My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

stepper.cpp 39KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if HAS_DIGIPOTSS
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //============================= public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //============================= private variables ===========================
  35. //===========================================================================
  36. //static makes it impossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static unsigned int cleaning_buffer_counter;
  40. #ifdef Z_DUAL_ENDSTOPS
  41. static bool performing_homing = false,
  42. locked_z_motor = false,
  43. locked_z2_motor = false;
  44. #endif
  45. // Counter variables for the bresenham line tracer
  46. static long counter_x, counter_y, counter_z, counter_e;
  47. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  48. #ifdef ADVANCE
  49. static long advance_rate, advance, final_advance = 0;
  50. static long old_advance = 0;
  51. static long e_steps[4];
  52. #endif
  53. static long acceleration_time, deceleration_time;
  54. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  55. static unsigned short acc_step_rate; // needed for deccelaration start point
  56. static char step_loops;
  57. static unsigned short OCR1A_nominal;
  58. static unsigned short step_loops_nominal;
  59. volatile long endstops_trigsteps[3] = { 0 };
  60. volatile long endstops_stepsTotal, endstops_stepsDone;
  61. static volatile bool endstop_x_hit = false;
  62. static volatile bool endstop_y_hit = false;
  63. static volatile bool endstop_z_hit = false;
  64. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  65. bool abort_on_endstop_hit = false;
  66. #endif
  67. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  68. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  69. #endif
  70. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  71. static bool old_x_min_endstop = false;
  72. #endif
  73. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  74. static bool old_x_max_endstop = false;
  75. #endif
  76. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  77. static bool old_y_min_endstop = false;
  78. #endif
  79. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  80. static bool old_y_max_endstop = false;
  81. #endif
  82. static bool old_z_min_endstop = false, old_z_max_endstop = false;
  83. #ifdef Z_DUAL_ENDSTOPS
  84. static bool old_z2_min_endstop = false, old_z2_max_endstop = false;
  85. #endif
  86. static bool check_endstops = true;
  87. volatile long count_position[NUM_AXIS] = { 0 };
  88. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  89. //===========================================================================
  90. //================================ functions ================================
  91. //===========================================================================
  92. #ifdef DUAL_X_CARRIAGE
  93. #define X_APPLY_DIR(v,ALWAYS) \
  94. if (extruder_duplication_enabled || ALWAYS) { \
  95. X_DIR_WRITE(v); \
  96. X2_DIR_WRITE(v); \
  97. } \
  98. else { \
  99. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  100. }
  101. #define X_APPLY_STEP(v,ALWAYS) \
  102. if (extruder_duplication_enabled || ALWAYS) { \
  103. X_STEP_WRITE(v); \
  104. X2_STEP_WRITE(v); \
  105. } \
  106. else { \
  107. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  108. }
  109. #else
  110. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  111. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  112. #endif
  113. #ifdef Y_DUAL_STEPPER_DRIVERS
  114. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  115. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  116. #else
  117. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  118. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  119. #endif
  120. #ifdef Z_DUAL_STEPPER_DRIVERS
  121. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  122. #ifdef Z_DUAL_ENDSTOPS
  123. #define Z_APPLY_STEP(v,Q) \
  124. if (performing_homing) { \
  125. if (Z_HOME_DIR > 0) {\
  126. if (!(old_z_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  127. if (!(old_z2_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  128. } else {\
  129. if (!(old_z_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  130. if (!(old_z2_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  131. } \
  132. } else { \
  133. Z_STEP_WRITE(v); \
  134. Z2_STEP_WRITE(v); \
  135. }
  136. #else
  137. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  138. #endif
  139. #else
  140. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  141. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  142. #endif
  143. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  144. // intRes = intIn1 * intIn2 >> 16
  145. // uses:
  146. // r26 to store 0
  147. // r27 to store the byte 1 of the 24 bit result
  148. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  149. asm volatile ( \
  150. "clr r26 \n\t" \
  151. "mul %A1, %B2 \n\t" \
  152. "movw %A0, r0 \n\t" \
  153. "mul %A1, %A2 \n\t" \
  154. "add %A0, r1 \n\t" \
  155. "adc %B0, r26 \n\t" \
  156. "lsr r0 \n\t" \
  157. "adc %A0, r26 \n\t" \
  158. "adc %B0, r26 \n\t" \
  159. "clr r1 \n\t" \
  160. : \
  161. "=&r" (intRes) \
  162. : \
  163. "d" (charIn1), \
  164. "d" (intIn2) \
  165. : \
  166. "r26" \
  167. )
  168. // intRes = longIn1 * longIn2 >> 24
  169. // uses:
  170. // r26 to store 0
  171. // r27 to store the byte 1 of the 48bit result
  172. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  173. asm volatile ( \
  174. "clr r26 \n\t" \
  175. "mul %A1, %B2 \n\t" \
  176. "mov r27, r1 \n\t" \
  177. "mul %B1, %C2 \n\t" \
  178. "movw %A0, r0 \n\t" \
  179. "mul %C1, %C2 \n\t" \
  180. "add %B0, r0 \n\t" \
  181. "mul %C1, %B2 \n\t" \
  182. "add %A0, r0 \n\t" \
  183. "adc %B0, r1 \n\t" \
  184. "mul %A1, %C2 \n\t" \
  185. "add r27, r0 \n\t" \
  186. "adc %A0, r1 \n\t" \
  187. "adc %B0, r26 \n\t" \
  188. "mul %B1, %B2 \n\t" \
  189. "add r27, r0 \n\t" \
  190. "adc %A0, r1 \n\t" \
  191. "adc %B0, r26 \n\t" \
  192. "mul %C1, %A2 \n\t" \
  193. "add r27, r0 \n\t" \
  194. "adc %A0, r1 \n\t" \
  195. "adc %B0, r26 \n\t" \
  196. "mul %B1, %A2 \n\t" \
  197. "add r27, r1 \n\t" \
  198. "adc %A0, r26 \n\t" \
  199. "adc %B0, r26 \n\t" \
  200. "lsr r27 \n\t" \
  201. "adc %A0, r26 \n\t" \
  202. "adc %B0, r26 \n\t" \
  203. "clr r1 \n\t" \
  204. : \
  205. "=&r" (intRes) \
  206. : \
  207. "d" (longIn1), \
  208. "d" (longIn2) \
  209. : \
  210. "r26" , "r27" \
  211. )
  212. // Some useful constants
  213. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  214. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  215. void endstops_hit_on_purpose() {
  216. endstop_x_hit = endstop_y_hit = endstop_z_hit = false;
  217. }
  218. void checkHitEndstops() {
  219. if (endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  220. SERIAL_ECHO_START;
  221. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  222. if (endstop_x_hit) {
  223. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  224. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  225. }
  226. if (endstop_y_hit) {
  227. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  228. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  229. }
  230. if (endstop_z_hit) {
  231. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  232. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  233. }
  234. SERIAL_EOL;
  235. endstops_hit_on_purpose();
  236. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  237. if (abort_on_endstop_hit) {
  238. card.sdprinting = false;
  239. card.closefile();
  240. quickStop();
  241. setTargetHotend0(0);
  242. setTargetHotend1(0);
  243. setTargetHotend2(0);
  244. setTargetHotend3(0);
  245. setTargetBed(0);
  246. }
  247. #endif
  248. }
  249. }
  250. void enable_endstops(bool check) { check_endstops = check; }
  251. // __________________________
  252. // /| |\ _________________ ^
  253. // / | | \ /| |\ |
  254. // / | | \ / | | \ s
  255. // / | | | | | \ p
  256. // / | | | | | \ e
  257. // +-----+------------------------+---+--+---------------+----+ e
  258. // | BLOCK 1 | BLOCK 2 | d
  259. //
  260. // time ----->
  261. //
  262. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  263. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  264. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  265. // The slope of acceleration is calculated with the leib ramp alghorithm.
  266. void st_wake_up() {
  267. // TCNT1 = 0;
  268. ENABLE_STEPPER_DRIVER_INTERRUPT();
  269. }
  270. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  271. unsigned short timer;
  272. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  273. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  274. step_rate = (step_rate >> 2) & 0x3fff;
  275. step_loops = 4;
  276. }
  277. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  278. step_rate = (step_rate >> 1) & 0x7fff;
  279. step_loops = 2;
  280. }
  281. else {
  282. step_loops = 1;
  283. }
  284. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  285. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  286. if (step_rate >= (8 * 256)) { // higher step rate
  287. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  288. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  289. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  290. MultiU16X8toH16(timer, tmp_step_rate, gain);
  291. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  292. }
  293. else { // lower step rates
  294. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  295. table_address += ((step_rate)>>1) & 0xfffc;
  296. timer = (unsigned short)pgm_read_word_near(table_address);
  297. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  298. }
  299. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  300. return timer;
  301. }
  302. // Initializes the trapezoid generator from the current block. Called whenever a new
  303. // block begins.
  304. FORCE_INLINE void trapezoid_generator_reset() {
  305. #ifdef ADVANCE
  306. advance = current_block->initial_advance;
  307. final_advance = current_block->final_advance;
  308. // Do E steps + advance steps
  309. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  310. old_advance = advance >>8;
  311. #endif
  312. deceleration_time = 0;
  313. // step_rate to timer interval
  314. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  315. // make a note of the number of step loops required at nominal speed
  316. step_loops_nominal = step_loops;
  317. acc_step_rate = current_block->initial_rate;
  318. acceleration_time = calc_timer(acc_step_rate);
  319. OCR1A = acceleration_time;
  320. // SERIAL_ECHO_START;
  321. // SERIAL_ECHOPGM("advance :");
  322. // SERIAL_ECHO(current_block->advance/256.0);
  323. // SERIAL_ECHOPGM("advance rate :");
  324. // SERIAL_ECHO(current_block->advance_rate/256.0);
  325. // SERIAL_ECHOPGM("initial advance :");
  326. // SERIAL_ECHO(current_block->initial_advance/256.0);
  327. // SERIAL_ECHOPGM("final advance :");
  328. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  329. }
  330. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  331. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  332. ISR(TIMER1_COMPA_vect) {
  333. if(cleaning_buffer_counter)
  334. {
  335. current_block = NULL;
  336. plan_discard_current_block();
  337. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  338. cleaning_buffer_counter--;
  339. OCR1A = 200;
  340. return;
  341. }
  342. // If there is no current block, attempt to pop one from the buffer
  343. if (!current_block) {
  344. // Anything in the buffer?
  345. current_block = plan_get_current_block();
  346. if (current_block) {
  347. current_block->busy = true;
  348. trapezoid_generator_reset();
  349. counter_x = -(current_block->step_event_count >> 1);
  350. counter_y = counter_z = counter_e = counter_x;
  351. step_events_completed = 0;
  352. #ifdef Z_LATE_ENABLE
  353. if (current_block->steps[Z_AXIS] > 0) {
  354. enable_z();
  355. OCR1A = 2000; //1ms wait
  356. return;
  357. }
  358. #endif
  359. // #ifdef ADVANCE
  360. // e_steps[current_block->active_extruder] = 0;
  361. // #endif
  362. }
  363. else {
  364. OCR1A = 2000; // 1kHz.
  365. }
  366. }
  367. if (current_block != NULL) {
  368. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  369. out_bits = current_block->direction_bits;
  370. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  371. if (TEST(out_bits, X_AXIS)) {
  372. X_APPLY_DIR(INVERT_X_DIR,0);
  373. count_direction[X_AXIS] = -1;
  374. }
  375. else {
  376. X_APPLY_DIR(!INVERT_X_DIR,0);
  377. count_direction[X_AXIS] = 1;
  378. }
  379. if (TEST(out_bits, Y_AXIS)) {
  380. Y_APPLY_DIR(INVERT_Y_DIR,0);
  381. count_direction[Y_AXIS] = -1;
  382. }
  383. else {
  384. Y_APPLY_DIR(!INVERT_Y_DIR,0);
  385. count_direction[Y_AXIS] = 1;
  386. }
  387. #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
  388. bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
  389. if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps[AXIS ##_AXIS] > 0)) { \
  390. endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
  391. endstop_## axis ##_hit = true; \
  392. step_events_completed = current_block->step_event_count; \
  393. } \
  394. old_## axis ##_## minmax ##_endstop = axis ##_## minmax ##_endstop;
  395. // Check X and Y endstops
  396. if (check_endstops) {
  397. #ifdef COREXY
  398. // Head direction in -X axis for CoreXY bots.
  399. // If DeltaX == -DeltaY, the movement is only in Y axis
  400. if (current_block->steps[A_AXIS] != current_block->steps[B_AXIS] || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS)))
  401. if (TEST(out_bits, X_HEAD))
  402. #else
  403. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
  404. #endif
  405. { // -direction
  406. #ifdef DUAL_X_CARRIAGE
  407. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  408. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  409. #endif
  410. {
  411. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  412. UPDATE_ENDSTOP(x, X, min, MIN);
  413. #endif
  414. }
  415. }
  416. else { // +direction
  417. #ifdef DUAL_X_CARRIAGE
  418. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  419. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  420. #endif
  421. {
  422. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  423. UPDATE_ENDSTOP(x, X, max, MAX);
  424. #endif
  425. }
  426. }
  427. #ifdef COREXY
  428. // Head direction in -Y axis for CoreXY bots.
  429. // If DeltaX == DeltaY, the movement is only in X axis
  430. if (current_block->steps[A_AXIS] != current_block->steps[B_AXIS] || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS)))
  431. if (TEST(out_bits, Y_HEAD))
  432. #else
  433. if (TEST(out_bits, Y_AXIS)) // -direction
  434. #endif
  435. { // -direction
  436. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  437. UPDATE_ENDSTOP(y, Y, min, MIN);
  438. #endif
  439. }
  440. else { // +direction
  441. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  442. UPDATE_ENDSTOP(y, Y, max, MAX);
  443. #endif
  444. }
  445. }
  446. if (TEST(out_bits, Z_AXIS)) { // -direction
  447. Z_APPLY_DIR(INVERT_Z_DIR,0);
  448. count_direction[Z_AXIS] = -1;
  449. if (check_endstops)
  450. {
  451. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  452. #ifndef Z_DUAL_ENDSTOPS
  453. UPDATE_ENDSTOP(z, Z, min, MIN);
  454. #else
  455. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  456. #if defined(Z2_MIN_PIN) && Z2_MIN_PIN > -1
  457. bool z2_min_endstop=(READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING);
  458. #else
  459. bool z2_min_endstop=z_min_endstop;
  460. #endif
  461. if(((z_min_endstop && old_z_min_endstop) || (z2_min_endstop && old_z2_min_endstop)) && (current_block->steps[Z_AXIS] > 0))
  462. {
  463. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  464. endstop_z_hit=true;
  465. if (!(performing_homing) || ((performing_homing)&&(z_min_endstop && old_z_min_endstop)&&(z2_min_endstop && old_z2_min_endstop))) //if not performing home or if both endstops were trigged during homing...
  466. {
  467. step_events_completed = current_block->step_event_count;
  468. }
  469. }
  470. old_z_min_endstop = z_min_endstop;
  471. old_z2_min_endstop = z2_min_endstop;
  472. #endif
  473. #endif
  474. }
  475. }
  476. else { // +direction
  477. Z_APPLY_DIR(!INVERT_Z_DIR,0);
  478. count_direction[Z_AXIS] = 1;
  479. if (check_endstops) {
  480. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  481. #ifndef Z_DUAL_ENDSTOPS
  482. UPDATE_ENDSTOP(z, Z, max, MAX);
  483. #else
  484. bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  485. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1
  486. bool z2_max_endstop=(READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING);
  487. #else
  488. bool z2_max_endstop=z_max_endstop;
  489. #endif
  490. if(((z_max_endstop && old_z_max_endstop) || (z2_max_endstop && old_z2_max_endstop)) && (current_block->steps[Z_AXIS] > 0))
  491. {
  492. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  493. endstop_z_hit=true;
  494. // if (z_max_endstop && old_z_max_endstop) SERIAL_ECHOLN("z_max_endstop = true");
  495. // if (z2_max_endstop && old_z2_max_endstop) SERIAL_ECHOLN("z2_max_endstop = true");
  496. if (!(performing_homing) || ((performing_homing)&&(z_max_endstop && old_z_max_endstop)&&(z2_max_endstop && old_z2_max_endstop))) //if not performing home or if both endstops were trigged during homing...
  497. {
  498. step_events_completed = current_block->step_event_count;
  499. }
  500. }
  501. old_z_max_endstop = z_max_endstop;
  502. old_z2_max_endstop = z2_max_endstop;
  503. #endif
  504. #endif
  505. }
  506. }
  507. #ifndef ADVANCE
  508. if (TEST(out_bits, E_AXIS)) { // -direction
  509. REV_E_DIR();
  510. count_direction[E_AXIS]=-1;
  511. }
  512. else { // +direction
  513. NORM_E_DIR();
  514. count_direction[E_AXIS]=1;
  515. }
  516. #endif //!ADVANCE
  517. // Take multiple steps per interrupt (For high speed moves)
  518. for (int8_t i=0; i < step_loops; i++) {
  519. #ifndef AT90USB
  520. MSerial.checkRx(); // Check for serial chars.
  521. #endif
  522. #ifdef ADVANCE
  523. counter_e += current_block->steps[E_AXIS];
  524. if (counter_e > 0) {
  525. counter_e -= current_block->step_event_count;
  526. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  527. }
  528. #endif //ADVANCE
  529. #ifdef CONFIG_STEPPERS_TOSHIBA
  530. /**
  531. * The Toshiba stepper controller require much longer pulses.
  532. * So we 'stage' decompose the pulses between high and low
  533. * instead of doing each in turn. The extra tests add enough
  534. * lag to allow it work with without needing NOPs
  535. */
  536. #define STEP_ADD(axis, AXIS) \
  537. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  538. if (counter_## axis > 0) { AXIS ##_STEP_WRITE(HIGH); }
  539. STEP_ADD(x,X);
  540. STEP_ADD(y,Y);
  541. STEP_ADD(z,Z);
  542. #ifndef ADVANCE
  543. STEP_ADD(e,E);
  544. #endif
  545. #define STEP_IF_COUNTER(axis, AXIS) \
  546. if (counter_## axis > 0) { \
  547. counter_## axis -= current_block->step_event_count; \
  548. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  549. AXIS ##_STEP_WRITE(LOW); \
  550. }
  551. STEP_IF_COUNTER(x, X);
  552. STEP_IF_COUNTER(y, Y);
  553. STEP_IF_COUNTER(z, Z);
  554. #ifndef ADVANCE
  555. STEP_IF_COUNTER(e, E);
  556. #endif
  557. #else // !CONFIG_STEPPERS_TOSHIBA
  558. #define APPLY_MOVEMENT(axis, AXIS) \
  559. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  560. if (counter_## axis > 0) { \
  561. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
  562. counter_## axis -= current_block->step_event_count; \
  563. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  564. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN,0); \
  565. }
  566. APPLY_MOVEMENT(x, X);
  567. APPLY_MOVEMENT(y, Y);
  568. APPLY_MOVEMENT(z, Z);
  569. #ifndef ADVANCE
  570. APPLY_MOVEMENT(e, E);
  571. #endif
  572. #endif // CONFIG_STEPPERS_TOSHIBA
  573. step_events_completed++;
  574. if (step_events_completed >= current_block->step_event_count) break;
  575. }
  576. // Calculare new timer value
  577. unsigned short timer;
  578. unsigned short step_rate;
  579. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  580. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  581. acc_step_rate += current_block->initial_rate;
  582. // upper limit
  583. if (acc_step_rate > current_block->nominal_rate)
  584. acc_step_rate = current_block->nominal_rate;
  585. // step_rate to timer interval
  586. timer = calc_timer(acc_step_rate);
  587. OCR1A = timer;
  588. acceleration_time += timer;
  589. #ifdef ADVANCE
  590. for(int8_t i=0; i < step_loops; i++) {
  591. advance += advance_rate;
  592. }
  593. //if (advance > current_block->advance) advance = current_block->advance;
  594. // Do E steps + advance steps
  595. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  596. old_advance = advance >>8;
  597. #endif
  598. }
  599. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  600. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  601. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  602. step_rate = current_block->final_rate;
  603. }
  604. else {
  605. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  606. }
  607. // lower limit
  608. if (step_rate < current_block->final_rate)
  609. step_rate = current_block->final_rate;
  610. // step_rate to timer interval
  611. timer = calc_timer(step_rate);
  612. OCR1A = timer;
  613. deceleration_time += timer;
  614. #ifdef ADVANCE
  615. for(int8_t i=0; i < step_loops; i++) {
  616. advance -= advance_rate;
  617. }
  618. if (advance < final_advance) advance = final_advance;
  619. // Do E steps + advance steps
  620. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  621. old_advance = advance >>8;
  622. #endif //ADVANCE
  623. }
  624. else {
  625. OCR1A = OCR1A_nominal;
  626. // ensure we're running at the correct step rate, even if we just came off an acceleration
  627. step_loops = step_loops_nominal;
  628. }
  629. // If current block is finished, reset pointer
  630. if (step_events_completed >= current_block->step_event_count) {
  631. current_block = NULL;
  632. plan_discard_current_block();
  633. }
  634. }
  635. }
  636. #ifdef ADVANCE
  637. unsigned char old_OCR0A;
  638. // Timer interrupt for E. e_steps is set in the main routine;
  639. // Timer 0 is shared with millies
  640. ISR(TIMER0_COMPA_vect)
  641. {
  642. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  643. OCR0A = old_OCR0A;
  644. // Set E direction (Depends on E direction + advance)
  645. for(unsigned char i=0; i<4;i++) {
  646. if (e_steps[0] != 0) {
  647. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  648. if (e_steps[0] < 0) {
  649. E0_DIR_WRITE(INVERT_E0_DIR);
  650. e_steps[0]++;
  651. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  652. }
  653. else if (e_steps[0] > 0) {
  654. E0_DIR_WRITE(!INVERT_E0_DIR);
  655. e_steps[0]--;
  656. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  657. }
  658. }
  659. #if EXTRUDERS > 1
  660. if (e_steps[1] != 0) {
  661. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  662. if (e_steps[1] < 0) {
  663. E1_DIR_WRITE(INVERT_E1_DIR);
  664. e_steps[1]++;
  665. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  666. }
  667. else if (e_steps[1] > 0) {
  668. E1_DIR_WRITE(!INVERT_E1_DIR);
  669. e_steps[1]--;
  670. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  671. }
  672. }
  673. #endif
  674. #if EXTRUDERS > 2
  675. if (e_steps[2] != 0) {
  676. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  677. if (e_steps[2] < 0) {
  678. E2_DIR_WRITE(INVERT_E2_DIR);
  679. e_steps[2]++;
  680. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  681. }
  682. else if (e_steps[2] > 0) {
  683. E2_DIR_WRITE(!INVERT_E2_DIR);
  684. e_steps[2]--;
  685. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  686. }
  687. }
  688. #endif
  689. #if EXTRUDERS > 3
  690. if (e_steps[3] != 0) {
  691. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  692. if (e_steps[3] < 0) {
  693. E3_DIR_WRITE(INVERT_E3_DIR);
  694. e_steps[3]++;
  695. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  696. }
  697. else if (e_steps[3] > 0) {
  698. E3_DIR_WRITE(!INVERT_E3_DIR);
  699. e_steps[3]--;
  700. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  701. }
  702. }
  703. #endif
  704. }
  705. }
  706. #endif // ADVANCE
  707. void st_init() {
  708. digipot_init(); //Initialize Digipot Motor Current
  709. microstep_init(); //Initialize Microstepping Pins
  710. // initialise TMC Steppers
  711. #ifdef HAVE_TMCDRIVER
  712. tmc_init();
  713. #endif
  714. // initialise L6470 Steppers
  715. #ifdef HAVE_L6470DRIVER
  716. L6470_init();
  717. #endif
  718. // Initialize Dir Pins
  719. #if defined(X_DIR_PIN) && X_DIR_PIN >= 0
  720. X_DIR_INIT;
  721. #endif
  722. #if defined(X2_DIR_PIN) && X2_DIR_PIN >= 0
  723. X2_DIR_INIT;
  724. #endif
  725. #if defined(Y_DIR_PIN) && Y_DIR_PIN >= 0
  726. Y_DIR_INIT;
  727. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && Y2_DIR_PIN >= 0
  728. Y2_DIR_INIT;
  729. #endif
  730. #endif
  731. #if defined(Z_DIR_PIN) && Z_DIR_PIN >= 0
  732. Z_DIR_INIT;
  733. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && Z2_DIR_PIN >= 0
  734. Z2_DIR_INIT;
  735. #endif
  736. #endif
  737. #if defined(E0_DIR_PIN) && E0_DIR_PIN >= 0
  738. E0_DIR_INIT;
  739. #endif
  740. #if defined(E1_DIR_PIN) && E1_DIR_PIN >= 0
  741. E1_DIR_INIT;
  742. #endif
  743. #if defined(E2_DIR_PIN) && E2_DIR_PIN >= 0
  744. E2_DIR_INIT;
  745. #endif
  746. #if defined(E3_DIR_PIN) && E3_DIR_PIN >= 0
  747. E3_DIR_INIT;
  748. #endif
  749. //Initialize Enable Pins - steppers default to disabled.
  750. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN >= 0
  751. X_ENABLE_INIT;
  752. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  753. #endif
  754. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN >= 0
  755. X2_ENABLE_INIT;
  756. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  757. #endif
  758. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN >= 0
  759. Y_ENABLE_INIT;
  760. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  761. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && Y2_ENABLE_PIN >= 0
  762. Y2_ENABLE_INIT;
  763. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  764. #endif
  765. #endif
  766. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN >= 0
  767. Z_ENABLE_INIT;
  768. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  769. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && Z2_ENABLE_PIN >= 0
  770. Z2_ENABLE_INIT;
  771. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  772. #endif
  773. #endif
  774. #if defined(E0_ENABLE_PIN) && E0_ENABLE_PIN >= 0
  775. E0_ENABLE_INIT;
  776. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  777. #endif
  778. #if defined(E1_ENABLE_PIN) && E1_ENABLE_PIN >= 0
  779. E1_ENABLE_INIT;
  780. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  781. #endif
  782. #if defined(E2_ENABLE_PIN) && E2_ENABLE_PIN >= 0
  783. E2_ENABLE_INIT;
  784. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  785. #endif
  786. #if defined(E3_ENABLE_PIN) && E3_ENABLE_PIN >= 0
  787. E3_ENABLE_INIT;
  788. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  789. #endif
  790. //endstops and pullups
  791. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  792. SET_INPUT(X_MIN_PIN);
  793. #ifdef ENDSTOPPULLUP_XMIN
  794. WRITE(X_MIN_PIN,HIGH);
  795. #endif
  796. #endif
  797. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  798. SET_INPUT(Y_MIN_PIN);
  799. #ifdef ENDSTOPPULLUP_YMIN
  800. WRITE(Y_MIN_PIN,HIGH);
  801. #endif
  802. #endif
  803. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  804. SET_INPUT(Z_MIN_PIN);
  805. #ifdef ENDSTOPPULLUP_ZMIN
  806. WRITE(Z_MIN_PIN,HIGH);
  807. #endif
  808. #endif
  809. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  810. SET_INPUT(X_MAX_PIN);
  811. #ifdef ENDSTOPPULLUP_XMAX
  812. WRITE(X_MAX_PIN,HIGH);
  813. #endif
  814. #endif
  815. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  816. SET_INPUT(Y_MAX_PIN);
  817. #ifdef ENDSTOPPULLUP_YMAX
  818. WRITE(Y_MAX_PIN,HIGH);
  819. #endif
  820. #endif
  821. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  822. SET_INPUT(Z_MAX_PIN);
  823. #ifdef ENDSTOPPULLUP_ZMAX
  824. WRITE(Z_MAX_PIN,HIGH);
  825. #endif
  826. #endif
  827. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0
  828. SET_INPUT(Z2_MAX_PIN);
  829. #ifdef ENDSTOPPULLUP_ZMAX
  830. WRITE(Z2_MAX_PIN,HIGH);
  831. #endif
  832. #endif
  833. #define AXIS_INIT(axis, AXIS, PIN) \
  834. AXIS ##_STEP_INIT; \
  835. AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \
  836. disable_## axis()
  837. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  838. // Initialize Step Pins
  839. #if defined(X_STEP_PIN) && X_STEP_PIN >= 0
  840. AXIS_INIT(x, X, X);
  841. #endif
  842. #if defined(X2_STEP_PIN) && X2_STEP_PIN >= 0
  843. AXIS_INIT(x, X2, X);
  844. #endif
  845. #if defined(Y_STEP_PIN) && Y_STEP_PIN >= 0
  846. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && Y2_STEP_PIN >= 0
  847. Y2_STEP_INIT;
  848. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  849. #endif
  850. AXIS_INIT(y, Y, Y);
  851. #endif
  852. #if defined(Z_STEP_PIN) && Z_STEP_PIN >= 0
  853. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && Z2_STEP_PIN >= 0
  854. Z2_STEP_INIT;
  855. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  856. #endif
  857. AXIS_INIT(z, Z, Z);
  858. #endif
  859. #if defined(E0_STEP_PIN) && E0_STEP_PIN >= 0
  860. E_AXIS_INIT(0);
  861. #endif
  862. #if defined(E1_STEP_PIN) && E1_STEP_PIN >= 0
  863. E_AXIS_INIT(1);
  864. #endif
  865. #if defined(E2_STEP_PIN) && E2_STEP_PIN >= 0
  866. E_AXIS_INIT(2);
  867. #endif
  868. #if defined(E3_STEP_PIN) && E3_STEP_PIN >= 0
  869. E_AXIS_INIT(3);
  870. #endif
  871. // waveform generation = 0100 = CTC
  872. TCCR1B &= ~BIT(WGM13);
  873. TCCR1B |= BIT(WGM12);
  874. TCCR1A &= ~BIT(WGM11);
  875. TCCR1A &= ~BIT(WGM10);
  876. // output mode = 00 (disconnected)
  877. TCCR1A &= ~(3<<COM1A0);
  878. TCCR1A &= ~(3<<COM1B0);
  879. // Set the timer pre-scaler
  880. // Generally we use a divider of 8, resulting in a 2MHz timer
  881. // frequency on a 16MHz MCU. If you are going to change this, be
  882. // sure to regenerate speed_lookuptable.h with
  883. // create_speed_lookuptable.py
  884. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  885. OCR1A = 0x4000;
  886. TCNT1 = 0;
  887. ENABLE_STEPPER_DRIVER_INTERRUPT();
  888. #ifdef ADVANCE
  889. #if defined(TCCR0A) && defined(WGM01)
  890. TCCR0A &= ~BIT(WGM01);
  891. TCCR0A &= ~BIT(WGM00);
  892. #endif
  893. e_steps[0] = 0;
  894. e_steps[1] = 0;
  895. e_steps[2] = 0;
  896. e_steps[3] = 0;
  897. TIMSK0 |= BIT(OCIE0A);
  898. #endif //ADVANCE
  899. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  900. sei();
  901. }
  902. // Block until all buffered steps are executed
  903. void st_synchronize() {
  904. while (blocks_queued()) {
  905. manage_heater();
  906. manage_inactivity();
  907. lcd_update();
  908. }
  909. }
  910. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  911. CRITICAL_SECTION_START;
  912. count_position[X_AXIS] = x;
  913. count_position[Y_AXIS] = y;
  914. count_position[Z_AXIS] = z;
  915. count_position[E_AXIS] = e;
  916. CRITICAL_SECTION_END;
  917. }
  918. void st_set_e_position(const long &e) {
  919. CRITICAL_SECTION_START;
  920. count_position[E_AXIS] = e;
  921. CRITICAL_SECTION_END;
  922. }
  923. long st_get_position(uint8_t axis) {
  924. long count_pos;
  925. CRITICAL_SECTION_START;
  926. count_pos = count_position[axis];
  927. CRITICAL_SECTION_END;
  928. return count_pos;
  929. }
  930. #ifdef ENABLE_AUTO_BED_LEVELING
  931. float st_get_position_mm(uint8_t axis) {
  932. float steper_position_in_steps = st_get_position(axis);
  933. return steper_position_in_steps / axis_steps_per_unit[axis];
  934. }
  935. #endif // ENABLE_AUTO_BED_LEVELING
  936. void finishAndDisableSteppers() {
  937. st_synchronize();
  938. disable_x();
  939. disable_y();
  940. disable_z();
  941. disable_e0();
  942. disable_e1();
  943. disable_e2();
  944. disable_e3();
  945. }
  946. void quickStop() {
  947. cleaning_buffer_counter = 5000;
  948. DISABLE_STEPPER_DRIVER_INTERRUPT();
  949. while (blocks_queued()) plan_discard_current_block();
  950. current_block = NULL;
  951. ENABLE_STEPPER_DRIVER_INTERRUPT();
  952. }
  953. #ifdef BABYSTEPPING
  954. // MUST ONLY BE CALLED BY AN ISR,
  955. // No other ISR should ever interrupt this!
  956. void babystep(const uint8_t axis, const bool direction) {
  957. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  958. enable_## axis(); \
  959. uint8_t old_pin = AXIS ##_DIR_READ; \
  960. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR^direction^INVERT, true); \
  961. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN, true); \
  962. _delay_us(1U); \
  963. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN, true); \
  964. AXIS ##_APPLY_DIR(old_pin, true); \
  965. }
  966. switch(axis) {
  967. case X_AXIS:
  968. BABYSTEP_AXIS(x, X, false);
  969. break;
  970. case Y_AXIS:
  971. BABYSTEP_AXIS(y, Y, false);
  972. break;
  973. case Z_AXIS: {
  974. #ifndef DELTA
  975. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  976. #else // DELTA
  977. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  978. enable_x();
  979. enable_y();
  980. enable_z();
  981. uint8_t old_x_dir_pin = X_DIR_READ,
  982. old_y_dir_pin = Y_DIR_READ,
  983. old_z_dir_pin = Z_DIR_READ;
  984. //setup new step
  985. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  986. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  987. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  988. //perform step
  989. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  990. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  991. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  992. _delay_us(1U);
  993. X_STEP_WRITE(INVERT_X_STEP_PIN);
  994. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  995. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  996. //get old pin state back.
  997. X_DIR_WRITE(old_x_dir_pin);
  998. Y_DIR_WRITE(old_y_dir_pin);
  999. Z_DIR_WRITE(old_z_dir_pin);
  1000. #endif
  1001. } break;
  1002. default: break;
  1003. }
  1004. }
  1005. #endif //BABYSTEPPING
  1006. // From Arduino DigitalPotControl example
  1007. void digitalPotWrite(int address, int value) {
  1008. #if HAS_DIGIPOTSS
  1009. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1010. SPI.transfer(address); // send in the address and value via SPI:
  1011. SPI.transfer(value);
  1012. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1013. //delay(10);
  1014. #endif
  1015. }
  1016. // Initialize Digipot Motor Current
  1017. void digipot_init() {
  1018. #if HAS_DIGIPOTSS
  1019. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1020. SPI.begin();
  1021. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1022. for (int i = 0; i <= 4; i++) {
  1023. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1024. digipot_current(i,digipot_motor_current[i]);
  1025. }
  1026. #endif
  1027. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1028. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1029. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1030. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1031. digipot_current(0, motor_current_setting[0]);
  1032. digipot_current(1, motor_current_setting[1]);
  1033. digipot_current(2, motor_current_setting[2]);
  1034. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1035. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1036. #endif
  1037. }
  1038. void digipot_current(uint8_t driver, int current) {
  1039. #if HAS_DIGIPOTSS
  1040. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1041. digitalPotWrite(digipot_ch[driver], current);
  1042. #endif
  1043. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1044. switch(driver) {
  1045. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1046. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1047. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1048. }
  1049. #endif
  1050. }
  1051. void microstep_init() {
  1052. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1053. pinMode(E1_MS1_PIN,OUTPUT);
  1054. pinMode(E1_MS2_PIN,OUTPUT);
  1055. #endif
  1056. #if defined(X_MS1_PIN) && X_MS1_PIN >= 0
  1057. pinMode(X_MS1_PIN,OUTPUT);
  1058. pinMode(X_MS2_PIN,OUTPUT);
  1059. pinMode(Y_MS1_PIN,OUTPUT);
  1060. pinMode(Y_MS2_PIN,OUTPUT);
  1061. pinMode(Z_MS1_PIN,OUTPUT);
  1062. pinMode(Z_MS2_PIN,OUTPUT);
  1063. pinMode(E0_MS1_PIN,OUTPUT);
  1064. pinMode(E0_MS2_PIN,OUTPUT);
  1065. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1066. for (int i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++)
  1067. microstep_mode(i, microstep_modes[i]);
  1068. #endif
  1069. }
  1070. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1071. if (ms1 >= 0) switch(driver) {
  1072. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1073. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1074. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1075. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1076. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1077. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1078. #endif
  1079. }
  1080. if (ms2 >= 0) switch(driver) {
  1081. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1082. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1083. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1084. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1085. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1086. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1087. #endif
  1088. }
  1089. }
  1090. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1091. switch(stepping_mode) {
  1092. case 1: microstep_ms(driver,MICROSTEP1); break;
  1093. case 2: microstep_ms(driver,MICROSTEP2); break;
  1094. case 4: microstep_ms(driver,MICROSTEP4); break;
  1095. case 8: microstep_ms(driver,MICROSTEP8); break;
  1096. case 16: microstep_ms(driver,MICROSTEP16); break;
  1097. }
  1098. }
  1099. void microstep_readings() {
  1100. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1101. SERIAL_PROTOCOLPGM("X: ");
  1102. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1103. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1104. SERIAL_PROTOCOLPGM("Y: ");
  1105. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1106. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1107. SERIAL_PROTOCOLPGM("Z: ");
  1108. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1109. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1110. SERIAL_PROTOCOLPGM("E0: ");
  1111. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1112. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1113. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1114. SERIAL_PROTOCOLPGM("E1: ");
  1115. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1116. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1117. #endif
  1118. }
  1119. #ifdef Z_DUAL_ENDSTOPS
  1120. void In_Homing_Process(bool state) { performing_homing = state; }
  1121. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1122. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1123. #endif