6481. || E2_ENABLE_READ == E_ENABLE_ON
  6482. #if EXTRUDERS > 3
  6483. || E3_ENABLE_READ == E_ENABLE_ON
  6484. #endif
  6485. #endif
  6486. #endif
  6487. ) {
  6488. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6489. }
  6490. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6491. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6492. // allows digital or PWM fan output to be used (see M42 handling)
  6493. digitalWrite(CONTROLLERFAN_PIN, speed);
  6494. analogWrite(CONTROLLERFAN_PIN, speed);
  6495. }
  6496. }
  6497. #endif // HAS_CONTROLLERFAN
  6498. #if ENABLED(SCARA)
  6499. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6500. // Perform forward kinematics, and place results in delta[3]
  6501. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6502. float x_sin, x_cos, y_sin, y_cos;
  6503. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6504. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6505. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6506. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6507. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6508. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6509. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6510. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6511. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6512. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6513. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6514. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6515. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6516. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6517. }
  6518. void calculate_delta(float cartesian[3]) {
  6519. //reverse kinematics.
  6520. // Perform reversed kinematics, and place results in delta[3]
  6521. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6522. float SCARA_pos[2];
  6523. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6524. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6525. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6526. #if (Linkage_1 == Linkage_2)
  6527. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6528. #else
  6529. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6530. #endif
  6531. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6532. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6533. SCARA_K2 = Linkage_2 * SCARA_S2;
  6534. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6535. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6536. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6537. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6538. delta[Z_AXIS] = cartesian[Z_AXIS];
  6539. /**
  6540. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6541. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6542. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6543. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6544. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6545. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6546. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6547. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6548. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6549. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6550. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6551. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6552. SERIAL_EOL;
  6553. */
  6554. }
  6555. #endif // SCARA
  6556. #if ENABLED(TEMP_STAT_LEDS)
  6557. static bool red_led = false;
  6558. static millis_t next_status_led_update_ms = 0;
  6559. void handle_status_leds(void) {
  6560. float max_temp = 0.0;
  6561. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6562. next_status_led_update_ms += 500; // Update every 0.5s
  6563. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6564. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  6565. #if HAS_TEMP_BED
  6566. max_temp = max(max(max_temp, degTargetBed()), degBed());
  6567. #endif
  6568. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6569. if (new_led != red_led) {
  6570. red_led = new_led;
  6571. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6572. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6573. }
  6574. }
  6575. }
  6576. #endif
  6577. void enable_all_steppers() {
  6578. enable_x();
  6579. enable_y();
  6580. enable_z();
  6581. enable_e0();
  6582. enable_e1();
  6583. enable_e2();
  6584. enable_e3();
  6585. }
  6586. void disable_all_steppers() {
  6587. disable_x();
  6588. disable_y();
  6589. disable_z();
  6590. disable_e0();
  6591. disable_e1();
  6592. disable_e2();
  6593. disable_e3();
  6594. }
  6595. /**
  6596. * Standard idle routine keeps the machine alive
  6597. */
  6598. void idle(
  6599. #if ENABLED(FILAMENTCHANGEENABLE)
  6600. bool no_stepper_sleep/*=false*/
  6601. #endif
  6602. ) {
  6603. manage_heater();
  6604. manage_inactivity(
  6605. #if ENABLED(FILAMENTCHANGEENABLE)
  6606. no_stepper_sleep
  6607. #endif
  6608. );
  6609. host_keepalive();
  6610. lcd_update();
  6611. #if ENABLED(PRINTCOUNTER)
  6612. print_job_timer.tick();
  6613. #endif
  6614. }
  6615. /**
  6616. * Manage several activities:
  6617. * - Check for Filament Runout
  6618. * - Keep the command buffer full
  6619. * - Check for maximum inactive time between commands
  6620. * - Check for maximum inactive time between stepper commands
  6621. * - Check if pin CHDK needs to go LOW
  6622. * - Check for KILL button held down
  6623. * - Check for HOME button held down
  6624. * - Check if cooling fan needs to be switched on
  6625. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6626. */
  6627. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6628. #if HAS_FILRUNOUT
  6629. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6630. handle_filament_runout();
  6631. #endif
  6632. if (commands_in_queue < BUFSIZE) get_available_commands();
  6633. millis_t ms = millis();
  6634. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6635. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6636. && !ignore_stepper_queue && !blocks_queued()) {
  6637. #if ENABLED(DISABLE_INACTIVE_X)
  6638. disable_x();
  6639. #endif
  6640. #if ENABLED(DISABLE_INACTIVE_Y)
  6641. disable_y();
  6642. #endif
  6643. #if ENABLED(DISABLE_INACTIVE_Z)
  6644. disable_z();
  6645. #endif
  6646. #if ENABLED(DISABLE_INACTIVE_E)
  6647. disable_e0();
  6648. disable_e1();
  6649. disable_e2();
  6650. disable_e3();
  6651. #endif
  6652. }
  6653. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6654. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6655. chdkActive = false;
  6656. WRITE(CHDK, LOW);
  6657. }
  6658. #endif
  6659. #if HAS_KILL
  6660. // Check if the kill button was pressed and wait just in case it was an accidental
  6661. // key kill key press
  6662. // -------------------------------------------------------------------------------
  6663. static int killCount = 0; // make the inactivity button a bit less responsive
  6664. const int KILL_DELAY = 750;
  6665. if (!READ(KILL_PIN))
  6666. killCount++;
  6667. else if (killCount > 0)
  6668. killCount--;
  6669. // Exceeded threshold and we can confirm that it was not accidental
  6670. // KILL the machine
  6671. // ----------------------------------------------------------------
  6672. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6673. #endif
  6674. #if HAS_HOME
  6675. // Check to see if we have to home, use poor man's debouncer
  6676. // ---------------------------------------------------------
  6677. static int homeDebounceCount = 0; // poor man's debouncing count
  6678. const int HOME_DEBOUNCE_DELAY = 2500;
  6679. if (!READ(HOME_PIN)) {
  6680. if (!homeDebounceCount) {
  6681. enqueue_and_echo_commands_P(PSTR("G28"));
  6682. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6683. }
  6684. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6685. homeDebounceCount++;
  6686. else
  6687. homeDebounceCount = 0;
  6688. }
  6689. #endif
  6690. #if HAS_CONTROLLERFAN
  6691. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6692. #endif
  6693. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6694. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6695. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6696. bool oldstatus;
  6697. switch (active_extruder) {
  6698. case 0:
  6699. oldstatus = E0_ENABLE_READ;
  6700. enable_e0();
  6701. break;
  6702. #if EXTRUDERS > 1
  6703. case 1:
  6704. oldstatus = E1_ENABLE_READ;
  6705. enable_e1();
  6706. break;
  6707. #if EXTRUDERS > 2
  6708. case 2:
  6709. oldstatus = E2_ENABLE_READ;
  6710. enable_e2();
  6711. break;
  6712. #if EXTRUDERS > 3
  6713. case 3:
  6714. oldstatus = E3_ENABLE_READ;
  6715. enable_e3();
  6716. break;
  6717. #endif
  6718. #endif
  6719. #endif
  6720. }
  6721. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6722. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6723. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS],
  6724. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], active_extruder);
  6725. current_position[E_AXIS] = oldepos;
  6726. destination[E_AXIS] = oldedes;
  6727. plan_set_e_position(oldepos);
  6728. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6729. st_synchronize();
  6730. switch (active_extruder) {
  6731. case 0:
  6732. E0_ENABLE_WRITE(oldstatus);
  6733. break;
  6734. #if EXTRUDERS > 1
  6735. case 1:
  6736. E1_ENABLE_WRITE(oldstatus);
  6737. break;
  6738. #if EXTRUDERS > 2
  6739. case 2:
  6740. E2_ENABLE_WRITE(oldstatus);
  6741. break;
  6742. #if EXTRUDERS > 3
  6743. case 3:
  6744. E3_ENABLE_WRITE(oldstatus);
  6745. break;
  6746. #endif
  6747. #endif
  6748. #endif
  6749. }
  6750. }
  6751. #endif
  6752. #if ENABLED(DUAL_X_CARRIAGE)
  6753. // handle delayed move timeout
  6754. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6755. // travel moves have been received so enact them
  6756. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6757. set_destination_to_current();
  6758. prepare_move();
  6759. }
  6760. #endif
  6761. #if ENABLED(TEMP_STAT_LEDS)
  6762. handle_status_leds();
  6763. #endif
  6764. check_axes_activity();
  6765. }
  6766. void kill(const char* lcd_msg) {
  6767. #if ENABLED(ULTRA_LCD)
  6768. lcd_setalertstatuspgm(lcd_msg);
  6769. #else
  6770. UNUSED(lcd_msg);
  6771. #endif
  6772. cli(); // Stop interrupts
  6773. disable_all_heaters();
  6774. disable_all_steppers();
  6775. #if HAS_POWER_SWITCH
  6776. pinMode(PS_ON_PIN, INPUT);
  6777. #endif
  6778. SERIAL_ERROR_START;
  6779. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6780. // FMC small patch to update the LCD before ending
  6781. sei(); // enable interrupts
  6782. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6783. cli(); // disable interrupts
  6784. suicide();
  6785. while (1) {
  6786. #if ENABLED(USE_WATCHDOG)
  6787. watchdog_reset();
  6788. #endif
  6789. } // Wait for reset
  6790. }
  6791. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6792. void handle_filament_runout() {
  6793. if (!filament_ran_out) {
  6794. filament_ran_out = true;
  6795. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6796. st_synchronize();
  6797. }
  6798. }
  6799. #endif // FILAMENT_RUNOUT_SENSOR
  6800. #if ENABLED(FAST_PWM_FAN)
  6801. void setPwmFrequency(uint8_t pin, int val) {
  6802. val &= 0x07;
  6803. switch (digitalPinToTimer(pin)) {
  6804. #if defined(TCCR0A)
  6805. case TIMER0A:
  6806. case TIMER0B:
  6807. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6808. // TCCR0B |= val;
  6809. break;
  6810. #endif
  6811. #if defined(TCCR1A)
  6812. case TIMER1A:
  6813. case TIMER1B:
  6814. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6815. // TCCR1B |= val;
  6816. break;
  6817. #endif
  6818. #if defined(TCCR2)
  6819. case TIMER2:
  6820. case TIMER2:
  6821. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6822. TCCR2 |= val;
  6823. break;
  6824. #endif
  6825. #if defined(TCCR2A)
  6826. case TIMER2A:
  6827. case TIMER2B:
  6828. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6829. TCCR2B |= val;
  6830. break;
  6831. #endif
  6832. #if defined(TCCR3A)
  6833. case TIMER3A:
  6834. case TIMER3B:
  6835. case TIMER3C:
  6836. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6837. TCCR3B |= val;
  6838. break;
  6839. #endif
  6840. #if defined(TCCR4A)
  6841. case TIMER4A:
  6842. case TIMER4B:
  6843. case TIMER4C:
  6844. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6845. TCCR4B |= val;
  6846. break;
  6847. #endif
  6848. #if defined(TCCR5A)
  6849. case TIMER5A:
  6850. case TIMER5B:
  6851. case TIMER5C:
  6852. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6853. TCCR5B |= val;
  6854. break;
  6855. #endif
  6856. }
  6857. }
  6858. #endif // FAST_PWM_FAN
  6859. void stop() {
  6860. disable_all_heaters();
  6861. if (IsRunning()) {
  6862. Running = false;
  6863. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6864. SERIAL_ERROR_START;
  6865. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6866. LCD_MESSAGEPGM(MSG_STOPPED);
  6867. }
  6868. }
  6869. float calculate_volumetric_multiplier(float diameter) {
  6870. if (!volumetric_enabled || diameter == 0) return 1.0;
  6871. float d2 = diameter * 0.5;
  6872. return 1.0 / (M_PI * d2 * d2);
  6873. }
  6874. void calculate_volumetric_multipliers() {
  6875. for (int i = 0; i < EXTRUDERS; i++)
  6876. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6877. }