
TOMBPC.DAT FILE FORMAT
F O R T O M B R A I D E R I I G A M E S

Document Version 1.0
By IceBerg, Lisbon, Portugal, European Union

September 30, 2005

- i -

Disclaimer

Tomb Raider ® and Lara Croft ®, Tomb Raider and Lara Croft, and all associated images, are
trademarks of Eidos Interactive Ltd / Core Design Ltd.

This document was not produced and is not supported or endorsed by Eidos or Core Design.

This document is targeted to researchers and reflects the author's opinion about the internal
structure of the script files. There may be errors or misinterpretations in this research, so please
use with caution and please do report your own findings at the EZBoard Forum where most Tomb
Raider researchers can be found (http://pub19.ezboard.com/ftreditingzonefrm2). Please do not
hesitate in making an addenda or errata to this document, or in publishing your own document.

- ii -

Blank page

- iii -

Foreword to version 1.0

Creating scripts for Custom Levels for any of the TR games is an important part of authoring.
Unfortunately information about TR scripts is scarce and sometimes misleading. Aside the
TRosettaStone I couldn't find any file formats and, even there, only about TR2 scripts. Except for
the TR4 area which is well covered by the data published by Core Design for TRLE. So I decided
to start an independent research on the script formats for all the TR games, starting with TR2.

Most of the work contained herein was based on the TRosettaStone document and on studying
Core Design's Gameflow compiler. Custom rooms were built for testing purposes.

Thanks to all those authors and researchers who have been contributing with bits and pieces of
information, here and there, about the TR file formats. I’ve been taking notes . Please do carry
on. By publishing this document about scripting, I’m trying to give back to the community some of
the precious help I’ve been receiving from it. May this effort be useful to other researchers.

IceBerg
Lisbon, Portugal
2005-09-30

- iv -

Blank page

- v -

Introduction

A new nomenclature, following recent orientations in the computer industry, is used to describe
some integer and real variable types1:

sint8 : Signed 8-bits [-128..127]
sint16 : Signed 16-bits [-32768..32767]
sint32 : Signed 32-bits [-2147483648..2147483647]

uint8 : Unsigned 8-bits [0..255]
uint16 : Unsigned 16-bits [0..65535]
uint32 : Unsigned 32-bits [0..4294967295]

single : single-precision floating point 32-bits
double : double-precision floating point 64-bits

In the text, used occasionally, references may be made to the
traditional bytes, words and dwords, respectively 8, 16 and 32
bit unsigned integers, mostly to define sizes.

Software:
Core Design's GameFlow compiler; Turbo Pascal's and Vinc@eborg’s TombPCEditor v1.2;
Turbo Pascal's DXTRE3D v2.0 Rev2C Room Level Editor; IceBerg’s HexDump and an ordinary
text editor; were used together as research tools to help me understanding the TR1/2/3/4/5 script
file formats.

Bibliography:
Data published with the German version of the TR2 Gold demo in 1999; the TRosettaStone dated
November 1999.

Web sites:
Stella's Tomb Raider site, www.tombraider.net, was a source for some general info about the
Tomb Raider universe.

The making of this document:
Page layout and all the document processing was done with Open Office, an OSS - Open Source
Software distributed free and endorsed by Sun Microsystems. A fantastic publishing suite, thanks
to which I'm definitely drifting away from Microsoft's Office products.

1 This is the same nomenclature used in the TR WAD FILE FORMAT document, series 2.

- vi -

Blank page

TR II SCRIPTING

Blank page

Tomb Raider II Scripting - TR2.1 -

The Tomb Raider II TOMBPC.DAT file format

The TR2 Series has a separate script file, TOMBPC.DAT, an encrypted file containing the flow of
the game and the game' strings. It controls which levels are played and in which order, what items
Lara is given at the beginning of the level, what items are given upon finding all the secrets, it
stores the file names of the levels and their titles, it stores the text for the options in the menus,
etc. The TR2 Series also has a separate file for sounds, MAIN.SFX, except in some demos like
the “The Great Wall” and the “Venice” distributions.
For example, the “Premier Collection” boxed edition of “Tomb Raider II – Golden Mask” contains:

TOMB2.EXE 912.896 bytes 11/DEC/1997
MAIN.SFX 7.961.208 bytes 05/NOV/1997
TOMBPC.DAT 5.340 bytes 05/NOV/1997

T2GOLD.EXE 920.064 bytes 19/MAY/1999
MAIN.SFX 7.609.670 bytes 17/MAY/1999
TOMBPC.DAT 2.712 bytes 19/MAY/1999

Originated from two text files, one with the script options and another with the language strings,
the final DAT file was compiled by Core Design with an utility called GAMEFLOW.EXE, which was
distributed by Eidos in the German demo edition of Tomb Raider II Gold. This utility will combine
the two text files into one binary file and will encrypt the strings.

GAMEFLOW.EXE 85.504 bytes 31/MAR/1999

Some demo distributions of TR2 use a DEMOPC.DAT2 file which uses the same file format as the
standard DAT file. Other use a standard TOMBPC.DAT3 file.

“The Great Wall”
TOMB2.EXE 869.888 bytes 30/OCT/1997
DEMOPC.DAT 2.052 bytes 31/OCT/1997

“Venice”
TOMB2.EXE 909.824 bytes 16/APR/1998
DEMOPC.DAT 2.064 bytes 16/APR/1998

“Der kalte, kalte Krieg” (German version of “The Cold War”)
TOMB2.EXE 919.552 bytes 21/APR/1999
MAIN.SFX 7.961.208 bytes 05/NOV/1997
TOMBPC.DAT 2.907 bytes 22/APR/1999

“The Cold War”
TOMB2.EXE 948.736 bytes 06/APR/1999
MAIN.SFX 7.961.208 bytes 05/NOV/1997
TOMBPC.DAT 2.203 bytes 31/MAR/1999

“Fool's Gold”
T2GOLD.EXE 916.992 bytes 27/MAY/1999
MAIN.SFX 7.609.670 bytes 19/MAY/1999
TOMBPC.DAT 2.219 bytes 27/MAY/1999

2 These do not have a MAIN.SFX sound file, the sounds are stored in the demo level. For example, the
game's BOAT.TR2 has 3,76 MB and the demo's BOAT.TR2 has 5,64 MB.
3 These use the same MAIN.SFX sound files as the game distributions, matching the name of the Engine.

- TR2.2 - Tomb Raider // Scripting

The Tomb Raider II – DAGGER OF XIAN game contains 17 levels4, whose titles and files are:

CHINA:
The Great Wall WALL.TR2

ITALY:
Venice BOAT.TR2
Bartoli's Hideout VENICE.TR2
Opera House OPERA.TR2

OCEAN:
Offshore Rig RIG.TR2
Diving Area PLATFORM.TR2
40 Fathoms UNWATER.TR2
Wreck of the Maria Doria KEEL.TR2
Living Quarters LIVING.TR2
The Deck DECK.TR2

TIBET:
Tibetan Foothills SKIDOO.TR2
Barkhang Monastery MONASTRY.TR2
Catacombs of the Talion CATACOMB.TR2
Ice Palace ICECAVE.TR2

CHINA:
Temple of Xian EMPRTOMB.TR2
Floating Islands FLOATING.TR2
The Dragon's Lair XIAN.TR2

The Tomb Raider II – THE GOLDEN MASK5 game contains 4 extra levels6:

BERING SEA:
The Cold War LEVEL1.TR2
Fool's Gold LEVEL2.TR2
Furnace of the Gods LEVEL3.TR2
Kingdom LEVEL4.TR2

How all this is controlled and a lot more is stored in the TOMBPC.DAT compiled script file.
The study in depth of TR2 scripts was made possible by the files published with Core's compiler,
GAMEFLOW.EXE, in particular the PCFinal.TXT and the Strings.TXT files.

4 Plus the separate training level located in England, Lara's Home, ASSAULT.TR2, and the Bonus Level,
Home Sweet Home, HOUSE.TR2, in that same location. There is another file, TITLE.TR2, which is not a
playable level, it just carries data for the game's user interface.
5 Also referred to, in some literature, as Tomb Raider Gold – The Golden Mask of Tornarsuk.
6 Plus a playable Bonus Level located in the United States, Nightmare In Vegas, LEVEL5.TR2, plus the
non-playable title level TITLE.TR2 which carries data for the game's user interface.

Tomb Raider II Scripting - TR2.3 -

Three areas can be defined in the TOMBPC.DAT file: the header, the game flow, the strings.

The Header has a fixed size of 262 bytes and contains the script's version, a description of the
game which usually is Core Design' signature, and the size of the game flow data that follows.

The Gameflow data has a fixed size of 128 bytes and controls the behaviour of the game and
stores the number of elements it contains.

The Strings package stores the titles of the levels and the names of the files used by the game,
among other game and PC strings. It also stores the actual sequence of the levels and the script
commands.

The strings stored in this package may be XOR encrypted with the Cypher_Code byte, or not.
To find out, the Use_Security_Tag bit in the Flags field needs to be inspected. If this bit is set
then the strings are encrypted, otherwise they are stored as plain text.

If the strings are stored as plain text, then they are a list of zero-terminated strings.
If the strings are XOR encrypted, then they are ... “cypher_code” terminated strings! This is
because the zero is also being encrypted, and xoring the cypher with zero yields the cypher. To
recover the plain text strings, the whole list needs to be xored.

Before each string list there is a numerical list storing the offsets of each string, and a numerical
field storing the size of the list. These numerical fields are not encrypted.

Some of these strings are file names. Usually, these file names are relative to the position of the
Engine, but they can be absolute path names, provided that the file remains in the same disk as
the Engine. Access to a different disk is not allowed.
Pictures are usually stored in the “data” folder and have a PCX file format.
Full Motion Videos are usually stored in the “fmv” folder and have a RPL file format.
The levels and cut scene levels are usually stored in the “data” folder and have a TR2 file format.

The script commands for each and all the levels are stored in one single binary package.
Before this binary package there is a numerical list storing the offsets of each command, and a
numerical field storing the size of the package. These fields are not encrypted. Each command
has an OpCode which may have one Operand, or none.

The DAT file finishes with the game strings, followed by the PC strings, followed by the puzzle,
pick up and key strings. All these may be encrypted or not.

The strings package has a variable size which can be deduced from the previous sizes and the
total size of the DAT file:

Total_DAT_Size = Header_Size + Gameflow_Size + Strings_Data_Size

Header_Size = 4 + 256 + 2 = 262

Gameflow_Size = 128

Strings_Data_Size = Total_DAT_Size – 262 – 128

Header
262 bytes

Gameflow
128 bytes

Strings
Total - 390 bytes

- TR2.4 - Tomb Raider // Scripting

The flow of the game is determined by the Engine reacting to events in the game, or by the User's
choices through the game's User Interface. Such interface is provided by a special level, the
TITLE.TR2 level, or by the playable levels. All these levels store the meshes, textures and
animations needed to create the Title Ring, or the Option Ring, Inventory Ring and Items Ring.

A standard game will start with the Title Ring displayed on top of the TITLE.PCX picture.
The Passport, Controls, Sound and possibly the Polaroid, are options available in this Ring.
These elements are stored in the TITLE.TR2 non-playable level.

As the game progresses, the User Interface will also show the elements contained in the playable
levels. The Option Ring contains the Passport, Controls and Sound options. The Inventory Ring
contains the Chronometer for the statistics, the Weapons and the Supplies (Medi Packs and
Flares). The Items Ring contains the objects that Lara collects to solve puzzles.

From the Title Ring either Load Game or New Game will result in a level being played.
Level playing can end for different reasons. The User presses the ESC key, or Lara dies, or Lara
reaches the end of the level. If the level is finished, a panel with some statistics will show up, past
which the next level in the script is loaded and played. If Lara dies, the game exits to the Option
Ring with a GAME OVER title and the choices are Load Game or Exit to Title, with Save Game
being not-selectable. If the User called the Inventory Ring he may be choosing a weapon, he may
go to the Items Ring or he may go to the Option Ring. Reaching the Option Ring this way will
make available the options Load Game, Save Game and Exit to Title.

START GAME

LOAD GAME NEW GAME

Playable
GAME LEVEL

Passport

SAVE GAMELOAD GAME EXIT TO TITLE

NEXT LEVEL

Non playable
TITLE LEVEL

Passport
EXIT GAME

LARA DIES

Tomb Raider II Scripting - TR2.5 -

Section 1 – Header

Script_Version (uint32).
A valid Tomb Raider II DAT file has a value of 3 in this field.

Description (256 bytes).
This is a fixed length field, usually containing a null-terminated string describing the game and
showing Core Design' signature. The unused part of this field contains zeros7.

These are the signatures found in the distributed games and demos8:

Game or Demo Description

Tomb Raider II – Dagger of Xian Tomb Raider II Script. Final Release Version 1.1 (c) Core Design Ltd 1997

Tomb Raider II – Golden Mask Tomb Raider II Script. Final Release Version 1.1 (c) Core Design Ltd 1997

Tomb Raider II – Demo 1
The Great Wall

Tomb Raider II Script. Mag Preview (c) Core Design Ltd 1997

Tomb Raider II – Demo 2
Venice

Tomb Raider II Script. Internet Demo 15/4/98 (c) Core Design Ltd 1998

Tomb Raider II GOLD – Demo 1
The Cold War

Tomb Raider II Script. Final Release Version 1.1 (c) Core Design Ltd 1997

Tomb Raider II GOLD – Demo 2
Fool's Gold

Tomb Raider II Script. Final Release Version 1.1 (c) Core Design Ltd 1997

Gameflow_Size (uint16)9.
This field contains the size, in bytes, of the game flow data that follows, always 128 bytes. It may
also be seen as an offset to the strings data located after the game flow data.

7 There can be more then one zero-terminated string stored here, in case there is an application capable
of reading them. Otherwise the whole field may be ignored.
8 The default signature stored in Core Design's GAMEFLOW.EXE compiler is:
Tomb Raider II PC Internal Development Version (c) Core Design Ltd 1997
9 This field is missing in the TRosettaStone document.

- TR2.6 - Tomb Raider // Scripting

Blank page

Tomb Raider II Scripting - TR2.7 -

Section 2 – Gameflow

FirstOption (uint32).
What to do when the game starts, past the LEGAL.PCX and the LOGO.RPL full motion video.
When the game flow reaches that point, it can go to the Title Screen and its Title Ring, or it can
go directly to one of the Levels available, without even displaying the Title Ring.
The default is EXIT_TO_TITLE ($0000 0500).

Title_Replace (sint32).
Defines what happens when an EXIT_TO_TITLE is requested. The Title Screen may be available
or not. That depends on the status of the Title_Disabled bit in the Flags field.
If this bit is not set, then the Title Screen is available and will display its Title Ring. Otherwise the
Title Screen is not available, nor is the Title Ring. In that case, what happens upon an
EXIT_TO_TITLE request? The game flow will follow the Direction stored in this field.
The default is -1 ($FFFF FFFF), which would cause an EXITGAME or an error, but is not
executed in a default situation where Title_Disabled is not set.

OnDeath_Demo_Mode (uint32).
What to do when Lara dies during the demo mode.
The default is EXIT_TO_TITLE ($0000 0500).

OnDeath_InGame (uint32).
What to do to when Lara dies during the game.
The default is LEVEL ($0000 0000).

NoInput_Time (uint32).
Time to wait before starting the demo mode. This is the number of 1/30th of a second.
If this field is enabled or not, that depends on the NoInput_Timeout bit in the Flags field.
If that bit is not set the game flow will start the demo after the waiting time.
If the bit is set the game waits forever and the demo is ignored.
The default is 900, meaning 30 seconds.

On_Demo_Interrupt (uint32).
What to do when the demo mode is interrupted.
The default is EXIT_TO_TITLE ($0000 0500).

On_Demo_End (uint32).
What to do when the demo mode ends.
The default is EXIT_TO_TITLE ($0000 0500).

Filler_1 (36 bytes).
Filler bytes. This completes a sub-total of 64 bytes including this field.

- TR2.8 - Tomb Raider // Scripting

Num_Levels (uint16).
Number of levels in the game, including the training level, not including the title level.

Num_Pictures (uint16).
Number of chapter screens in the game.
Not used by Tomb Raider II, but this field exists in the DAT file, anyway.

Num_Titles (uint16).
Number of title elements available. This includes the TITLE.TR2 level plus the legal and title
pictures in *.PCX format.

Num_FMVs (uint16).
Number of Full Motion Videos in the game.

Num_Cutscenes (uint16).
Number of cut scene sequences in the game.

Num_Demos (uint16).
Number of demo levels in the game. These can be the same levels used by the game, or not.
What matters is that these levels must contain demo sequences.

Title_Track (uint16).
ID of the title' soundtrack.

SingleLevel (uint16).
The game plays only one single level, overriding the script.
Which level? That depends on the value stored in this field. A value of 1 indicates the first level, a
value of 2 indicates the second level, etc.
A value of -1 switches OFF this command and the system remains in multi-level mode, in which
case the script is executed. A value of 0 will send the game flow to the Title Screen, creating a
loop with no exit – do not place a zero in this field!
The default is -1, meaning that the game is multi-level.

Filler_2 (32 bytes).
Filler bytes. This completes a sub-total of 48 bytes including this field, after the previous 64 bytes.

Tomb Raider II Scripting - TR2.9 -

Flags (uint16).
Various flags enabling or disabling several options10. Treated as a bit field, it stores the following:

Enable_Cheat_Code Flags and $0800 (1 bit)
Bit[11] apparently has no effect on the PC game.
The known flare/step/step/rotate/jump cheat sequence does not
depend on this bit.
.

Select_Any_Level Flags and $0400 (1 bit)
If bit[10] is set, it indicates that the names of the levels are all
listed in the Passport. It will be the player's choice which level is
played. Otherwise levels are not displayed and the order defined
in the script is kept and followed in sequence.

Unknown Flags and $0200 (1 bit)
Bit[9] apparently has no effect on the PC game. Usually set.

Use_Security_Tag Flags and $0100 (1 bit)
If bit[8] is set, it indicates that a cypher byte was used to encrypt
the strings in the script file, and is stored in the Cypher_Code
field.

DOZY_Cheat_Enabled Flags and $0080 (1 bit)
If bit[7] is set, it indicates that the game has the DOZY cheat
enabled, but what does that mean on a TR2 game? The known
flare/step/step/rotate/jump cheat sequence does not depend on
this field. Typing “DOZY” yields nothing.

LockOut_OptionRing Flags and $0040 (1 bit)
If bit[6] is set, it indicates that the user has no access to the
Option Ring while playing the game. This means that the user
has no access to the Passport, therefore cannot use save
games or exit the game.

ScreenSizing_Disabled Flags and $0020 (1 bit)
If bit[5] is set, it indicates that the game does not allow screen
resizing. The F1 / F2 / F3 / F4 keys will not work, they will not
change the screen resolution or the screen size. F12 still toggles
between full screen and windowed.

LoadSave_Disabled Flags and $0010 (1 bit)
If bit[4] is set, it indicates that the game does not allow save
games, but the consequences of this do require some extra
explanations. The Title Screen will have a Passport which only
allows EXITGAME. During the game, if the user calls the
Passport, it only allows EXIT_TO_TITLE. Given these
restrictions, a game that starts with the Title Screen cannot be
actually played – it exits. Such a game must start with a level
which must be declared as the FirstOption.
During the game the F5 / F6 keys do not save / load.

10 Maybe some of these fields, which do not work on the PC, are for the PSX console.

- TR2.10 - Tomb Raider // Scripting

NoInput_Timeout Flags and $0008 (1 bit)
If bit[3] is set, it indicates that the game waits forever if there is
no input. Otherwise it returns to the Title Screen, or it enters a
demo mode, after a certain period of time with no user input.

CheatModeCheck_Disabled Flags and $0004 (1 bit)
If bit[2] is set, it indicates that the game does not look for the
cheat sequence keystrokes and events.
This will disable the flare/step/step/rotate/jump sequence.

Title_Disabled Flags and $0002 (1 bit)
If bit[1] is set, it indicates that the game has no Title Screen. This
affects the way how game flow operates, in conjunction with
Title_Replace.

DemoVersion Flags and $0001 (1 bit)
If bit[0] is set, it indicates that the game is a demo distribution.
Otherwise it is a normal game distribution. What difference does
it make? This flag was found only in the Wall and Venice demos,
which have a DEMOPC.DAT file as a script, and do not use the
MAIN.SFX sound file.

En
ab

le
_C

he
at

_C
od

e

Se
le

ct
_A

ny
_L

ev
el

U
nk

no
w

n

U
se

_S
ec

ur
ity

_T
ag

D
O

ZY
_C

he
at

_E
na

bl
ed

Lo
ck

O
ut

_O
pt

io
nR

in
g

Sc
re

en
Si

zi
ng

_D
is

ab
le

d

Lo
ad

Sa
ve

_D
is

ab
le

d

N
oI

np
ut

_T
im

eo
ut

C
he

at
M

od
eC

he
ck

_D
is

ab
le

d

Ti
tle

_D
is

ab
le

d

D
em

oV
er

si
on

$8000 $4000 $2000 $1000 $0800 $0400 $0200 $0100 $0080 $0040 $0020 $0010 $0008 $0004 $0002 $0001

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

The settings above are the typical ones for a regular game. The Unknown bit is set in all the
games and demos, except in the “The Great Wall” and the “Venice” demos. The cypher byte is
optional, but every DAT file has been encrypted, therefore Use_Security_Tag is set. The value
obtained this way is $0300, which can be considered as the default value for the Flags field.

Filler_3 (6 bytes).
Filler bytes. This completes a sub-total of 8 bytes including this field, after the previous 64 + 48
bytes.

Tomb Raider II Scripting - TR2.11 -

Cypher_Code (uint8).
Cypher byte used to encrypt the strings in the script file. Core Design used the value 166 ($A6) to
XOR the TR2 strings. If this command is added to the script, then the GAMEFLOW.EXE compiler
will set the Use_Security_Tag bit in the Flags field.

Language (uint8).
Language byte. There are five valid strings that can be used in the script:

ENGLISH 0
FRENCH 1
German 2
AMERICAN 3
JAPANESE 4

If a meaningless string is placed here the GAMEFLOW.EXE utility compiles it as 1 if the first letter
is <= J, and it compiles as 255 if the first letter is > J.

Secret_Track (uint16).
ID of the “found a secret” soundtrack.

Filler_4 (4 bytes).
Filler bytes. This completes a sub-total of 8 bytes including this field, after the previous sub-totals
of 64 + 48 + 8 bytes, making a grand total of 128 bytes, the Gameflow_Data_Size.

- TR2.12 - Tomb Raider // Scripting

Blank page

Tomb Raider II Scripting - TR2.13 -

Section 3 – Strings

Level_Names_Offset_List (Num_Levels * 2 bytes)
Each record in this list is a uint16 value representing an offset to the name of a level, including
the training level, not including the title level.

Level_Names_Num_Bytes (uint16)
Size of the Level_Names_List, expressed in bytes.

Level_Names_List (Level_Names_Num_Bytes)
The names of the levels are stored in this list.

Picture_Filenames_Offset_List (Num_Pictures * 2 bytes)
Each record in this list is a uint16 value representing an offset to the file name of a picture.
Not used in the TR2 Series11.

Picture_Filenames_Num_Bytes (uint16)
Size of the Picture_FileNames_List expressed in bytes.
Not used in the TR2 Series.

Picture_Filenames_List(Picture_Filenames_Num_Bytes)
The file names of the chapter screen pictures are stored in this list.
Not used in the TR2 Series.

 Title_Filenames_Offset_List (Num_Titles * 2 bytes)
Each record in this list is a uint16 value representing an offset to the file name of a title element.
The first title element in the list must always be TITLE.TR2, followed by the PCX pictures for the
Title Screen and the Legal Screen, for the UK, USA and Japan.

Title_Filenames_Num_Bytes (uint16)
Size of the Title_FileNames_List, expressed in bytes.

Title_Filenames_List (Title_Filenames_Num_Bytes)
The file names of the title elements are stored in this list.

11 If the script text contains the OpCode PICTURE ($0000) in any of the level sequences, then the
GAMEFLOW.EXE utility will compile it, and the Picture_Filenames fields will have some data in them.
However, OpCode PICTURE yields nothing in-game. Or, if OpCode LOAD_PIC ($000C) is declared in
any level sequence, the GAMEFLOW.EXE utility does not even compile it at all. In both circumstances, no
pictures are actually used in-game, rendering the Picture_Filenames fields totally useless under TR2.

- TR2.14 - Tomb Raider // Scripting

FMV_Filenames_Offset_List (Num_FMVs * 2 bytes)
Each record in this list is a uint16 value representing an offset to the file name of a Full Motion
Video. These can be corporate logos or pre-rendered animated sequences.

FMV_Filenames_Num_Bytes (uint16)
Size of the FMV_FileNames_List, expressed in bytes.

FMV_Filenames_List (FMV_Filenames_Num_Bytes)
The file names of the Full Motion Videos are stored in this list.

Level_Filenames_Offset_List (Num_Levels * 2 bytes)
Each record in this list is a uint16 value representing an offset to the file name of a level.

Level_Filenames_Num_Bytes (uint16)
Size of the Level_FileNames_List, expressed in bytes.

Level_Filenames_List (Level_Filenames_Num_Bytes)
The file names of the levels are stored in this list.

Cutscene_Filenames_Offset_List (Num_Cutscenes * 2 bytes)
Each record in this list is a uint16 value representing an offset to the file name of a level
containing a cut scene.

Cutscene_Filenames_Num_Bytes (uint16)
Size of the Cutscene_FileNames_List, expressed in bytes.

Cutscene_Filenames_List (Cutscene_Filenames_Num_Bytes)
The file names of the cut scenes are stored in this list.

Tomb Raider II Scripting - TR2.15 -

Script_Offset_List ((Num_Levels + 1) * 2 bytes)
Each record in this list is a uint16 value representing an offset to a script command.
The (+ 1) above is to include the Level sequences plus the FrontEnd sequence.

Script_Num_Bytes (uint16)
Size of the Script_Package, expressed in bytes.

Script_Package (Script_Num_Bytes)
The script sequences are stored in this package, translated into OpCodes and Operands.

GAMEFLOW.EXE
script commands

OpCode Operand Description

PICTURE $0000 (00) Picture ID Unused. Compiles but does not show in-game. Maybe PSX.

PSX_TRACK (?) $0001 (01) Track ID Unused. Does not compile. Maybe PSX.

PSX_FMV (?) $0002 (02) FMV ID Unused. Does not compile. Maybe PSX.

FMV $0003 (03) FMV ID Display Full Motion Video.

GAME $0004 (04) Level ID Start a playable level.

CUT $0005 (05) Cutscene ID Display cut scene sequence.

COMPLETE $0006 (06) - Display level-completion statistics panel.

DEMO, PCDEMO $0007 (07) Demo ID Display demo sequence.

PSX_DEMO (?) $0008 (08) Demo ID Unused. Does not compile. Maybe PSX.

END $0009 (09) - Closes script sequences, LEVEL, DEMOLEVEL, GYM, etc...

TRACK, PCTRACK $000A (10) Track ID Play Soundtrack (it precedes opcodes of associated levels).

SUNSET $000B (11) - Unknown. Nothing changes in-game.
Maybe this is an ancestor of the TR4 LensFlare command,
not actually implemented under TR2.

LOAD_PIC $000C (12) Picture ID Unused. Does not compile. Will be used under TR3.

DEADLY_WATER $000D (13) - Unknown. Nothing changes in-game.
Maybe this is an ancestor of the TR3 Death_By_Drowning
effect, not actually implemented under TR2.

REMOVE_WEAPONS $000E (14) - Lara starts the level with no weapons.

GAMECOMPLETE $000F (15) - End of game, shows the final statistics and starts the credits
sequence with music ID = 52.

CUTANGLE $0010 (16) HRotation Matches the North-South orientation of the Room Editor and
the North-South orientation of the 3D animated characters
from a CAD application.

NOFLOOR $0011 (17) Depth Death_By_Depth. Lara dies when her feet reach the given
depth. If falling, 4 to 5 extra blocks are added to Depth.

STARTINV, BONUS $0012 (18) Item ID Items given to Lara at level-start or at all-secrets-found.

STARTANIM $0013 (19) Anim ID Special Lara's animation when the level starts.

SECRETS $0014 (20) OnOff If zero, the level does not account for secrets.

KILLTOCOMPLETE $0015 (21) - Kill all enemies to finish the level.

REMOVE_AMMO $0016 (22) - Lara starts the level without ammunition or medi packs.

- TR2.16 - Tomb Raider // Scripting

The STARTINV and the BONUS OpCodes both give items to Lara.
The amount of medi packs, flares or ammunition given is one unit per OpCode, only. In order to
increase the quantity given to Lara, the OpCodes need to be repeated in the script.

GAMEFLOW.EXE
script parameters

STARTINV
Operand

BONUS
Operand

Description

PISTOLS 1000 0 Standard pistols (2)

SHOTGUN 1001 1 Shotgun (1)

AUTOPISTOLS 1002 2 Automatic Pistols (2)

UZIS 1003 3 Uzis (2)

HARPOON 1004 4 Harpoon gun (1)

M16 1005 5 M16 (1)

ROCKET 1006 6 Grenade launcher (1)

PISTOLS_AMMO 1007 7 Pistol clip (no effect, infinite by default)

SHOTGUN_AMMO 1008 8 Shotgun-shell box (adds 2 shells)

AUTOPISTOLS_AMMO 1009 9 Automatic Pistols clip (adds 2 shells)

UZI_AMMO 1010 10 Uzi clip (adds 2 shells)

HARPOON_AMMO 1011 11 Harpoon bundle (adds 2 harpoons)

M16_AMMO 1012 12 M16 clip (adds 2 shells)

ROCKET_AMMO 1013 13 Grenade pack (adds 1 grenade)

FLARES 1014 14 Flare box (adds 1 flare)

MEDI 1015 15 Small medi pack (adds 1 pack)

BIGMEDI 1016 16 Big medi pack (adds 1 pack)

PICKUP1 1017 17 Pickup item 1

PICKUP2 1018 18 Pickup item 2

PUZZLE1 1019 19 Puzzle item 1

PUZZLE2 1020 20 Puzzle item 2

PUZZLE3 1021 21 Puzzle item 3

PUZZLE4 1022 22 Puzzle item 4

KEY1 1023 23 Key item 1

KEY2 1024 24 Key item 2

KEY3 1025 25 Key item 3

KEY4 1026 26 Key item 4

Tomb Raider II Scripting - TR2.17 -

Num_Game_Strings (uint16)
Number of generic game strings for a TR2 game.
Although this numeric field exists here, the GAMEFLOW.EXE compiler expects to see 89 strings.

Game_Strings_Offset_List (Num_Game_Strings * 2 bytes)
Each record in this list is a uint16 value representing an offset to a string.

Game_Strings_Num_Bytes (uint16)
Size of the Game_Strings_List, expressed in bytes.

Game_Strings_List (Game_Strings_Num_Bytes)
The generic game strings are stored in this list.
Their number must be Num_Game_Strings. If necessary pad with a dummy name, like “spare”.

PC_Strings_Offset_List (41 * 2 bytes)
Each record in this list is a uint16 value representing an offset to a string.
The number of these strings is hard-coded as 41.

PC_Strings_Num_Bytes (uint16)
Size of the PC_Strings_List, expressed in bytes.

PC_Strings_List (PC_Strings_Num_Bytes)
The generic strings are stored in this list.
Their number must be 41. If necessary pad with a dummy name, like “spare”.

Puzzle1_Offset_List (Num_Levels * 2 bytes)
Each record in this list is a uint16 value representing an offset to a string.

Puzzle1_Num_Bytes (uint16)
Size of the Puzzle1_List, expressed in bytes.

Puzzle1_List (Puzzle1_Num_Bytes)
The strings for all Puzzle1 are stored in this list.
Each level available in the game will pick up its string for Puzzle1 from this list.
The first level takes the first string, the second level takes the second string, etc.
The number of strings must be Num_Levels. If necessary pad with a dummy name, like “P1”.

- TR2.18 - Tomb Raider // Scripting

Puzzle2_Offset_List (Num_Levels * 2 bytes)
Each record in this list is a uint16 value representing an offset to a string.

Puzzle2_Num_Bytes (uint16)
Size of the Puzzle2_List, expressed in bytes.

Puzzle2_List (Puzzle2_Num_Bytes)
The strings for all Puzzle2 are stored in this list.
Each level available in the game will pick up its string for Puzzle2 from this list.
The first level takes the first string, the second level takes the second string, etc.
The number of strings must be Num_Levels. If necessary pad with a dummy name, like “P2”.

Puzzle3_Offset_List (Num_Levels * 2 bytes)
Each record in this list is a uint16 value representing an offset to a string.

Puzzle3_Num_Bytes (uint16)
Size of the Puzzle3_List, expressed in bytes.

Puzzle3_List(Puzzle3_Num_Bytes)
The strings for all Puzzle3 are stored in this list.
Each level available in the game will pick up its string for Puzzle3 from this list.
The first level takes the first string, the second level takes the second string, etc.
The number of strings must be Num_Levels. If necessary pad with a dummy name, like “P3”.

Puzzle4_Offset_List (Num_Levels * 2 bytes)
Each record in this list is a uint16 value representing an offset to a string.

Puzzle4_Num_Bytes (uint16)
Size of the Puzzle4_List, expressed in bytes.

Puzzle4_List (Puzzle4_Num_Bytes)
The strings for all Puzzle4 are stored in this list.
Each level available in the game will pick up its string for Puzzle4 from this list.
The first level takes the first string, the second level takes the second string, etc.
The number of strings must be Num_Levels. If necessary pad with a dummy name, like “P4”.

Tomb Raider II Scripting - TR2.19 -

Pickup1_Offset_List (Num_Levels * 2 bytes)
Each record in this list is a uint16 value representing an offset to a string.

Pickup1_Num_Bytes (uint16)
Size of the Pickup1_List, expressed in bytes.

Pickup1_List (Pickup1_Num_Bytes)
The strings for all Pickup1 are stored in this list.
Each level available in the game will pick up its string for Pickup1 from this list.
The first level takes the first string, the second level takes the second string, etc.
The number of strings must be Num_Levels. If necessary pad with a dummy name, like “P1”.

Pickup2_Offset_List (Num_Levels * 2 bytes)
Each record in this list is a uint16 value representing an offset to a string.

Pickup2_Num_Bytes (uint16)
Size of the Pickup2_List, expressed in bytes.

Pickup2_List (Pickup2_Num_Bytes)
The strings for all Pickup2 are stored in this list.
Each level available in the game will pick up its string for Pickup2 from this list.
The first level takes the first string, the second level takes the second string, etc.
The number of strings must be Num_Levels. If necessary pad with a dummy name, like “P2”.

Key1_Offset_List (Num_Levels * 2 bytes)
Each record in this list is a uint16 value representing an offset to a string.

Key1_Num_Bytes (uint16)
Size of the Key1_List, expressed in bytes.

Key1_List (Key1_Num_Bytes)
The strings for all Key1 are stored in this list.
Each level available in the game will pick up its string for Key1 from this list.
The first level takes the first string, the second level takes the second string, etc.
The number of strings must be Num_Levels. If necessary pad with a dummy name, like “K1”.

- TR2.20 - Tomb Raider // Scripting

Key2_Offset_List (Num_Levels * 2 bytes)
Each record in this list is a uint16 value representing an offset to a string.

Key2_Num_Bytes (uint16)
Size of the Key2_List, expressed in bytes.

Key2_List(Key2_Num_Bytes)
The strings for all Key2 are stored in this list.
Each level available in the game will pick up its string for Key2 from this list.
The first level takes the first string, the second level takes the second string, etc.
The number of strings must be Num_Levels. If necessary pad with a dummy name, like “K2”.

Key3_Offset_List (Num_Levels * 2 bytes)
Each record in this list is a uint16 value representing an offset to a string.

Key3_Num_Bytes (uint16)
Size of the Key3_List, expressed in bytes.

Key3_List (Key3_Num_Bytes)
The strings for all Key3 are stored in this list.
Each level available in the game will pick up its string for Key3 from this list.
The first level takes the first string, the second level takes the second string, etc.
The number of strings must be Num_Levels. If necessary pad with a dummy name, like “K3”.

Key4_Offset_List (Num_Levels * 2 bytes)
Each record in this list is a uint16 value representing an offset to a string.

Key4_Num_Bytes (uint16)
Size of the Key4_List, expressed in bytes.

Key4_List (Key4_Num_Bytes)
The strings for all Key4 are stored in this list.
Each level available in the game will pick up its string for Key4 from this list.
The first level takes the first string, the second level takes the second string, etc.
The number of strings must be Num_Levels. If necessary pad with a dummy name, like “K4”.

EXPLORING THE DAT FILE

Blank page

Exploring the DAT file - DAT.1 -

GAME FLOW COMPARATIVE TABLE

NOTE: ONLY THE LOWER WORD IS
SHOWN HERE, WHICH IS ENOUGH
FOR RESEARCH PURPOSES.

DX GM GM
Demo

Cold
War

Fool's
Gold

Great
Wall

Venice

FirstOption $0500 $0500 $0500 $0500 $0500 $0001 $0001

Title_Replace $FFFF $FFFF $FFFF $FFFF $FFFF $0700 $0700

OnDeath_Demo_Mode $0500 $0500 $0500 $0500 $0500 $0001 $0500

OnDeath_InGame $0000 $0000 $0000 $0000 $0000 $0001 $0700

NoInput_Time 900 900 900 900 900 900 900

On_Demo_Interrupt $0500 $0500 $0500 $0500 $0500 $0500 $0500

On_Demo_End $0500 $0500 $0500 $0500 $0500 $0500 $0500

Filler_1 (36 bytes)

Num_Level_Strings 22 6 6 2 2 2 2

Num_Picture_Strings 0 0 0 0 0 0 0

Num_Title_Strings 7 7 7 7 7 0 1

Num_FMV_Strings 8 1 1 1 1 0 0

Num_Cutscene_Strings 4 0 0 0 0 0 0

Num_Demo_Strings 3 0 0 0 0 0 0

Title_Track 64 64 64 64 64 2 0

SingleLevel -1 -1 1 -1 -1 1 1

Filler_2 (32 bytes)

Enable_Cheat_Code 0 0 0 0 0 0 0

Select_Any_Level 0 0 0 0 0 0 0

Unknown 1 1 1 1 1 0 0

Use_Security_Tag 1 1 1 1 1 1 1

DOZY_Cheat_Enabled 0 0 1 1 0 0 0

LockOut_OptionRing 0 0 0 0 0 0 0

ScreenSizing_Disabled 0 0 0 0 0 0 0

LoadSave_Disabled 0 0 0 0 0 0 0

NoInput_Timeout 0 0 0 0 0 0 0

CheatModeCheck_Disabled 0 0 0 0 0 1 1

Title_Disabled 0 0 0 0 0 1 1

DemoVersion 0 0 0 0 0 1 1

Filler_3 (6 bytes)

Cypher_Code $A6 $A6 $A6 $A6 $A6 $A6 $A6

Language $00 $00 $00 $00 $00 $00 $00

Secret_Track 47 47 47 47 47 47 47

Filler_4 (4 bytes)

- DAT.2 - Exploring the DAT file

DIRECTIONS FOR THE GAME FLOW

Looking at the GAME FLOW COMPARATIVE TABLE, we can see that the Gameflow section of
the DAT file is broken down in four sub-sections, with respectively 64, 48, 8 and 8 bytes, making
a total of 128 bytes of size.

The first sub-section contains the Directions for the game flow. The meaning of those
hexadecimal values was found by studying the GAMEFLOW compiler and its related input (TXT)
and output (LOG) text files.

VALUE Script.TXT Script.LOG in GAMEFLOW.EXE
$0000 LEVEL

LEVEL 0
SEQUENCE

SEQUENCE 0

STARTGAME 0 STARTGAME

$0100 does not compile STARTSAVEDGAME
$0200 does not compile STARTCINE
$0300 does not compile STARTFMV
$0400 DEMO

DEMO 0
STARTDEMO 0 STARTDEMO

$0500 EXIT_TO_TITLE EXIT_TO_TITLE EXIT_TO_TITLE
$0600 does not compile LEVELCOMPLETE
$0700 EXITGAME EXITGAME EXITGAME
$0800 does not compile EXIT_TO_OPTION
$0900 does not compile TITLE_DESELECT
$FFFF -1

Some of these Directions can have a range of values, like LEVEL or DEMO, which can have 256
values, [0 .. 255].

VALUE Script.TXT Script.LOG
$0000 LEVEL

LEVEL 0
SEQUENCE

SEQUENCE 0

STARTGAME 0

$0001 LEVEL 1 STARTGAME 1

$0002 LEVEL 2 STARTGAME 2

$0003 LEVEL 3 STARTGAME 3

...
$00FF

...
LEVEL 255

...
STARTGAME 255

Exploring the DAT file - DAT.3 -

Some interpretations in the DIRECTIONS table were extrapolated from the order of the strings in
the compiler executable file, those marked as “does not compile”. The GAMEFLOW compiler
does not accept them in the input Script.TXT file. However, there is a workaround.

The input LEVEL 255 is compiled as $00FF and produces the output STARTGAME 255.
The workaround is that the input LEVEL 256 is compiled as $0100, which is the value for
STARTSAVEDGAME. The output in the Script.LOG file is written as STARTSAVEDGAME 0,
suggesting that a range is allowed.

VALUE Script.TXT Script.LOG
$0100 LEVEL 256 STARTSAVEDGAME 0

$0101 LEVEL 257 STARTSAVEDGAME 1

$0102 LEVEL 258 STARTSAVEDGAME 2

$0103 LEVEL 259 STARTSAVEDGAME 3

...
$01FF

...
LEVEL 511

...
STARTSAVEDGAME 255

The same workaround works for other Directions as well.

The input Direction LEVEL 512 is compiled as $0200, which is the value for STARTCINE. The
output in the Script.LOG file is written as STARTCINE 0, suggesting that a range is allowed.
The input Direction LEVEL 768 is compiled as $0300, which is the value for STARTFMV. The
output in the Script.LOG file is written as STARTFMV 0, suggesting that a range is allowed.

No workaround is needed for the next input, DEMO, which compiles normally and also has a
range of 256 values. The input DEMO 255 is compiled as $04FF and correctly produces the
output DEMO 255.

The next input, EXIT_TO_TITLE, compiles as $0500 and produces EXIT_TO_TITLE 0 as output
in the Script.LOG file. However, no ranges are allowed here. If a parameter is declared, it is
ignored and the compiled value always is $0500.
It may be interesting to note that the workaround technique can also be used here.
The input Direction DEMO 256 is compiled the same as EXIT_TO_TITLE.
Following the same reasoning as before, the input Direction DEMO 257 is compiled as $0501 and
produces the output EXIT_TO_TITLE 1 in the Script.LOG file.

And the same reasoning carries on the same way with the other Directions. When the compiler
does not accept a given Direction, it can be produced with a workaround. If the final result is
interesting or not, that remains to be tested in a real situation.

NOTES:
– The space between the Direction and the number that follows is optional.
– Usually the Directions yield nothing if their target does not exist, and an EXIT_TO_TITLE is

issued out as a replacement.
– The Direction LEVEL %d is overridden by the SingleLevel field, which will force its own index.
– Meaningless Directions will be compiled as a LEVEL 1, and logged as STARTGAME 1.
– A decimal value entered instead of a Direction will produce $FFFF FFFF and will be logged

with a (null) 255 entry in the Script.LOG file. In this case an EXITGAME will happen.
– Fiddling with the EXIT_TO_TITLE requests may create unplayable situations. Better leave the

Title_Disabled bit in the Flags field as 0, and leave the Title_Replace Direction as -1, which
are the default values.

- DAT.4 - Exploring the DAT file

GAME FLOW CHART – PART 1

EXIT_TO_TITLE
 Pass control over to the User

START

Check the value of the FIRSTOPTION field

$0500 $04xx $03xx $02xx $01xx $00xx $0700

Check the value of the TITLE_REPLACE field

$0500 $04xx $03xx $02xx $01xx $00xx $0700

Play
Level
$xx

Load
and
Play

Saved
Game
$xx

Display
Cut

Scene
$xx

Display
Demo
Scene

$xx

Check the value of the Title_Disabled bit

0 1

Play
Level
$xx

Load
and
Play

Saved
Game
$xx

Display
Cut

Scene
$xx

Display
Demo
Scene

$xx

Error N/A

N/A EXIT

EXIT

END

Exploring the DAT file - DAT.5 -

GAME FLOW CHART – PART 2

PART 1 of the flowchart shows most of the possibilities. The default path is the one on the left,
where FirstOption = EXIT_TO_TITLE and where the Title_Disabled bit = 0. PART 2 is simplified
in order not to repeat the options if the Title_Disabled bit = 1. The blue box is there as a
remainder, but the details were omitted.

LOAD GAME NEW GAME

TITLE.TR2 Level
 Control passed over to the User

START

EXIT GAME END

 TR2 Playable Level

LOAD GAME SAVE GAME EXIT TO TITLE

LARA DIES

LEVEL ENDS

Title_Disabled bit

- DAT.6 - Exploring the DAT file

Blank page

Exploring the DAT file - DAT.7 -

CHEATING ON A TR2 GAME12

To finish up a level:
Light up a flare.
Small step forward.
Small step backwards.
Turn around non-stop three times.
Jump forward.
The statistics panel shows up, the level ends.

To get all the weapons and maximize the ammo:
Light up a flare.
Small step forward.
Small step backwards.
Turn around non-stop three times.
Jump backwards.
There is a clicking sound that announces the update in the inventory. Now there is a Shotgun with
83 shells, the Automatic Pistols with 500 shells, the Uzis with 5000 shells, the M16 with 5000
shells, the Grenade Launcher with 5000 grenades, the Harpoon Gun with 5000 harpoons. It adds
50 Flares, 50 Small Medi Packs and 50 Large Medi Packs.

TR2 DEMO SEQUENCES

With Tomb Raider II Core Design implemented three demo sequences. If left alone in the Title
Screen with no user input, the game cycles through the demos. If a demo sequence is interrupted
by the user the game returns to the Title Screen ready to start a new game. This is useful to have
it displaying in shops, advertising the game.

From the Title Screen, after 30 seconds of inactivity the game runs a 30 seconds demo based on
“Venice”, where Lara breaks through the window of a shack to fight one of Bartoli's goons.
When the demo sequence ends the game goes back to the Title Screen.

After another 30 seconds of inactivity the game runs one more 30 seconds demo based on
“Wreck of the Maria Doria”, where Lara fights a diver with harpoons.
When the demo sequence ends the game goes back to the Title Screen.

After another 30 seconds of inactivity the game runs one more 30 seconds demo based on
“Tibetan Foothills”, where Lara fights a couple of goons and rides the snowmobile.
When the demo sequence ends the game goes back to the Title Screen.
And the process repeats.

These demo sequences are not activated while the game is being played.

The demo level distributions of Tomb Raider II do not run demo sequences.

12 From Stella's Tomb Raider site.

- DAT.8 - Exploring the DAT file

TR2 FUNCTION KEYS

F1 Reduce graphics resolution.
F2 Increase graphics resolution.
Shift F1 Reduce colour depth.
Shift F2 Increase colour depth.
F3 Reduce screen size.
F4 Increase screen size.
F5 Save Game.
F6 Load Game.
F7 Toggle Z-buffering on / off.
F8 Toggle bilinear filtering on / off.
Shift F8 Toggle perspective correction on / off.
F11 Toggle dithering on / off.
F12 Toggle full screen / windowed.

Do not map the S key to any control in the game. Each time the S key is pressed, a screen shot
will be saved to the Tomb Raider II directory. The file will be saved in targa format, and named
from "tomb0000.tga", incrementally.

There is no hot key to exit Tomb Raider II. To exit the game, press ALT-F4.

Exploring the DAT file - DAT.9 -

OPCODES AND OPERANDS

Some OpCodes do not work at all on the PC. They may be PSX codes or they may be features
still under development at the time the game was released. The unused OpCodes are 0, 1, 2, 8
and 12. The unknowns are 11 and 13. The meaning of the OpCodes and their Operands was
found through trial and error with custom TR2 test levels.

DISPLAYING FULL MOTION VIDEOS:
NAME: FMV
OPCODE : 3
OPERAND: ID of the FMV in the script.

Full Motion Videos are pre-rendered high-resolution animated scenes.
These scenes are distributed as a low-resolution RPL audio-video file, playable
with the ESCAPE player. This format was used with TR1/2/3 games.

The Script.TXT file must declare the path of the video files, usually something like
fmv\logo.rpl, a location relative to the Engine's location. An absolute location can
be declared, like D:\TR2\fmv\logo.rpl, provided that the disk is the same as the
Engine. The GAMEFLOW compiler will parse this entry properly. In any case the
compiler builds a list of the video file names as it finds them in the script. The
index of a file name in this list is used as the ID of the respective FMV in the
compiled DAT file.

These videos can be included at will in different Sequences in the script.
More then one FMV can be included per Sequence.
– in the FRONTEND Sequence;
– in the GYM Sequence, before the training level itself. A video file inserted after

the training level will not be played. When the level ends, an EXIT_TO_TITLE
is called, bypassing the rest of the Sequence.

– in a LEVEL Sequence, before or after the game level itself;
– In a DEMOLEVEL Sequence, before the demo level itself, only. After the

demo an On_Demo_End is called, bypassing the rest of the Sequence.

PLAYING A GAME LEVEL:
NAME: GAME
OPCODE : 4
OPERAND: ID of the level in the script.

This is the OpCode that launches a playable level in a LEVEL Sequence.

The Script.TXT file must declare the path of the level files, usually something like
data\levelname.tr2, a location relative to the Engine's location. An absolute
location can be declared instead, something like D:\TR2\data\levelname.tr2,
provided that the disk is the same as the Engine. The GAMEFLOW compiler will
parse this entry properly. In any case the compiler builds a list of the level file
names as it finds them in the script. The index of a file name in this list is used as
the ID of the respective level in the compiled DAT file.

The GAME OpCode for a level must be preceded by the other Opcodes related to
the same level. These would typically be the soundtrack, supplies and items.
Any other OpCodes which affect the level must also be declared before the
GAME command.

- DAT.10 - Exploring the DAT file

DISPLAYING CUT SCENES:
NAME: CUT
OPCODE : 5
OPERAND: ID of the FMV in the script.

Cut scenes are animated scenes rendered in real-time by the game's Engine,
stored inside dedicated TR2 levels.

The Script.TXT file must declare the path of the cut scene level files, usually
something like data\cut1.tr2, a location relative to the Engine's location. An
absolute location can be declared instead, even a non-standard one, something
like D:\TR2\cut\cut1.tr2, provided that the disk is the same as the Engine. The
GAMEFLOW compiler will parse this entry properly. In any case the compiler
builds a list of the cut scene level file names as it finds them in the script. The
index of a file name in this list is used as the ID of the respective cut scene level
in the compiled DAT file.

These cut scene levels use CD audio sound tracks stored in the CDROM, same
as the game levels. Therefore a soundtrack must be declared in the script,
preceding the CUT command, for them to have audio, same procedure as the
game levels. However, there is a critical difference here: whereas the game
levels will run even without the CD audio, the cut scenes will not display at all
without their audio.
There is another problem involving the cut scenes' audio, as explained further
down in this text.

These special levels can be included at will in different Sequences in the script.
More then one cut scene can be included per Sequence.
– in the FRONTEND Sequence.
– in the GYM Sequence, before the training level itself. A cut scene level file

inserted after the training level will not be displayed. When the training level
ends, an EXIT_TO_TITLE is called, bypassing the rest of the Sequence.

– in a LEVEL Sequence, before or after the game level itself.
– in a DEMOLEVEL Sequence, before the demo level itself, only. After the

demo an On_Demo_End is called, bypassing the rest of the Sequence.

Although true, the statements above may not work properly.
There is a problem with the CD audio of the cut scenes versus the CD audio of
the game levels. If a cut scene is displayed before a game (or demo) level, the
cut scene audio keeps on playing forever and overrides the audio of the game
level. A cut scene will not override another cut scene. There is no interference
with FMV files.

Given this CD audio situation, cut scenes may not be inserted before other levels.
The GYM Sequence, therefore, cannot properly play the training level after
displaying a cut scene. The same applies to the LEVEL and DEMOLEVEL
Sequences. They will not play their levels properly after displaying a cut scene.

LEVEL COMPLETION STATISTICS:
NAME: COMPLETE
OPCODE : 6
OPERAND: None.

Displays the end of the level statistics: Time Taken, Secrets Found, Kills, Ammo
Used, Hits, Health Packs Used, Distance Travelled.

Exploring the DAT file - DAT.11 -

DISPLAYING DEMO SEQUENCES:
NAME: DEMO
NAME: PCDEMO
OPCODE : 7
OPERAND: ID of the level in the script.

This is the OpCode that launches a recorded demo sequence in a DEMOLEVEL
Sequence.

Recorded demo sequences are scenes rendered in real-time, whose animations
are stored inside standard TR2 game levels, showing Lara in action inside those
levels. The movements are previously recorded in real-time during game playing,
then stored in the same level and made available for demo purposes.

The Script.TXT file must declare the path of the level files containing the demo
sequences, usually something like data\levelname.tr2, a location relative to the
Engine's location. An absolute location can be declared instead, something like
D:\TR2\data\levelname.tr2, provided that the disk is the same as the Engine. The
GAMEFLOW compiler will parse this entry properly. In any case the compiler
builds a list of the level file names as it finds them in the script. The index of a file
name in this list is used as the ID of the respective demo sequence level in the
compiled DAT file.

CLOSING SEQUENCES:
NAME: END
OPCODE : 9
OPERAND: None.

Closes the OPTIONS, TITLE, FRONTEND, GYM, LEVEL or DEMOLEVEL
Sequences in the Script.TXT file.

PLAYING CD AUDIO TRACKS:
NAME: TRACK
NAME: PCTRACK
OPCODE : 10
OPERAND: ID of the CD audio track in the script.

CD audio tracks are stored in the game's CDROM in a separate area, other then
the data files area. These audio tracks are playable as any other audio CDROM
disks. The index of the audio track is used as the ID of the respective soundtrack
in the compiled DAT file.

These tracks contain the music playing in the background throughout the game.
Or the dialogues for the cut scenes. Or the explanations for the training level.
The TRACK or PCTRACK command is used to select the background music or
ambiance for the level.

This command must be declared in the Script.TXT before the level it relates to,
be it a GAME, CUT or DEMO.

- DAT.12 - Exploring the DAT file

LARA WITHOUT PISTOLS:
NAME: REMOVE_WEAPONS
OPCODE : 14
OPERAND: None.

Lara starts the level without Pistols or any other weapons.
This command can be followed by the STARTINV command which can be used
to give some weapons back to Lara. In that case Lara will start the level with
those weapons, but still with no Pistols. Lara can have the Pistols back during the
game if she finds them and picks them up. The Pistols will then be available
again in the Inventory and Lara can select and use them.

FINISHING THE GAME:
NAME: GAMECOMPLETE
OPCODE : 15
OPERAND: None.

This OpCode will terminate the game. The final statistics will be displayed,
showing the sum of the individual level statistics. The final sequence of PCX files
picturing the credits will be launched, the musical score ID = 52 will be played.

ANGLE FOR THE CUT CAMERA:
NAME: CUTANGLE
OPCODE : 16
OPERAND: Horizontal rotation of the camera, clockwise.

The animation of the camera of a cut scene is rotated by the given angle. The 3D
animated characters will rotate together with the camera, Lara included. The
elements placed by the Room Editor itself are not affected by this rotation.

This is used to match the North-South orientation of the Room Editor and the
North-South orientation of the 3D animated characters originated from a CAD
application.

The final result is identical to rotating the level itself, counter-clockwise.

Angle = 360 * Operand / 65536

Operand = Angle * 65536 / 360

As a quick reference, here are some values:

0º = $0000 = 0
45º = $2000 = 8192
90º = $4000 = 16384
135º = $6000 = 24576
180º = $8000 = 32768
225º = $A000 = 40960
270º = $C000 = 49152

Exploring the DAT file - DAT.13 -

DEATH BY DEPTH:
NAME: NOFLOOR
OPCODE : 17
OPERAND: Depth.

If walking down, Lara dies when her feet reach the given Depth.
If falling down, 4 to 5 extra blocks are added to Depth.
Each vertical block corresponds to 1024 units.
Depth is measured relative to the floor of the room where Lara is placed in the
beginning of the game. We will call it “ground-zero” for short.

Depth = NumBlocks * 1024

NumBlocks = Depth / 1024

If Depth = 0 then the feature is disabled.
If Depth = 1 then Lara cannot even step on the portal, that's sudden death.
If Depth = 256 then Lara can walk down the equivalent to ¼ of a block.

As a quick reference, here are some values (Depth versus blocks):

256 = ¼
512 = ½
768 = ¾
1024 = 1
2048 = 2
3072 = 3
4096 = 4

When Lara walks down through stacked rooms, the depth of her feet below
ground-zero will increase until Depth is reached. The level will end there.
The same applies to water rooms. Deeper then a given depth below ground-zero,
Lara dies of sudden death.

The Death-by-Depth feature has no associated animations. Lara dies suddenly
and the game jumps out to the Option Ring. Tomb Raider II uses this feature in
the level “Floating Islands”, where Lara falls into the blackness of the depths
below, in fact disappearing, and the level exits suddenly.

GIVING ITEMS TO LARA:
NAME: STARTINV
NAME: BONUS
OPCODE : 18
OPERAND: ID of the item.

This OpCode is used to give items to Lara, like weapons, ammunition, supplies or
puzzles. There are two names for this same command. STARTINV gives the
items when the Level starts, BONUS gives the items when all the secrets are
found. Because they use the same OpCode, 18, the difference is established by
the ID of the item: the Operand for BONUS is the same as STARTINV plus 1000.

- DAT.14 - Exploring the DAT file

STARTING WITH A SPECIAL ANIMATION:
NAME: STARTANIM
OPCODE : 19
OPERAND: ID of the animation.

This OpCode makes the level start with a special animation performed by Lara.
Examples can be seen in Tomb Raider II in the “Offshore Rig” level, where Lara
is laying down on the floor, awakes and stands up. Or in the “Home Sweet Home”
level, where Lara is sitting down on her bed watching the Dagger of Xian.

ACCOUNTING SECRETS:
NAME: SECRETS
OPCODE : 20
OPERAND: OnOff status.

All the playable levels in Tomb Raider II are supposed to have three secrets.
Therefore, the total number of secrets in the game is supposed to be given by the
equation TotalSecrets = 3 * NumLevels. But it may be different.
In fact, it is also possible that a certain level has no secrets at all.
In that case such level should not be accounted in the equation above.

The purpose of SECRETS is to signal if a level is to be accounted or not.
If the Operand is 0, the level is not accounted for secrets – even if it has any.
A non-zero value means that the level must be accounted for secrets. The value
itself has no meaning other then that.

KILL ALL ENEMIES TO COMPLETE:
NAME: KILLTOCOMPLETE
OPCODE : 21
OPERAND: None.

All the enemies in the level must be killed, for the level to exit as complete.
An example in Tomb Raider II is the “Home Sweet Home” level.

LARA WITHOUT AMMUNITION:
NAME: REMOVE_AMMO
OPCODE : 22
OPERAND: None.

Lara starts the level without ammunition or medi packs.

Exploring the DAT file - DAT.15 -

RECREATING THE SCRIPT OF “DAGGER OF XIAN”

This is not the original text of the original script. This is a recreation. The TOMBPC.DAT file that
was compiled from this script, using Core Design's GAMEFLOW utility, is equal to the original
DAT file. This proves the consistency of this research, despite of the fact that some fields are still
listed as unknown. All-in-all, this script is a good reference for the development of custom scripts
for the TR2 Series of custom levels.

//==
//==
//==
//
// TOMB RAIDER II SCRIPT
//
// Recreation of a script for "DAGGER OF XIAN".
// To be compiled with Core Design's GAMEFLOW.EXE utility.
//
// This script was not produced and is not supported or endorsed
// by Eidos or Core Design.
//
// Research by IceBerg, August/2005.
//
//==
//==
//==

DESCRIPTION: Tomb Raider II Script. Final Release Version 1.1 (c) Core Design Ltd 1997

//--
//
// O P T I O N S
//
//--

OPTIONS:
 CYPHER_CODE: 166
 SECRET_TRACK: 47
END:

//--
//
// T I T L E
//
//--

TITLE:
 GAME: data\title.tr2 // Title Ring
 PCFILE: data\title.pcx
 PCFILE: data\legal.pcx
 PCFILE: data\titleUS.pcx
 PCFILE: data\legalUS.pcx
 PCFILE: data\titleJAP.pcx
 PCFILE: data\legalJAP.pcx
 TRACK: 64
END:

- DAT.16 - Exploring the DAT file

//--
//
// F R O N T E N D
//
//--

FRONTEND: // Full Motion Videos
 FMV: fmv\logo.rpl
 FMV: fmv\ancient.rpl
END:

//--
//
// G Y M
//
//--

GYM: Lara's Home // Level 0
 SECRETS: 0
 TRACK: 0
 GAME: data\assault.tr2
END:

//--
//
// L E V E L S
//
//--

LEVEL: The Great Wall // Level 1
 FMV: fmv\modern.rpl
 TRACK: 33
 BONUS: ROCKET
 BONUS: ROCKET_AMMO
 BONUS: ROCKET_AMMO
 BONUS: MEDI
 KEY1: Guardhouse Key
 KEY2: Rusty Key
 GAME: data\wall.tr2
 TRACK: 3
 CUTANGLE: 0
 CUT: data\cut1.TR2
 COMPLETE:
END:
//---
LEVEL: Venice // Level 2
 TRACK: 0
 BONUS: AUTOPISTOLS_AMMO
 BONUS: AUTOPISTOLS_AMMO
 BONUS: AUTOPISTOLS_AMMO
 BONUS: AUTOPISTOLS_AMMO
 KEY1: Boathouse Key
 KEY2: Steel Key
 KEY3: Iron Key
 GAME: data\boat.TR2
 COMPLETE:
END:

Exploring the DAT file - DAT.17 -

//---
LEVEL: Bartoli's Hideout // Level 3
 TRACK: 0
 BONUS: SHOTGUN_AMMO
 BONUS: SHOTGUN_AMMO
 BONUS: SHOTGUN_AMMO
 BONUS: SHOTGUN_AMMO
 SUNSET:
 KEY1: Library Key
 KEY2: Detonator Key
 GAME: data\venice.TR2
 COMPLETE:
END:
//---
LEVEL: Opera House // Level 4
 TRACK: 31
 BONUS: UZIS
 BONUS: UZI_AMMO
 BONUS: UZI_AMMO
 BONUS: UZI_AMMO
 BONUS: UZI_AMMO
 PUZZLE1: Relay Box
 PUZZLE2: Circuit Board
 KEY1: Ornate Key
 GAME: data\opera.TR2
 TRACK: 4
 CUT: data\cut2.TR2
 COMPLETE:
END:
//---
LEVEL: Offshore Rig // Level 5
 FMV: fmv\landing.rpl
 TRACK: 58
 STARTANIM: 8
 REMOVE_WEAPONS:
 BONUS: UZIS
 BONUS: UZI_AMMO
 BONUS: UZI_AMMO
 KEY1: Red Pass Card
 KEY2: Yellow Pass Card
 KEY3: Green Pass Card
 GAME: data\rig.TR2
 COMPLETE:
END:
//---
LEVEL: Diving Area // Level 6
 TRACK: 58
 BONUS: UZI_AMMO
 BONUS: UZI_AMMO
 BONUS: UZI_AMMO
 BONUS: UZI_AMMO
 PUZZLE1: Machine Chip
 KEY1: Red Pass Card
 KEY4: Blue Pass Card
 GAME: data\platform.TR2
 TRACK: 5
 CUT: data\cut3.TR2

- DAT.18 - Exploring the DAT file

 COMPLETE:
END:
//---
LEVEL: 40 Fathoms // Level 7
 FMV: fmv\ms.rpl
 TRACK: 34
 BONUS: HARPOON_AMMO
 BONUS: HARPOON_AMMO
 BONUS: HARPOON_AMMO
 BONUS: HARPOON_AMMO
 GAME: data\unwater.TR2
 COMPLETE:
END:
//---
LEVEL: Wreck of the Maria Doria // Level 8
 TRACK: 31
 BONUS: ROCKET
 BONUS: ROCKET_AMMO
 BONUS: ROCKET_AMMO
 PUZZLE1: Circuit Breaker
 KEY1: Rest Room Key
 KEY2: Rusty Key
 KEY3: Cabin Key
 GAME: data\keel.TR2
 COMPLETE:
END:
//---
LEVEL: Living Quarters // Level 9
 TRACK: 34
 BONUS: M16_AMMO
 BONUS: M16_AMMO
 BONUS: M16_AMMO
 BONUS: M16_AMMO
 KEY1: Theatre Key
 KEY2: Rusty Key
 GAME: data\living.TR2
 COMPLETE:
END:
//---
LEVEL: The Deck // Level 10
 TRACK: 31
 BONUS: ROCKET_AMMO
 BONUS: ROCKET_AMMO
 BONUS: ROCKET_AMMO
 BONUS: ROCKET_AMMO
 PUZZLE4: The Seraph
 KEY2: Stern Key
 KEY3: Storage Key
 KEY4: Cabin Key
 GAME: data\deck.TR2
 COMPLETE:
END:

Exploring the DAT file - DAT.19 -

//---
LEVEL: Tibetan Foothills // Level 11
 FMV: fmv\crash.rpl
 TRACK: 33
 STARTINV: PUZZLE4
 BONUS: UZI_AMMO
 BONUS: UZI_AMMO
 BONUS: UZI_AMMO
 BONUS: UZI_AMMO
 PUZZLE4: The Seraph
 KEY1: Drawbridge Key
 KEY2: Hut Key
 GAME: data\skidoo.TR2
 COMPLETE:
END:
//---
LEVEL: Barkhang Monastery // Level 12
 TRACK: 0
 STARTINV: PUZZLE4
 BONUS: M16_AMMO
 BONUS: M16_AMMO
 BONUS: M16_AMMO
 BONUS: M16_AMMO
 PUZZLE1: Prayer Wheels
 PUZZLE2: Gemstones
 PUZZLE4: The Seraph
 KEY1: Strongroom Key
 KEY2: Trapdoor Key
 KEY3: Rooftops Key
 KEY4: Main Hall Key
 GAME: data\monastry.TR2
 COMPLETE:
END:
//---
LEVEL: Catacombs of the Talion // Level 13
 TRACK: 31
 BONUS: ROCKET_AMMO
 BONUS: ROCKET_AMMO
 BONUS: M16_AMMO
 BONUS: M16_AMMO
 PUZZLE1: Tibetan Mask
 PICKUP1: Gong Hammer
 GAME: data\catacomb.TR2
 COMPLETE:
END:
//---
LEVEL: Ice Palace // Level 14
 TRACK: 31
 DEADLY_WATER:
 BONUS: ROCKET_AMMO
 BONUS: ROCKET_AMMO
 BONUS: ROCKET_AMMO
 BONUS: ROCKET_AMMO
 PUZZLE1: Tibetan Mask
 PICKUP2: Talion
 KEY2: Gong Hammer
 GAME: data\icecave.TR2
 COMPLETE:

- DAT.20 - Exploring the DAT file

END:
//---
LEVEL: Temple of Xian // Level 15
 FMV: fmv\jeep.rpl
 TRACK: 59
 BONUS: UZI_AMMO
 BONUS: UZI_AMMO
 BONUS: UZI_AMMO
 BONUS: UZI_AMMO
 BONUS: UZI_AMMO
 BONUS: UZI_AMMO
 BONUS: UZI_AMMO
 BONUS: UZI_AMMO
 PUZZLE1: The Dragon Seal
 KEY2: Gold Key
 KEY3: Silver Key
 KEY4: Main Chamber Key
 GAME: data\emprtomb.TR2
 TRACK: 30
 CUTANGLE: 0
 CUT: data\cut4.tr2
 COMPLETE:
END:
//---
LEVEL: Floating Islands // Level 16
 TRACK: 59
 NOFLOOR: 9728 // $2600
 BONUS: ROCKET_AMMO
 BONUS: ROCKET_AMMO
 BONUS: ROCKET_AMMO
 BONUS: ROCKET_AMMO
 BONUS: ROCKET_AMMO
 BONUS: ROCKET_AMMO
 BONUS: ROCKET_AMMO
 BONUS: ROCKET_AMMO
 PUZZLE1: Mystic Plaque
 PUZZLE2: Mystic Plaque
 GAME: data\floating.TR2
 COMPLETE:
END:
//---
LEVEL: The Dragon's Lair // Level 17
 SECRETS: 0
 TRACK: 59
 PUZZLE1: Mystic Plaque
 PUZZLE2: Dagger of Xian
 GAME: data\xian.TR2
 COMPLETE:
 FMV: fmv\end.rpl
END:

Exploring the DAT file - DAT.21 -

//--
//
// B O N U S L E V E L
//
//--

LEVEL: Home Sweet Home // Level 18
 SECRETS: 0
 STARTINV: KEY1
 STARTANIM: 9
 KILLTOCOMPLETE:
 TRACK: 0
 REMOVE_WEAPONS:
 REMOVE_AMMO:
 PUZZLE1: Dagger of Xian
 KEY1: Gun Cupboard Key
 GAME: data\house.TR2
 TRACK: 52
 GAMECOMPLETE:
END:

//--
//
// D E M O L E V E L S
//
//--

DEMOLEVEL: Venice // Level 19
 TRACK: 0
 KEY1: Boathouse Key
 KEY2: Steel Key
 KEY3: Iron Key
 DEMO: data\boat.TR2
END:
//---
DEMOLEVEL: Wreck of the Maria Doria //Level 20
 TRACK: 32
 PUZZLE1: Circuit Breaker
 KEY1: Rest Room Key
 KEY2: Rusty Key
 KEY3: Cabin Key
 DEMO: data\keel.TR2
END:
//---
DEMOLEVEL: Tibetan Foothills // Level 21
 TRACK: 33
 STARTINV: PUZZLE4
 PUZZLE4: The Seraph
 KEY1: Drawbridge Key
 KEY2: Hut Key
 DEMO: data\skidoo.TR2
END:

//==
//==
GameStrings: English.txt
//==
//==

- DAT.22 - Exploring the DAT file

The language file that goes with this script text is the English version. The number of strings is
fixed. A different number will make the compiler exit with an error message. There must be a total
of 89 GameStrings, 41 PCStrings and 80 PSXStrings. The unused strings must be present
anyway. A dummy string like “spare” is used as a filler.
This ENGLISH.TXT file also serves the purposes of a language template for custom levels.
The strings contained herein are game-specific, not level-specific. The level-specific strings are
declared in the script text file, not in the language text file.

//==
//==
//==
//
// PC & PSX VERSION OF GENERAL GAME STRINGS
//
// Recreation of
// Tomb Raider II strings - English
//
// This script was not produced and is not
// supported or endorsed by
// Eidos or Core Design.
//
// Research by IceBerg, August/2005.
//
//==
//==
//==

//--
// GAME STRINGS (89 entries)
//--
GAME_STRINGS:
INVENTORY
OPTION
ITEMS
GAME OVER
Load Game
Save Game
New Game
Restart Level
Exit to Title
Exit Demo
Exit Game
Select Level
Save Position
Select Detail
High
Medium
Low
Walk
Roll
Run
Left
Right
Back
Step Left
?
Step Right
?
Look
Jump
Action
Draw Weapon
?
Inventory
Flare
Step
Statistics
Pistols
Shotgun

Exploring the DAT file - DAT.23 -

Automatic Pistols
Uzis
Harpoon Gun
M16
Grenade Launcher
Flare
Pistol Clips
Shotgun Shells
Automatic Pistol Clips
Uzi Clips
Harpoons
M16 Clips
Grenades
Small Medi Pack
Large Medi Pack
Pickup
Puzzle
Key
Game
Lara's Home
LOADING
Time Taken
Secrets Found
Location
Kills
Ammo Used
Hits
Saves Performed
Distance Travelled
Health Packs Used
Release Version 1.1
None
Finish
BEST TIMES
No Times Set
N/A
Current Position
Final Statistics
of
Story so far...
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
END:

//--
// PC STRINGS (41 entries)
//--
PC_STRINGS:
Detail Levels
Demo Mode
Sound
Controls
Gamma
Set Volumes
User Keys
The file could not be saved!
Try Again?
YES
NO
Save Complete!
No save games!
None valid
Save Game?
- EMPTY SLOT -
OFF

- DAT.24 - Exploring the DAT file

ON
Setup Sound Card
Default Keys
DOZY
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
END:

//--
// PLAYSTATION STRINGS (80 entries)
//--
PSX_STRINGS:
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare

Exploring the DAT file - DAT.25 -

spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
END:
//==
//==
//==

- DAT.26 - Exploring the DAT file

RECREATING THE SCRIPT OF “THE GOLDEN MASK”

This is not the original text of the original script. This is a recreation. The TOMBPC.DAT file that
was compiled from this script, using Core Design's GAMEFLOW utility, is equal to the original
DAT file. This proves the consistency of this research, despite of the fact that some fields are still
listed as unknown. All-in-all, this script is a good reference for the development of custom scripts
for the TR2 Series of custom levels.

//==
//==
//==
//
// TOMB RAIDER II SCRIPT
//
// Recreation of a script for "THE GOLDEN MASK".
// To be compiled with Core Design's GAMEFLOW.EXE utility.
//
// This script was not produced and is not supported or endorsed
// by Eidos or Core Design.
//
// Research by IceBerg, August/2005.
//
//==
//==
//==

DESCRIPTION: Tomb Raider II Script. Final Release Version 1.1 (c) Core Design Ltd 1997

//--
//
// O P T I O N S
//
//--

OPTIONS:
 CYPHER_CODE: 166
 SECRET_TRACK: 47
END:

//--
//
// T I T L E
//
//--

TITLE:
 GAME: data\title.tr2 // Title Ring
 PCFILE: data\title.pcx
 PCFILE: data\legal.pcx
 PCFILE: data\titleUS.pcx
 PCFILE: data\legalUS.pcx
 PCFILE: data\titleJAP.pcx
 PCFILE: data\legalJAP.pcx
 TRACK: 64
END:

Exploring the DAT file - DAT.27 -

//--
//
// F R O N T E N D
//
//--

FRONTEND: // Full Motion Videos
 FMV: fmv\logo.rpl
END:

//--
//
// G Y M
//
//--
// NOTE: This is declared in the original TOMBPC.DAT, but the game itself
// does not have this file. The Title Screen does not have any option in
// the Menu Ring to access any training level.

GYM: Lara's Home // Level 0
 SECRETS: 0
 TRACK: 0
 GAME: data\assault.tr2
END:

//--
//
// L E V E L S
//
//--

LEVEL: The Cold War // Level 1
 KEY1: Guardroom Key
 KEY2: Shaft 'B' Key
 TRACK: 33
 GAME: data\level1.TR2
 COMPLETE:
END:
//---
LEVEL: Fool's Gold // Level 2
 PUZZLE1: Circuit Board
 KEY1: CardKey 1
 KEY2: CardKey 2
 TRACK: 58
 GAME: data\level2.TR2
 COMPLETE:
END:
//---
LEVEL: Furnace of the Gods // Level 3
 PUZZLE1: Mask of Tornarsuk
 PUZZLE2: Gold Nugget
 TRACK: 59
 GAME: data\level3.TR2
 COMPLETE:
END:

- DAT.28 - Exploring the DAT file

//---
LEVEL: Kingdom // Level 4
 PUZZLE1: Mask of Tornarsuk
 STARTINV: PUZZLE1
 TRACK: 31
 GAME: data\level4.TR2
 GAMECOMPLETE:
END:

//--
//
// B O N U S L E V E L
//
//--

LEVEL: Nightmare In Vegas // Level 5
 PUZZLE1: Elevator Junction
 PUZZLE2: Door Circuit
 KEY1: Hotel Key
 TRACK: 34
 GAME: data\level5.TR2
 COMPLETE:
END:

//==
//==
//==
GameStrings: English.txt
//==
//==
//==

GAMEFLOW.EXE

Blank page

Gameflow.exe - GAM.1 -

TR2 – THE STRINGS

Looking into the compiler EXE file with an ordinary text editor, we can find many strings that the
compiler expects to find in the script text, together with strings used by the compiler itself:

data\venice.dem

data\cut4.cut
data\cut3.cut
data\cut2.cut
data\cut1.cut

data\house.tr2
data\floating.tr2
data\emprtomb.tr2
data\icecave.tr2
data\catacomb.tr2
data\monastry.tr2
data\skidoo.tr2
data\dock.tr2
data\living.tr2
data\keel.tr2
data\unwater.tr2
data\rig.tr2
data\opera.tr2
data\venice.tr2
data\boat.tr2
data\wall.tr2
data\test.tr2
data\assault.tr2

fmv\fendseq.rpl
fmv\jeep.rpl
fmv\seaplane.rpl
fmv\minisub.rpl
fmv\rig.rpl
fmv\wallpres.rpl
fmv\wallold.rpl
fmv\home.rpl
fmv\escape.rpl
fmv\corelogo.rpl

data\title.tr2

data\titleh.pcx

data\eidospc

The fact that these strings are stored in the compiler itself does not, however, prevent it from
using custom strings. In fact, the compiler will use the level names and file names supplied in the
script text.
There is a large collection of strings to be found in the remaining of the GAMEFLOW compiler:
This is what the compiler expects to find as input, or how it expresses itself in the output. Colours
are used where already tested. Where relevant, // comments were included.

DISABLED
ENABLED
OFF
ON

KEY4 // id = 26
KEY3 // id = 25
KEY2 // id = 24
KEY1 // id = 23
PUZZLE4 // id = 22
PUZZLE3 // id = 21
PUZZLE2 // id = 20
PUZZLE1 // id = 19
PICKUP2 // id = 18
PICKUP1 // id = 17

BIGMEDI // id = 16
MEDI // id = 15

FLARES // id =14

ROCKET_AMMO // id = 13
M16_AMMO // id = 12
HARPOON_AMMO // id = 11
UZI_AMMO // id = 10
AUTOPISTOLS_AMMO // id = 9
SHOTGUN_AMMO // id = 8
PISTOLS_AMMO // id = 7

ROCKET // id = 6
M16 // id = 5
HARPOON // id = 4
UZIS // id = 3
AUTOPISTOLS // id = 2
SHOTGUN // id = 1
PISTOLS // id = 0

- GAM.2 - Gameflow.exe

TITLE_DESELECT // $0900
EXIT_TO_OPTION // $0800
EXITGAME // $0700
LEVELCOMPLETE // $0600
EXIT_TO_TITLE // $0500
STARTDEMO // $0400
STARTFMV // $0300
STARTCINE // $0200
STARTSAVEDGAME // $0100
STARTGAME // $0000

scripts\pcfinal.txt

tombPC.dat

gameflow.log

strings.txt

scripts\PCstrOUT.txt

Invalid option
ERROR: Too many parameters
Lockout = %d

Key4 Strings
Key4 Strings
Key3 Strings
Key3 Strings
Key2 Strings
Key2 Strings
Key1 Strings
Key1 Strings

Pickup2 Strings
Pickup2 Strings
Pickup1 Strings
Pickup1 Strings

Puzzle4 Strings
Puzzle4 Strings
Puzzle3 Strings
Puzzle3 Strings
Puzzle2 Strings
Puzzle2 Strings
Puzzle1 Strings
Puzzle1 Strings

PC Strings
PC Strings

Game Strings
Game Strings

None %d

Writing Demo Level Numbers
Demo Levels:
Writing Demo Level Numbers

Writing Level Sequences
Writing Level Sequences

Writing FrontEnd Sequence
Writing FrontEnd Sequence

Total Sequence Data Size= %d bytes
Total Sequence Data Size= %d bytes

LEVEL%d SEQ (SIZE: %d bytes)
FRONTEND SEQ (SIZE: %d bytes)

Cutscene FileNames
Cutscene FileNames

Level FileNames
Level FileNames

FMV FileNames
FMV FileNames

Title FileNames
Title FileNames

Picture FileNames
Picture FileNames

Level Names
Level Names

dozy_cheat: %s
lockout_optionring: %s
screensizing: %s
loadsave: %s
cheatmodecheck: %s
NoInput_time: %d
noinput_timeout: %s
on_demo_end: %s %d
on_demo_interrupt: %s %d
ondeath_ingame: %s %d
ondeath demo_mode: %s %d
TITLE REPLACED WITH: %s %d
TITLE IS DISABLED
firstOption: %s %d
Demo Options;-

cypher_code: %d
TitleFiles: %d
Title Track: %d
Pictures: %d
Cutscenes: %d
FMV: %d
Demos: %d
Levels: %d
Gameflow Options;-

sizeof GAMEFLOW_INFO = %d
Script Version: %d
Date Produced: %s %s
14:40:07 Oct 30 1997

Gameflow.exe - GAM.3 -

Gameflow script produced for;
Producing gameflow script for;
ERROR: Couldn't open '%s'
ERROR: Couldn't open log file '%s'
str
log
txt
ERROR: Unknown sequence command (%d)
ERROR: No sequence!!!

ENDSEQUENCE
KILL TO COMPLETE
REMOVE_AMMO
REMOVE_WEAPONS
START INVENTORY: %s
ADD TO INVENTORY: %s
NUM SECRETS: %d
LARA START ANIM: %d
NO FLOOR: %d
DEADLY WATER
LOADING PIC: %s
SUNSET ENABLED
SETTRACK: %d
JUMPTOSEQ: %d
DEMOPLAY: %s
GAMECOMPLETE
LEVCOMPLETE
CUT ANGLE: 0x%x
CUTSCENE: %s
STARTLEVEL:
STARTLEVEL:
FMV: %s
LIST END <<<<
LIST START>>>
PICTURE: %s
Buffer size = %d
Strings = %d

ERROR: Cannot open '%s' info
Usage: pcscript [/i] script.txt [strings.txt]
GameFlow Script Converter (PC Version)
data\out.dat
successfully
ERROR: Incorrect number of psx strings.
ERROR: Incorrect number of pc strings.
 %d:'%s' %d strings, there should be %d
ERROR: Incorrect number of game strings.
ERROR: Unknown command '%s %s'
Reading GameStrings...
GAMESTRINGS
DEMOLEVEL %d: %s
DEMOLEVEL
LEVEL
LEVEL %d: %s
LEVEL
GYM
GYM: %s
GYM FRONTEND SEQUENCE
FRONTEND SEQUENCE
FRONTEND

TITLE_FILES
TITLE FILES
TITLE
OPTIONS
OPTIONS
OPTIONS DESCRIPTION
DESCRIPTION
Script;-
Creating script...
Could not open script file '%s' r Done = Found
kanji string - '%s'
ERROR: '*/' without '/*'

JAPANESE // id = 4
AMERICAN // id = 3
German // id = 2
FRENCH // id = 1
ENGLISH // id = 0

ERROR: Unknown option '%s'

END // opcode = 9
ENABLE_CHEAT_CODE // bit[11]
SELECT_ANY_LEVEL // bit[10]
CYPHER_CODE
DOZY_CHEAT_ENABLED // bit[7]
LOCKOUT_OPTIONRING // bit[6]
SCREENSIZING_DISABLED // bit[5]
LOADSAVE_DISABLED // bit[4]
NOINPUT_TIMEOUT // bit[3]
CHEATMODECHECK_DISABLED // bit[2]
TITLE_DISABLED // bit[1]
DEMOVERSION // bit[0]
SINGLELEVEL
ON_DEMO_END
ON_DEMO_INTERRUPT
NOINPUT_TIME
ONDEATH_INGAME
ONDEATH_DEMO_MODE
TITLE_REPLACE
FIRSTOPTION
SECRET_TRACK
LANGUAGE
SEQUENCE
DEMO // opcode = 7
WARNING: EOF before end of sequence
ERROR: Unkown command '%s %s'
SPECIAL2
SPECIAL1
SECRET4
SECRET3
SECRET2
SECRET1

START INVENTORY: %s
ERROR: Could not match '%s' with inv items
STARTINV // opcode = 18
SECRET BONUS: %s
BONUS // opcode = 18

- GAM.4 - Gameflow.exe

KILL TO COMPLETE
KILLTOCOMPLETE // opcode = 21
REMOVE AMMO
REMOVE_AMMO // opcode = 22
REMOVE WEAPONS
REMOVE_WEAPONS // opcode = 14
DEADLY WATER
DEADLY_WATER // opcode = 13
LEVEL SECRETS: %d
SECRETS // opcode = 20
LARA START ANIM: %d
STARTANIM // opcode = 19
NO FLOOR ENABLED
NOFLOOR // opcode = 17
SUNSET ENABLED
SUNSET // opcode = 11
PSXTRACK
TRACK: %d
PCTRACK // opcode = 10
TRACK // opcode = 10
GAMECOMPLETE
GAMECOMPLETE // opcode = 15
COMPLETE
COMPLETE // opcode = 6
PICTURE: '%s'
PICTURE // opcode = 0
LOAD_PIC // opcode = 12
CUT: '%s'
CUT // opcode = 5
CUTANGLE // opcode = 16
PSXDEMO
PCDEMO: '%s'
PCDEMO // opcode = 7
DEMO: '%s'
GAME: '%s'
TR2
GAME // opcode = 4
FMV_END
FMV_START
PSXFMV
PCFMV // opcode = 3
FMV: '%s'
RPL
FMV // opcode = 3

WARNING: EOF before end of title file list
Title Track: %d
PSXFILE
PCFILE
PSX_STRINGS
PC_STRINGS
GAME_STRINGS
ERROR: Could not open string file '%s'

Tomb Raider II
PC Internal Development Version (c)
Core Design Ltd 1997

Gameflow.exe - GAM.5 -

TR2 – THE SCRIPT LOG

The output of GAMEFLOW is logged into a file, PCFinal.LOG which, in the published German
version of Tomb Raider II Golden Mask demo, looks like this (TABs readjusted for clarity)
(-- c omment separators added for clarity):

//-- start of the LOG file.

Script;-
DESCRIPTION

OPTIONS
TITLE_FILES
FRONTEND SEQUENCE
GYM
LEVEL
LEVEL
LEVEL
LEVEL
LEVEL

Script read successfully

Gameflow script produced for;-

Tomb Raider II Script. Final Release Version 1.1 (c) Core Design Ltd 1997.

Date Produced: 14:40:07 Oct 30 1997

Script Version: 3

sizeof GAMEFLOW_INFO = 128

//-- Gameflow Options.

Gameflow Options;-
Levels: 6
Demos: 0
FMV: 1
Cutscenes: 0
Pictures: 0
Title Track: 64
TitleFiles: 7
cypher_code: 166

//-- Demo Options.

Demo Options;-
firstOption: EXIT_TO_TITLE 0
ondeath demo_mode: EXIT_TO_TITLE 0
ondeath_ingame: STARTGAME 0
on_demo_interrupt: EXIT_TO_TITLE 0
on_demo_end: EXIT_TO_TITLE 0
noinput_timeout: ON
NoInput_time: 900
cheatmodecheck: ENABLED
loadsave: ENABLED

- GAM.6 - Gameflow.exe

screensizing: ENABLED
lockout_optionring: OFF
dozy_cheat: ENABLED

//-- Level Names.

Level Names
0: 0 Lara's Home
1: 12 Der kalte, kalte Krieg
2: 35 Level 2
3: 43 Level 3
4: 51 Level 4
5: 59 Level 5
Strings = 6
Buffer size = 67

//-- Picture File Names.

Picture FileNames
Strings = 0
Buffer size = 0

//-- Title File Names.

Title FileNames
0: 0 data\title.TR2
1: 15 data\title.pcx
2: 30 data\legal.pcx
3: 45 data\titleUS.pcx
4: 62 data\legalUS.pcx
5: 79 data\titleJAP.pcx
6: 97 data\legalJAP.pcx
Strings = 7
Buffer size = 115

//-- Full Motion Video File Names.

FMV FileNames
0: 0 FMV\LOGO.RPL
Strings = 1
Buffer size = 13

//-- Level File Names.

Level FileNames
0: 0 data\assault.tr2
1: 17 data\level1.TR2
2: 33 data\level2.TR2
3: 49 data\level3.TR2
4: 65 data\level4.TR2
5: 81 data\level5.TR2
Strings = 6
Buffer size = 97

//-- Cutscene File Names.

Cutscene FileNames
Strings = 0
Buffer size = 0

Gameflow.exe - GAM.7 -

//-- Script Sequences.

FRONTEND SEQ (SIZE: 6 bytes)
FMV: FMV\LOGO.RPL
ENDSEQUENCE

LEVEL0 SEQ (SIZE: 2 bytes)
ENDSEQUENCE

LEVEL1 SEQ (SIZE: 12 bytes)
SETTRACK: 33
STARTLEVEL: Der kalte, kalte Krieg 'data\level1.TR2'
LEVCOMPLETE
ENDSEQUENCE

LEVEL2 SEQ (SIZE: 12 bytes)
SETTRACK: 33
STARTLEVEL: Level 2 'data\level2.TR2'
LEVCOMPLETE
ENDSEQUENCE

LEVEL3 SEQ (SIZE: 12 bytes)
SETTRACK: 33
STARTLEVEL: Level 3 'data\level3.TR2'
LEVCOMPLETE
ENDSEQUENCE

LEVEL4 SEQ (SIZE: 12 bytes)
SETTRACK: 33
STARTLEVEL: Level 4 'data\level4.TR2'
LEVCOMPLETE
ENDSEQUENCE

LEVEL5 SEQ (SIZE: 12 bytes)
SETTRACK: 33
STARTLEVEL: Level 5 'data\level5.TR2'
LEVCOMPLETE
ENDSEQUENCE

Total Sequence Data Size= 68 bytes
Writing FrontEnd Sequence

//-- Compiling.

Writing Level Sequences
Writing Demo Level Numbers
Demo Levels: None

//-- Game Strings (German).

Game Strings
0: 0 Inventar
1: 9 Option
2: 16 Gegenst~ande
3: 29 Game Over
4: 39 Spiel laden
5: 51 Spiel speichern
6: 67 Neues Spiel
7: 79 Abschnitt neu beginnen
8: 102 Zur~uck zum Hauptmen~u

- GAM.8 - Gameflow.exe

9: 125 Demo beenden
10: 138 Spiel beenden
11: 152 Abschnitt w~ahlen
12: 170 Position speichern
13: 189 Detailstufe w~ahlen
14: 209 Hoch
15: 214 Mittel
16: 221 Niedrig
17: 229 Gehen
18: 235 Rolle
19: 241 Laufen
20: 248 Links
21: 254 Rechts
22: 261 Zur~uck
23: 269 Schritt
24: 277 nach links
25: 288 Schritt
26: 296 nach rechts
27: 308 Umsehen
28: 316 Springen
29: 325 Handlung
30: 334 Waffe ziehen
31: 347 ?
32: 349 Inventar
33: 358 Fackel
34: 365 Schritt
35: 373 Statistiken
36: 385 Pistolen
37: 394 Schrotflinte
38: 407 Automatik
39: 417 Uzis
40: 422 Harpune
41: 430 M16
42: 434 Granatwerfer
43: 447 Fackel
44: 454 Pistolen-Munition
45: 472 Schrot-Munition
46: 488 Automatik-Munition
47: 507 Uzi-Munition
48: 520 Pfeile
49: 527 M16-Munition
50: 540 Granaten
51: 549 Kleines Medi-Pack
52: 567 Gro=es Medi-Pack
53: 584 Aufnehmen
54: 594 Puzzle
55: 601 Schl~ussel
56: 612 Spiel
57: 618 Laras Haus
58: 629 LADE
59: 634 Ben~otigte Zeit
60: 650 Gefundene Geheimnisse
61: 672 Ort
62: 676 Besiegte Gegner
63: 692 Ben~otigte Munition
64: 712 Treffer
65: 720 Ben~otigte Spielst~ande
66: 744 Zur~uckgelegte Distanz
67: 767 Ben~otigte Medi-Packs
68: 789 Release Version 1.0

Gameflow.exe - GAM.9 -

69: 809 Keine
70: 815 Beenden
71: 823 BESTZEITEN
72: 834 Keine Bestzeit
73: 849 Keine Daten
74: 861 Letzter Spielstand
75: 880 Spielstatistik
76: 895 von
77: 899 Was bisher geschah...
78: 921 spare
79: 927 spare
80: 933 spare
81: 939 spare
82: 945 spare
83: 951 spare
84: 957 spare
85: 963 spare
86: 969 spare
87: 975 spare
88: 981 spare
Strings = 89
Buffer size = 987

//-- PC Strings (German).

PC Strings
0: 0 Detailstufen
1: 13 Demo Modus
2: 24 Sound
3: 30 Steuerung
4: 40 Helligkeit
5: 51 Lautst~arke
6: 63 Eigene Belegung
7: 79 Die Daten konnten nicht gespeichert werden!
8: 123 Wiederholen?
9: 136 JA
10: 139 NEIN
11: 144 Gespeichert!
12: 157 Kein Spielstand vorhanden!
13: 184 Keine g~ultigen Daten
14: 206 Spiel speichern?
15: 223 - LEERER SLOT -
16: 239 AUS
17: 243 AN
18: 246 Soundkarten-Setup
19: 264 Standardeinstellung
20: 284 DOZY
21: 289 spare
22: 295 spare
23: 301 spare
24: 307 spare
25: 313 spare
26: 319 spare
27: 325 spare
28: 331 spare
29: 337 spare
30: 343 spare
31: 349 spare
32: 355 spare
33: 361 spare

- GAM.10 - Gameflow.exe

34: 367 spare
35: 373 spare
36: 379 spare
37: 385 spare
38: 391 spare
39: 397 spare
40: 403 spare
Strings = 41
Buffer size = 409

//-- Puzzle, Pickup and Key Strings (German).

Puzzle1 Strings
0: 0 P1
1: 3 P1
2: 6 P1
3: 9 P1
4: 12 P1
5: 15 P1
Strings = 6
Buffer size = 18

Puzzle2 Strings
0: 0 P2
1: 3 P2
2: 6 P2
3: 9 P2
4: 12 P2
5: 15 P2
Strings = 6
Buffer size = 18

Puzzle3 Strings
0: 0 P3
1: 3 P3
2: 6 P3
3: 9 P3
4: 12 P3
5: 15 P3
Strings = 6
Buffer size = 18

Puzzle4 Strings
0: 0 P4
1: 3 P4
2: 6 P4
3: 9 P4
4: 12 P4
5: 15 P4
Strings = 6
Buffer size = 18

Pickup1 Strings
0: 0 P1
1: 3 P1
2: 6 P1
3: 9 P1
4: 12 P1
5: 15 P1
Strings = 6

Gameflow.exe - GAM.11 -

Buffer size = 18

Pickup2 Strings
0: 0 P2
1: 3 P2
2: 6 P2
3: 9 P2
4: 12 P2
5: 15 P2
Strings = 6
Buffer size = 18

Key1 Strings
0: 0 K1
1: 3 Wachraum Schlussel
2: 22 GuardRoom Key
3: 36 GuardRoom Key
4: 50 GuardRoom Key
5: 64 GuardRoom Key
Strings = 6
Buffer size = 78

Key2 Strings
0: 0 K2
1: 3 Shift B-Taste
2: 17 Shaft B Key
3: 29 Shaft B Key
4: 41 Shaft B Key
5: 53 Shaft B Key
Strings = 6
Buffer size = 65

Key3 Strings
0: 0 K3
1: 3 K3
2: 6 K3
3: 9 K3
4: 12 K3
5: 15 K3
Strings = 6
Buffer size = 18

Key4 Strings
0: 0 K4
1: 3 K4
2: 6 K4
3: 9 K4
4: 12 K4
5: 15 K4
Strings = 6
Buffer size = 18

//-- end of the LOG file.

- GAM.12 - Gameflow.exe

TR2 – THE STRINGS LIST

The input of GAMEFLOW consists of two files, one with the script commands and one with a list
of strings which, in the published German version of Tomb Raider II Golden Mask demo, looks
like this (-- c omment separators added for clarity)
(TABs readjusted for clarity):

//-- start of the STRINGS file.

// PC & PSX VERSION OF GENERAL GAME STRINGS

//-- Game Strings, 89 of them, padded with “spare”.

GAME_STRINGS:

Inventar
Option
Gegenst~ande
Game Over

Spiel laden
Spiel speichern
Neues Spiel
Abschnitt neu beginnen
Zur~uck zum Hauptmen~u
Demo beenden
Spiel beenden

Abschnitt w~ahlen
Position speichern

Detailstufe w~ahlen
Hoch
Mittel
Niedrig

Gehen
Rolle
Laufen
Links
Rechts
Zur~uck
Schritt
nach links
Schritt
nach rechts
Umsehen
Springen
Handlung
Waffe ziehen
?
Inventar
Fackel
Schritt

Gameflow.exe - GAM.13 -

Statistiken
Pistolen
Schrotflinte
Automatik
Uzis
Harpune
M16
Granatwerfer
Fackel
Pistolen-Munition
Schrot-Munition
Automatik-Munition
Uzi-Munition
Pfeile
M16-Munition
Granaten
Kleines Medi-Pack
Gro=es Medi-Pack
Aufnehmen
Puzzle
Schl~ussel
Spiel

Laras Haus
LADE

Ben~otigte Zeit
Gefundene Geheimnisse
Ort
Besiegte Gegner
Ben~otigte Munition
Treffer
Ben~otigte Spielst~ande
Zur~uckgelegte Distanz
Ben~otigte Medi-Packs

Release Version 1.0

Keine
Beenden
BESTZEITEN
Keine Bestzeit
Keine Daten
Letzter Spielstand
Spielstatistik
von
Was bisher geschah...

spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare

END:

- GAM.14 - Gameflow.exe

//-- PC Strings, 41 of them, padded with “spare”.

PC_STRINGS:

Detailstufen
Demo Modus
Sound
Steuerung
Helligkeit
Lautst~arke
Eigene Belegung

Die Daten konnten nicht gespeichert werden!
Wiederholen?
JA
NEIN
Gespeichert!
Kein Spielstand vorhanden!
Keine g~ultigen Daten
Spiel speichern?
- LEERER SLOT -

AUS
AN
Soundkarten-Setup
Standardeinstellung
DOZY

spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare

END:

Gameflow.exe - GAM.15 -

//-- PSX Strings, 80 of them, padded with “spare”.
//-- If omitted, the GAMEFLOW compiler will stop
// with an error message:
// ERROR: Incorrect number of psx strings.
// 0 strings, there should be 80
//-- However, they will not be present in the compiled file.

PSX_STRINGS:

Bildposition
DEMO
Sound
Steuerung
Gamma-Korrektur
Lautst~arke Einstellen
Steuerungsart
Fehler beim Sichern!
Nochmal?
JA
NEIN
Spielstand gesichert!
Kein Spielstand gefunden!
Kein Spielstand g~ultig!
Spiel sichern?
- LEERER SLOT -
Irgendeine Taste dr~ucken
Die Richtungstasten benutzen
um das Bild einzustellen
> W~ahlen
; Zur~uck
> Weiter
Pause
Kein Controller
Spiel sichern auf
Spiel ~uberschreiben auf
Spielstand laden von
der Memory Card in
Slot 1
Sind Sie sicher?
JA
NEIN
ist voll
Es sind keine
Spielst~ande auf
Es ist ein Fehler auf
Es ist keine Memory Card in
ist nicht formatiert
M~ochten Sie sie
jetzt formatieren?
Sichere Spiel auf
Lade Spielstand von
Formatiere
Spiel wird ~uberschrieben
Spiel sichern
Spiel laden
Memory Card formatieren
Verlassen
Weiter
Sie k~onnen keine Spiele
sichern ohne eine

- GAM.16 - Gameflow.exe

formatierte Memory Card
mit mindestens einem
freien Block einzulegen
Die Memory Card in
Verlassen ohne zu sichern
Verlassen ohne zu laden
Spiel starten
UNFORMATIERTE MEMORY CARD
Legen Sie eine formatierte Memory Card ein
oder dr~ucken Sie > um ohne zu
Sichern fortzufahren.

// PAL CODES: ENGLISH= SLES-00718, FRENCH= SLES-0719, German= SLES-0720

bu00::BESLES-00720TOMB2
// NTSC CODES: US= UNKNOWN, JAPAN= UNKNOWN

bu00::BASLUS-00152TOMB2

spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare
spare

END:

//-- end of the STRINGS file.

Gameflow.exe - GAM.17 -

TR2 – THE SCRIPT TEXT

The input of GAMEFLOW consists of two files, one with the script commands and one with a list
of strings. The file with the script commands is the one that matters the most for the researcher.
That's where the names of the levels, the filenames, the game flow, etc, are determined. That's
where the puzzles, pickups and keys are declared. The published German version of Tomb
Raider II Golden Mask demo, looks like this (//-- comment
separators added for clarity)(TABs readjusted for clarity)(re-arranged to match the compiled
DAT file) (// commented where appropriated):

//-- start of the SCRIPT TEXT file.

Description: Tomb Raider II Script. Final Release Version 1.1 (c) Core Design Ltd 1997

//-- Options.

// Option Types
// EXIT_TO_TITLE
// LEVEL%d
// DEMO%d
// SEQUENCE%d
// EXITGAME
//--
// O P T I O N S
//--

Options: // Defaults

//firstOption: LEVEL 1 // EXIT_TO_TITLE

//title_replace: LEVEL 1 // -1

//ondeath_demo_mode: LEVEL 1 // EXIT_TO_TITLE

//ondeath_ingame: LEVEL 1 // EXIT_TO_TITLE

//noinput_time: 150 // 900

//on_demo_interrupt: LEVEL 1 // EXIT_TO_TITLE

//on_demo_end: DEMO1 // EXIT_TO_TITLE

singlelevel: 1 // -1

//enable_cheat_code: // Not shown in the original script.

//select_any_level:

//use_security_tag: // Not recognized as a valid command !!!
// Set by the compiler when a cypher is used.

dozy_cheat_enabled: // What is this, in a TR2 level?

//lockout_optionring:

- GAM.18 - Gameflow.exe

//screensizing_disabled:

//loadsave_disabled:

//noinput_timeout:

//cheatmodecheck_disabled:

//title_disabled:

//demoversion:

cypher_code: 166 // using a cypher sets the use_security_tag.

Language: ENGLISH // ENGLISH

Secret_Track: 47

//enable_indoor_reverb: // NO // Not recognized as a valid command !!!

//enable_cheat_key: // Not recognized as a valid command !!!

end:

//-- Title File Names: the TR2 level and the PCX pictures.

//--
// T I T L E S E T U P
//--

Title:

Game: data\title.tr2 // First file in 'Title' must always be title.tr2

PSXfile:pixUK\title.raw // PSX file names declared here as well.
PSXfile:pixUK\legal.raw //
PSXfile:pixUS\titleUS.raw //
PSXfile:pixUS\legalUS.raw //
PSXfile:pixJAP\titleJAP.raw //
PSXfile:pixJAP\legalJAP.raw // ... but they can be omitted.

PCfile: data\title.pcx
PCfile: data\legal.pcx
PCfile: data\titleUS.pcx // Foreign file names declared here as well.
PCfile: data\legalUS.pcx //
PCfile: data\titleJAP.pcx //
PCfile: data\legalJAP.pcx // ... but they can be omitted.

Track: 64 // Title Sound Track ID.

end:

Gameflow.exe - GAM.19 -

//-- The visible part of the script: the Frontend and the Levels.

//--
// F R O N T E N D
//--

Frontend:

fmv_start: 1 // Starting frame of the video. NOT USED.
fmv_end: 862 // Ending frame of the video. NOT USED.
fmv: fmv\logo.rpl // File name of the FMV.

end:

//--
// ASSAULT L A R A ' S H O M E
//--

gym: Lara's Home // This is not called a “level”, it is a “gym”.

//Secrets: 0
//Load_Pic: pix\mansion.raw
//track: 0
//game: data\assault.tr2

end:

//--
// LEVELS
//--

Level: Der kalte, kalte Krieg
track: 33 //Ambient (Wind)
Load_Pic: pix\pic1.raw
game: data\level1.tr2
key1: Wachraum Schlussel
key2: Shift B-Taste
complete:
end:

Level: Level 2
track: 33 //Ambient (Wind)
Load_Pic: pix\pic1.raw
game: data\level2.tr2
key1: GuardRoom Key
key2: Shaft B Key
complete:
end:

Level: Level 3
track: 33 //Ambient (Wind)
Load_Pic: pix\pic1.raw
game: data\level3.tr2
key1: GuardRoom Key
key2: Shaft B Key
complete:
end:

- GAM.20 - Gameflow.exe

Level: Level 4
track: 33 //Ambient (Wind)
Load_Pic: pix\pic1.raw
game: data\level4.tr2
key1: GuardRoom Key
key2: Shaft B Key
complete:
end:

Level: Level 5
track: 33 //Ambient (Wind)
Load_Pic: pix\pic1.raw
game: data\level5.tr2
key1: GuardRoom Key
key2: Shaft B Key
complete:
end:

//-- The game and pc strings are in a separate file.

GameStrings: strings.txt

//-- end of the SCRIPT TEXT file.

