|
@@ -331,10 +331,6 @@ float position_shift[3] = { 0 };
|
331
|
331
|
// Set by M206, M428, or menu item. Saved to EEPROM.
|
332
|
332
|
float home_offset[3] = { 0 };
|
333
|
333
|
|
334
|
|
-#define LOGICAL_POSITION(POS, AXIS) (POS + home_offset[AXIS] + position_shift[AXIS])
|
335
|
|
-#define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS])
|
336
|
|
-#define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS))
|
337
|
|
-
|
338
|
334
|
// Software Endstops. Default to configured limits.
|
339
|
335
|
float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
|
340
|
336
|
float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
|
|
@@ -1421,7 +1417,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
|
1421
|
1417
|
|
1422
|
1418
|
static float x_home_pos(int extruder) {
|
1423
|
1419
|
if (extruder == 0)
|
1424
|
|
- return LOGICAL_POSITION(base_home_pos(X_AXIS), X_AXIS);
|
|
1420
|
+ return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
|
1425
|
1421
|
else
|
1426
|
1422
|
/**
|
1427
|
1423
|
* In dual carriage mode the extruder offset provides an override of the
|
|
@@ -1437,11 +1433,11 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
|
1437
|
1433
|
}
|
1438
|
1434
|
|
1439
|
1435
|
static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
|
1440
|
|
- static bool active_extruder_parked = false; // used in mode 1 & 2
|
1441
|
|
- static float raised_parked_position[NUM_AXIS]; // used in mode 1
|
1442
|
|
- static millis_t delayed_move_time = 0; // used in mode 1
|
|
1436
|
+ static bool active_extruder_parked = false; // used in mode 1 & 2
|
|
1437
|
+ static float raised_parked_position[NUM_AXIS]; // used in mode 1
|
|
1438
|
+ static millis_t delayed_move_time = 0; // used in mode 1
|
1443
|
1439
|
static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
|
1444
|
|
- static float duplicate_extruder_temp_offset = 0; // used in mode 2
|
|
1440
|
+ static float duplicate_extruder_temp_offset = 0; // used in mode 2
|
1445
|
1441
|
|
1446
|
1442
|
#endif //DUAL_X_CARRIAGE
|
1447
|
1443
|
|
|
@@ -1526,7 +1522,7 @@ static void set_axis_is_at_home(AxisEnum axis) {
|
1526
|
1522
|
if (active_extruder != 0)
|
1527
|
1523
|
current_position[X_AXIS] = x_home_pos(active_extruder);
|
1528
|
1524
|
else
|
1529
|
|
- current_position[X_AXIS] = LOGICAL_POSITION(base_home_pos(X_AXIS), X_AXIS);
|
|
1525
|
+ current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
|
1530
|
1526
|
update_software_endstops(X_AXIS);
|
1531
|
1527
|
return;
|
1532
|
1528
|
}
|
|
@@ -1803,7 +1799,7 @@ static void clean_up_after_endstop_or_probe_move() {
|
1803
|
1799
|
SERIAL_ECHOLNPGM(")");
|
1804
|
1800
|
}
|
1805
|
1801
|
#endif
|
1806
|
|
- float z_dest = LOGICAL_POSITION(z_raise, Z_AXIS);
|
|
1802
|
+ float z_dest = LOGICAL_Z_POSITION(z_raise);
|
1807
|
1803
|
|
1808
|
1804
|
if (zprobe_zoffset < 0)
|
1809
|
1805
|
z_dest -= zprobe_zoffset;
|
|
@@ -2964,7 +2960,7 @@ inline void gcode_G28() {
|
2964
|
2960
|
|
2965
|
2961
|
if (home_all_axis || homeX || homeY) {
|
2966
|
2962
|
// Raise Z before homing any other axes and z is not already high enough (never lower z)
|
2967
|
|
- destination[Z_AXIS] = LOGICAL_POSITION(MIN_Z_HEIGHT_FOR_HOMING, Z_AXIS);
|
|
2963
|
+ destination[Z_AXIS] = LOGICAL_Z_POSITION(MIN_Z_HEIGHT_FOR_HOMING);
|
2968
|
2964
|
if (destination[Z_AXIS] > current_position[Z_AXIS]) {
|
2969
|
2965
|
|
2970
|
2966
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
@@ -3004,7 +3000,7 @@ inline void gcode_G28() {
|
3004
|
3000
|
int tmp_extruder = active_extruder;
|
3005
|
3001
|
active_extruder = !active_extruder;
|
3006
|
3002
|
HOMEAXIS(X);
|
3007
|
|
- inactive_extruder_x_pos = current_position[X_AXIS];
|
|
3003
|
+ inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
|
3008
|
3004
|
active_extruder = tmp_extruder;
|
3009
|
3005
|
HOMEAXIS(X);
|
3010
|
3006
|
// reset state used by the different modes
|
|
@@ -3079,7 +3075,7 @@ inline void gcode_G28() {
|
3079
|
3075
|
* NOTE: This doesn't necessarily ensure the Z probe is also
|
3080
|
3076
|
* within the bed!
|
3081
|
3077
|
*/
|
3082
|
|
- float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
|
|
3078
|
+ float cpx = RAW_CURRENT_POSITION(X_AXIS), cpy = RAW_CURRENT_POSITION(Y_AXIS);
|
3083
|
3079
|
if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
|
3084
|
3080
|
&& cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
|
3085
|
3081
|
&& cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
|
|
@@ -3218,12 +3214,12 @@ inline void gcode_G28() {
|
3218
|
3214
|
;
|
3219
|
3215
|
line_to_current_position();
|
3220
|
3216
|
|
3221
|
|
- current_position[X_AXIS] = LOGICAL_POSITION(x, X_AXIS);
|
3222
|
|
- current_position[Y_AXIS] = LOGICAL_POSITION(y, Y_AXIS);
|
|
3217
|
+ current_position[X_AXIS] = LOGICAL_X_POSITION(x);
|
|
3218
|
+ current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
|
3223
|
3219
|
line_to_current_position();
|
3224
|
3220
|
|
3225
|
3221
|
#if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0
|
3226
|
|
- current_position[Z_AXIS] = LOGICAL_POSITION(MESH_HOME_SEARCH_Z, Z_AXIS);
|
|
3222
|
+ current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
|
3227
|
3223
|
line_to_current_position();
|
3228
|
3224
|
#endif
|
3229
|
3225
|
|
|
@@ -3476,36 +3472,36 @@ inline void gcode_G28() {
|
3476
|
3472
|
|
3477
|
3473
|
xy_probe_feedrate_mm_m = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
|
3478
|
3474
|
|
3479
|
|
- int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
|
3480
|
|
- right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
|
3481
|
|
- front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION,
|
3482
|
|
- back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION;
|
|
3475
|
+ int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
|
|
3476
|
+ right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
|
|
3477
|
+ front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
|
|
3478
|
+ back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
|
3483
|
3479
|
|
3484
|
|
- bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
|
|
3480
|
+ bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
|
3485
|
3481
|
left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
|
3486
|
|
- right_out_r = right_probe_bed_position > MAX_PROBE_X,
|
|
3482
|
+ right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
|
3487
|
3483
|
right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
|
3488
|
|
- front_out_f = front_probe_bed_position < MIN_PROBE_Y,
|
|
3484
|
+ front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
|
3489
|
3485
|
front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
|
3490
|
|
- back_out_b = back_probe_bed_position > MAX_PROBE_Y,
|
|
3486
|
+ back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
|
3491
|
3487
|
back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
|
3492
|
3488
|
|
3493
|
3489
|
if (left_out || right_out || front_out || back_out) {
|
3494
|
3490
|
if (left_out) {
|
3495
|
3491
|
out_of_range_error(PSTR("(L)eft"));
|
3496
|
|
- left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
|
|
3492
|
+ left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
|
3497
|
3493
|
}
|
3498
|
3494
|
if (right_out) {
|
3499
|
3495
|
out_of_range_error(PSTR("(R)ight"));
|
3500
|
|
- right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
|
|
3496
|
+ right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
|
3501
|
3497
|
}
|
3502
|
3498
|
if (front_out) {
|
3503
|
3499
|
out_of_range_error(PSTR("(F)ront"));
|
3504
|
|
- front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
|
|
3500
|
+ front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
|
3505
|
3501
|
}
|
3506
|
3502
|
if (back_out) {
|
3507
|
3503
|
out_of_range_error(PSTR("(B)ack"));
|
3508
|
|
- back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
|
|
3504
|
+ back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
|
3509
|
3505
|
}
|
3510
|
3506
|
return;
|
3511
|
3507
|
}
|
|
@@ -3641,14 +3637,14 @@ inline void gcode_G28() {
|
3641
|
3637
|
#endif
|
3642
|
3638
|
|
3643
|
3639
|
// Probe at 3 arbitrary points
|
3644
|
|
- float z_at_pt_1 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_1_X, X_AXIS),
|
3645
|
|
- LOGICAL_POSITION(ABL_PROBE_PT_1_Y, Y_AXIS),
|
|
3640
|
+ float z_at_pt_1 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_1_X, X_AXIS),
|
|
3641
|
+ LOGICAL_Y_POSITION(ABL_PROBE_PT_1_Y, Y_AXIS),
|
3646
|
3642
|
stow_probe_after_each, verbose_level),
|
3647
|
|
- z_at_pt_2 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_2_X, X_AXIS),
|
3648
|
|
- LOGICAL_POSITION(ABL_PROBE_PT_2_Y, Y_AXIS),
|
|
3643
|
+ z_at_pt_2 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_2_X, X_AXIS),
|
|
3644
|
+ LOGICAL_Y_POSITION(ABL_PROBE_PT_2_Y, Y_AXIS),
|
3649
|
3645
|
stow_probe_after_each, verbose_level),
|
3650
|
|
- z_at_pt_3 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_3_X, X_AXIS),
|
3651
|
|
- LOGICAL_POSITION(ABL_PROBE_PT_3_Y, Y_AXIS),
|
|
3646
|
+ z_at_pt_3 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_3_X, X_AXIS),
|
|
3647
|
+ LOGICAL_Y_POSITION(ABL_PROBE_PT_3_Y, Y_AXIS),
|
3652
|
3648
|
stow_probe_after_each, verbose_level);
|
3653
|
3649
|
|
3654
|
3650
|
if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
|
|
@@ -4212,7 +4208,7 @@ inline void gcode_M42() {
|
4212
|
4208
|
|
4213
|
4209
|
float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
|
4214
|
4210
|
#if DISABLED(DELTA)
|
4215
|
|
- if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
|
|
4211
|
+ if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
|
4216
|
4212
|
out_of_range_error(PSTR("X"));
|
4217
|
4213
|
return;
|
4218
|
4214
|
}
|
|
@@ -4220,12 +4216,12 @@ inline void gcode_M42() {
|
4220
|
4216
|
|
4221
|
4217
|
float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
|
4222
|
4218
|
#if DISABLED(DELTA)
|
4223
|
|
- if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
|
|
4219
|
+ if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
|
4224
|
4220
|
out_of_range_error(PSTR("Y"));
|
4225
|
4221
|
return;
|
4226
|
4222
|
}
|
4227
|
4223
|
#else
|
4228
|
|
- if (HYPOT(X_probe_location, Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
|
|
4224
|
+ if (HYPOT(RAW_X_POSITION(X_probe_location), RAW_Y_POSITION(Y_probe_location)) > DELTA_PROBEABLE_RADIUS) {
|
4229
|
4225
|
SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
|
4230
|
4226
|
return;
|
4231
|
4227
|
}
|
|
@@ -6751,16 +6747,16 @@ void tool_change(const uint8_t tmp_extruder, const float fr_mm_m/*=0.0*/, bool n
|
6751
|
6747
|
|
6752
|
6748
|
switch (dual_x_carriage_mode) {
|
6753
|
6749
|
case DXC_FULL_CONTROL_MODE:
|
6754
|
|
- current_position[X_AXIS] = inactive_extruder_x_pos;
|
6755
|
|
- inactive_extruder_x_pos = destination[X_AXIS];
|
|
6750
|
+ current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
|
|
6751
|
+ inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
|
6756
|
6752
|
break;
|
6757
|
6753
|
case DXC_DUPLICATION_MODE:
|
6758
|
6754
|
active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
|
6759
|
6755
|
if (active_extruder_parked)
|
6760
|
|
- current_position[X_AXIS] = inactive_extruder_x_pos;
|
|
6756
|
+ current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
|
6761
|
6757
|
else
|
6762
|
6758
|
current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
|
6763
|
|
- inactive_extruder_x_pos = destination[X_AXIS];
|
|
6759
|
+ inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
|
6764
|
6760
|
extruder_duplication_enabled = false;
|
6765
|
6761
|
break;
|
6766
|
6762
|
default:
|
|
@@ -7749,9 +7745,9 @@ void clamp_to_software_endstops(float target[3]) {
|
7749
|
7745
|
void inverse_kinematics(const float in_cartesian[3]) {
|
7750
|
7746
|
|
7751
|
7747
|
const float cartesian[3] = {
|
7752
|
|
- RAW_POSITION(in_cartesian[X_AXIS], X_AXIS),
|
7753
|
|
- RAW_POSITION(in_cartesian[Y_AXIS], Y_AXIS),
|
7754
|
|
- RAW_POSITION(in_cartesian[Z_AXIS], Z_AXIS)
|
|
7748
|
+ RAW_X_POSITION(in_cartesian[X_AXIS]),
|
|
7749
|
+ RAW_Y_POSITION(in_cartesian[Y_AXIS]),
|
|
7750
|
+ RAW_Z_POSITION(in_cartesian[Z_AXIS])
|
7755
|
7751
|
};
|
7756
|
7752
|
|
7757
|
7753
|
delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
|
|
@@ -7779,13 +7775,13 @@ void clamp_to_software_endstops(float target[3]) {
|
7779
|
7775
|
|
7780
|
7776
|
float delta_safe_distance_from_top() {
|
7781
|
7777
|
float cartesian[3] = {
|
7782
|
|
- LOGICAL_POSITION(0, X_AXIS),
|
7783
|
|
- LOGICAL_POSITION(0, Y_AXIS),
|
7784
|
|
- LOGICAL_POSITION(0, Z_AXIS)
|
|
7778
|
+ LOGICAL_X_POSITION(0),
|
|
7779
|
+ LOGICAL_Y_POSITION(0),
|
|
7780
|
+ LOGICAL_Z_POSITION(0)
|
7785
|
7781
|
};
|
7786
|
7782
|
inverse_kinematics(cartesian);
|
7787
|
7783
|
float distance = delta[TOWER_3];
|
7788
|
|
- cartesian[Y_AXIS] = LOGICAL_POSITION(DELTA_PRINTABLE_RADIUS, Y_AXIS);
|
|
7784
|
+ cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
|
7789
|
7785
|
inverse_kinematics(cartesian);
|
7790
|
7786
|
return abs(distance - delta[TOWER_3]);
|
7791
|
7787
|
}
|
|
@@ -7877,8 +7873,8 @@ void clamp_to_software_endstops(float target[3]) {
|
7877
|
7873
|
|
7878
|
7874
|
int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
|
7879
|
7875
|
float h1 = 0.001 - half, h2 = half - 0.001,
|
7880
|
|
- grid_x = max(h1, min(h2, RAW_POSITION(cartesian[X_AXIS], X_AXIS) / delta_grid_spacing[0])),
|
7881
|
|
- grid_y = max(h1, min(h2, RAW_POSITION(cartesian[Y_AXIS], Y_AXIS) / delta_grid_spacing[1]));
|
|
7876
|
+ grid_x = max(h1, min(h2, RAW_X_POSITION(cartesian[X_AXIS]) / delta_grid_spacing[0])),
|
|
7877
|
+ grid_y = max(h1, min(h2, RAW_Y_POSITION(cartesian[Y_AXIS]) / delta_grid_spacing[1]));
|
7882
|
7878
|
int floor_x = floor(grid_x), floor_y = floor(grid_y);
|
7883
|
7879
|
float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
|
7884
|
7880
|
z1 = bed_level[floor_x + half][floor_y + half],
|
|
@@ -7919,9 +7915,9 @@ void set_current_from_steppers_for_axis(AxisEnum axis) {
|
7919
|
7915
|
current_position[axis] = LOGICAL_POSITION(cartesian_position[axis], axis);
|
7920
|
7916
|
#elif ENABLED(AUTO_BED_LEVELING_FEATURE)
|
7921
|
7917
|
vector_3 pos = planner.adjusted_position();
|
7922
|
|
- current_position[axis] = LOGICAL_POSITION(axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z, axis);
|
|
7918
|
+ current_position[axis] = axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z;
|
7923
|
7919
|
#else
|
7924
|
|
- current_position[axis] = LOGICAL_POSITION(stepper.get_axis_position_mm(axis), axis); // CORE handled transparently
|
|
7920
|
+ current_position[axis] = stepper.get_axis_position_mm(axis); // CORE handled transparently
|
7925
|
7921
|
#endif
|
7926
|
7922
|
}
|
7927
|
7923
|
|
|
@@ -7931,8 +7927,8 @@ void set_current_from_steppers_for_axis(AxisEnum axis) {
|
7931
|
7927
|
void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
|
7932
|
7928
|
int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
|
7933
|
7929
|
cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
|
7934
|
|
- cx2 = mbl.cell_index_x(RAW_POSITION(destination[X_AXIS], X_AXIS)),
|
7935
|
|
- cy2 = mbl.cell_index_y(RAW_POSITION(destination[Y_AXIS], Y_AXIS));
|
|
7930
|
+ cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
|
|
7931
|
+ cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
|
7936
|
7932
|
NOMORE(cx1, MESH_NUM_X_POINTS - 2);
|
7937
|
7933
|
NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
|
7938
|
7934
|
NOMORE(cx2, MESH_NUM_X_POINTS - 2);
|
|
@@ -7953,14 +7949,14 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
|
7953
|
7949
|
int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
|
7954
|
7950
|
if (cx2 != cx1 && TEST(x_splits, gcx)) {
|
7955
|
7951
|
memcpy(end, destination, sizeof(end));
|
7956
|
|
- destination[X_AXIS] = LOGICAL_POSITION(mbl.get_probe_x(gcx), X_AXIS);
|
|
7952
|
+ destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
|
7957
|
7953
|
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
|
7958
|
7954
|
destination[Y_AXIS] = MBL_SEGMENT_END(Y);
|
7959
|
7955
|
CBI(x_splits, gcx);
|
7960
|
7956
|
}
|
7961
|
7957
|
else if (cy2 != cy1 && TEST(y_splits, gcy)) {
|
7962
|
7958
|
memcpy(end, destination, sizeof(end));
|
7963
|
|
- destination[Y_AXIS] = LOGICAL_POSITION(mbl.get_probe_y(gcy), Y_AXIS);
|
|
7959
|
+ destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
|
7964
|
7960
|
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
|
7965
|
7961
|
destination[X_AXIS] = MBL_SEGMENT_END(X);
|
7966
|
7962
|
CBI(y_splits, gcy);
|
|
@@ -8031,7 +8027,12 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
|
8031
|
8027
|
if (active_extruder_parked) {
|
8032
|
8028
|
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
|
8033
|
8029
|
// move duplicate extruder into correct duplication position.
|
8034
|
|
- planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
8030
|
+ planner.set_position_mm(
|
|
8031
|
+ LOGICAL_X_POSITION(inactive_extruder_x_pos),
|
|
8032
|
+ current_position[Y_AXIS],
|
|
8033
|
+ current_position[Z_AXIS],
|
|
8034
|
+ current_position[E_AXIS]
|
|
8035
|
+ );
|
8035
|
8036
|
planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
|
8036
|
8037
|
current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
|
8037
|
8038
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
@@ -8375,8 +8376,8 @@ void prepare_move_to_destination() {
|
8375
|
8376
|
float SCARA_pos[2];
|
8376
|
8377
|
static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
|
8377
|
8378
|
|
8378
|
|
- SCARA_pos[X_AXIS] = RAW_POSITION(cartesian[X_AXIS], X_AXIS) * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
|
8379
|
|
- SCARA_pos[Y_AXIS] = RAW_POSITION(cartesian[Y_AXIS], Y_AXIS) * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
|
|
8379
|
+ SCARA_pos[X_AXIS] = RAW_X_POSITION(cartesian[X_AXIS]) * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
|
|
8380
|
+ SCARA_pos[Y_AXIS] = RAW_Y_POSITION(cartesian[Y_AXIS]) * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
|
8380
|
8381
|
|
8381
|
8382
|
#if (Linkage_1 == Linkage_2)
|
8382
|
8383
|
SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
|
|
@@ -8394,7 +8395,7 @@ void prepare_move_to_destination() {
|
8394
|
8395
|
|
8395
|
8396
|
delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
|
8396
|
8397
|
delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
|
8397
|
|
- delta[Z_AXIS] = RAW_POSITION(cartesian[Z_AXIS], Z_AXIS);
|
|
8398
|
+ delta[Z_AXIS] = RAW_Z_POSITION(cartesian[Z_AXIS]);
|
8398
|
8399
|
|
8399
|
8400
|
/**
|
8400
|
8401
|
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
|