Pārlūkot izejas kodu

Merge pull request #8612 from thinkyhead/bf2_planner_parity

[2.0.x] Fix some planner bugs
Scott Lahteine 7 gadus atpakaļ
vecāks
revīzija
e3948d8582
Revīzijas autora e-pasta adrese nav piesaistīta nevienam kontam
2 mainītis faili ar 100 papildinājumiem un 182 dzēšanām
  1. 91
    169
      Marlin/src/module/planner.cpp
  2. 9
    13
      Marlin/src/module/planner.h

+ 91
- 169
Marlin/src/module/planner.cpp Parādīt failu

@@ -105,11 +105,10 @@ float Planner::max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
105 105
 
106 106
 int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
107 107
 
108
-// Initialized by settings.load()
109
-float Planner::e_factor[EXTRUDERS],              // The flow percentage and volumetric multiplier combine to scale E movement
110
-      Planner::filament_size[EXTRUDERS],         // As a baseline for the multiplier, filament diameter
108
+float Planner::e_factor[EXTRUDERS],               // The flow percentage and volumetric multiplier combine to scale E movement
109
+      Planner::filament_size[EXTRUDERS],          // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
111 110
       Planner::volumetric_area_nominal = CIRCLE_AREA((DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5), // Nominal cross-sectional area
112
-      Planner::volumetric_multiplier[EXTRUDERS]; // May be auto-adjusted by a filament width sensor
111
+      Planner::volumetric_multiplier[EXTRUDERS];  // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
113 112
 
114 113
 uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N],
115 114
          Planner::max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software
@@ -129,12 +128,11 @@ float Planner::min_feedrate_mm_s,
129 128
   #if ABL_PLANAR
130 129
     matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
131 130
   #endif
132
-#endif
133
-
134
-#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
135
-  float Planner::z_fade_height, // Initialized by settings.load()
136
-        Planner::inverse_z_fade_height,
137
-        Planner::last_fade_z;
131
+  #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
132
+    float Planner::z_fade_height,      // Initialized by settings.load()
133
+          Planner::inverse_z_fade_height,
134
+          Planner::last_fade_z;
135
+  #endif
138 136
 #endif
139 137
 
140 138
 #if ENABLED(AUTOTEMP)
@@ -146,7 +144,7 @@ float Planner::min_feedrate_mm_s,
146 144
 
147 145
 // private:
148 146
 
149
-long Planner::position[NUM_AXIS] = { 0 };
147
+int32_t Planner::position[NUM_AXIS] = { 0 };
150 148
 
151 149
 uint32_t Planner::cutoff_long;
152 150
 
@@ -166,8 +164,7 @@ float Planner::previous_speed[NUM_AXIS],
166 164
 
167 165
 #if ENABLED(LIN_ADVANCE)
168 166
   float Planner::extruder_advance_k, // Initialized by settings.load()
169
-        Planner::advance_ed_ratio,   // Initialized by settings.load()
170
-        Planner::position_float[NUM_AXIS] = { 0 };
167
+        Planner::advance_ed_ratio;   // Initialized by settings.load()
171 168
 #endif
172 169
 
173 170
 #if ENABLED(ULTRA_LCD)
@@ -183,9 +180,6 @@ Planner::Planner() { init(); }
183 180
 void Planner::init() {
184 181
   block_buffer_head = block_buffer_tail = 0;
185 182
   ZERO(position);
186
-  #if ENABLED(LIN_ADVANCE)
187
-    ZERO(position_float);
188
-  #endif
189 183
   ZERO(previous_speed);
190 184
   previous_nominal_speed = 0.0;
191 185
   #if ABL_PLANAR
@@ -571,30 +565,9 @@ void Planner::calculate_volumetric_multipliers() {
571 565
    */
572 566
   void Planner::apply_leveling(float &rx, float &ry, float &rz) {
573 567
 
574
-    if (!planner.leveling_active) return;
575
-
576
-    #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
577
-      const float fade_scaling_factor = fade_scaling_factor_for_z(rz);
578
-      if (!fade_scaling_factor) return;
579
-    #else
580
-      constexpr float fade_scaling_factor = 1.0;
581
-    #endif
568
+    if (!leveling_active) return;
582 569
 
583
-    #if ENABLED(AUTO_BED_LEVELING_UBL)
584
-
585
-      rz += ubl.get_z_correction(rx, ry) * fade_scaling_factor;
586
-
587
-    #elif ENABLED(MESH_BED_LEVELING)
588
-
589
-      rz += mbl.get_z(rx, ry
590
-        #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
591
-          , fade_scaling_factor
592
-        #endif
593
-      );
594
-
595
-    #elif ABL_PLANAR
596
-
597
-      UNUSED(fade_scaling_factor);
570
+    #if ABL_PLANAR
598 571
 
599 572
       float dx = rx - (X_TILT_FULCRUM),
600 573
             dy = ry - (Y_TILT_FULCRUM);
@@ -604,80 +577,79 @@ void Planner::calculate_volumetric_multipliers() {
604 577
       rx = dx + X_TILT_FULCRUM;
605 578
       ry = dy + Y_TILT_FULCRUM;
606 579
 
607
-    #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
608
-
609
-      float tmp[XYZ] = { rx, ry, 0 };
610
-      rz += bilinear_z_offset(tmp) * fade_scaling_factor;
611
-
612
-    #endif
613
-  }
614
-
615
-  void Planner::unapply_leveling(float raw[XYZ]) {
616
-
617
-    if (!planner.leveling_active) return;
618
-
619
-    #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
620
-      if (z_fade_height && raw[Z_AXIS] >= z_fade_height) return;
621
-    #endif
622
-
623
-    #if ENABLED(AUTO_BED_LEVELING_UBL)
624
-
625
-      const float z_correct = ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]);
626
-            float z_raw = raw[Z_AXIS] - z_correct;
580
+    #else
627 581
 
628 582
       #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
583
+        const float fade_scaling_factor = fade_scaling_factor_for_z(rz);
584
+        if (!fade_scaling_factor) return;
585
+      #elif HAS_MESH
586
+        constexpr float fade_scaling_factor = 1.0;
587
+      #endif
629 588
 
630
-        // for P=physical_z, L=raw_z, M=mesh_z, H=fade_height,
631
-        // Given P=L+M(1-L/H) (faded mesh correction formula for L<H)
632
-        //  then L=P-M(1-L/H)
633
-        //    so L=P-M+ML/H
634
-        //    so L-ML/H=P-M
635
-        //    so L(1-M/H)=P-M
636
-        //    so L=(P-M)/(1-M/H) for L<H
637
-
638
-        if (planner.z_fade_height) {
639
-          if (z_raw >= planner.z_fade_height)
640
-            z_raw = raw[Z_AXIS];
641
-          else
642
-            z_raw /= 1.0 - z_correct * planner.inverse_z_fade_height;
643
-        }
589
+      #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
590
+        const float raw[XYZ] = { rx, ry, 0 };
591
+      #endif
644 592
 
645
-      #endif // ENABLE_LEVELING_FADE_HEIGHT
593
+      rz += (
594
+        #if ENABLED(AUTO_BED_LEVELING_UBL)
595
+          ubl.get_z_correction(rx, ry) * fade_scaling_factor
596
+        #elif ENABLED(MESH_BED_LEVELING)
597
+          mbl.get_z(rx, ry
598
+            #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
599
+              , fade_scaling_factor
600
+            #endif
601
+          )
602
+        #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
603
+          bilinear_z_offset(raw) * fade_scaling_factor
604
+        #else
605
+          0
606
+        #endif
607
+      );
646 608
 
647
-      raw[Z_AXIS] = z_raw;
609
+    #endif
610
+  }
648 611
 
649
-    #elif ENABLED(MESH_BED_LEVELING)
612
+  void Planner::unapply_leveling(float raw[XYZ]) {
650 613
 
651
-      #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
652
-        const float c = mbl.get_z(raw[X_AXIS], raw[Y_AXIS], 1.0);
653
-        raw[Z_AXIS] = (z_fade_height * (raw[Z_AXIS] - c)) / (z_fade_height - c);
654
-      #else
655
-        raw[Z_AXIS] -= mbl.get_z(raw[X_AXIS], raw[Y_AXIS]);
656
-      #endif
614
+    if (!leveling_active) return;
657 615
 
658
-    #elif ABL_PLANAR
616
+    #if ABL_PLANAR
659 617
 
660 618
       matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
661 619
 
662 620
       float dx = raw[X_AXIS] - (X_TILT_FULCRUM),
663
-            dy = raw[Y_AXIS] - (Y_TILT_FULCRUM),
664
-            dz = raw[Z_AXIS];
621
+            dy = raw[Y_AXIS] - (Y_TILT_FULCRUM);
665 622
 
666
-      apply_rotation_xyz(inverse, dx, dy, dz);
623
+      apply_rotation_xyz(inverse, dx, dy, raw[Z_AXIS]);
667 624
 
668 625
       raw[X_AXIS] = dx + X_TILT_FULCRUM;
669 626
       raw[Y_AXIS] = dy + Y_TILT_FULCRUM;
670
-      raw[Z_AXIS] = dz;
671 627
 
672
-    #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
628
+    #else
673 629
 
674 630
       #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
675
-        const float c = bilinear_z_offset(raw);
676
-        raw[Z_AXIS] = (z_fade_height * (raw[Z_AXIS]) - c) / (z_fade_height - c);
677
-      #else
678
-        raw[Z_AXIS] -= bilinear_z_offset(raw);
631
+        const float fade_scaling_factor = fade_scaling_factor_for_z(raw[Z_AXIS]);
632
+        if (!fade_scaling_factor) return;
633
+      #elif HAS_MESH
634
+        constexpr float fade_scaling_factor = 1.0;
679 635
       #endif
680 636
 
637
+      raw[Z_AXIS] -= (
638
+        #if ENABLED(AUTO_BED_LEVELING_UBL)
639
+          ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]) * fade_scaling_factor
640
+        #elif ENABLED(MESH_BED_LEVELING)
641
+          mbl.get_z(raw[X_AXIS], raw[Y_AXIS]
642
+            #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
643
+              , fade_scaling_factor
644
+            #endif
645
+          )
646
+        #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
647
+          bilinear_z_offset(raw) * fade_scaling_factor
648
+        #else
649
+          0
650
+        #endif
651
+      );
652
+
681 653
     #endif
682 654
   }
683 655
 
@@ -714,13 +686,9 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
714 686
     }
715 687
   #endif
716 688
 
717
-  #if ENABLED(LIN_ADVANCE)
718
-    const float mm_D_float = SQRT(sq(a - position_float[X_AXIS]) + sq(b - position_float[Y_AXIS]));
719
-  #endif
720
-
721
-  const long da = target[X_AXIS] - position[X_AXIS],
722
-             db = target[Y_AXIS] - position[Y_AXIS],
723
-             dc = target[Z_AXIS] - position[Z_AXIS];
689
+  const int32_t da = target[X_AXIS] - position[X_AXIS],
690
+                db = target[Y_AXIS] - position[Y_AXIS],
691
+                dc = target[Z_AXIS] - position[Z_AXIS];
724 692
 
725 693
   /*
726 694
   SERIAL_ECHOPAIR("  Planner FR:", fr_mm_s);
@@ -745,19 +713,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
745 713
   SERIAL_EOL();
746 714
   //*/
747 715
 
748
-  // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
749
-  if (DEBUGGING(DRYRUN)) {
750
-    position[E_AXIS] = target[E_AXIS];
751
-    #if ENABLED(LIN_ADVANCE)
752
-      position_float[E_AXIS] = e;
753
-    #endif
754
-  }
755
-
756
-  long de = target[E_AXIS] - position[E_AXIS];
757
-
758
-  #if ENABLED(LIN_ADVANCE)
759
-    float de_float = e - position_float[E_AXIS]; // Should this include e_factor?
760
-  #endif
716
+  int32_t de = target[E_AXIS] - position[E_AXIS];
761 717
 
762 718
   #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
763 719
     if (de) {
@@ -765,10 +721,6 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
765 721
         if (thermalManager.tooColdToExtrude(extruder)) {
766 722
           position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
767 723
           de = 0; // no difference
768
-          #if ENABLED(LIN_ADVANCE)
769
-            position_float[E_AXIS] = e;
770
-            de_float = 0;
771
-          #endif
772 724
           SERIAL_ECHO_START();
773 725
           SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
774 726
         }
@@ -777,10 +729,6 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
777 729
         if (labs(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
778 730
           position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
779 731
           de = 0; // no difference
780
-          #if ENABLED(LIN_ADVANCE)
781
-            position_float[E_AXIS] = e;
782
-            de_float = 0;
783
-          #endif
784 732
           SERIAL_ECHO_START();
785 733
           SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
786 734
         }
@@ -1060,7 +1008,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
1060 1008
       #endif
1061 1009
     );
1062 1010
   }
1063
-  const float inverse_millimeters = 1.0 / block->millimeters;  // Inverse millimeters to remove multiple divides
1011
+  float inverse_millimeters = 1.0 / block->millimeters;  // Inverse millimeters to remove multiple divides
1064 1012
 
1065 1013
   // Calculate moves/second for this move. No divide by zero due to previous checks.
1066 1014
   float inverse_mm_s = fr_mm_s * inverse_millimeters;
@@ -1384,31 +1332,28 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
1384 1332
   previous_safe_speed = safe_speed;
1385 1333
 
1386 1334
   #if ENABLED(LIN_ADVANCE)
1387
-
1388
-    //
1389
-    // Use LIN_ADVANCE for blocks if all these are true:
1390
-    //
1391
-    // esteps                                          : We have E steps todo (a printing move)
1392
-    //
1393
-    // block->steps[X_AXIS] || block->steps[Y_AXIS]    : We have a movement in XY direction (i.e., not retract / prime).
1394
-    //
1395
-    // extruder_advance_k                              : There is an advance factor set.
1396
-    //
1397
-    // block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
1398
-    //                                                   In that case, the retract and move will be executed together.
1399
-    //                                                   This leads to too many advance steps due to a huge e_acceleration.
1400
-    //                                                   The math is good, but we must avoid retract moves with advance!
1401
-    // de_float > 0.0                                  : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
1402
-    //
1403
-    block->use_advance_lead =  esteps
1404
-                            && (block->steps[X_AXIS] || block->steps[Y_AXIS])
1335
+    /**
1336
+     *
1337
+     * Use LIN_ADVANCE for blocks if all these are true:
1338
+     *
1339
+     * esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS]) : This is a print move
1340
+     *
1341
+     * extruder_advance_k                 : There is an advance factor set.
1342
+     *
1343
+     * esteps != block->step_event_count  : A problem occurs if the move before a retract is too small.
1344
+     *                                      In that case, the retract and move will be executed together.
1345
+     *                                      This leads to too many advance steps due to a huge e_acceleration.
1346
+     *                                      The math is good, but we must avoid retract moves with advance!
1347
+     * de > 0                             : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
1348
+     */
1349
+    block->use_advance_lead =  esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS])
1405 1350
                             && extruder_advance_k
1406 1351
                             && (uint32_t)esteps != block->step_event_count
1407
-                            && de_float > 0.0;
1352
+                            && de > 0;
1408 1353
     if (block->use_advance_lead)
1409 1354
       block->abs_adv_steps_multiplier8 = LROUND(
1410 1355
         extruder_advance_k
1411
-        * (UNEAR_ZERO(advance_ed_ratio) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
1356
+        * (UNEAR_ZERO(advance_ed_ratio) ? de * steps_to_mm[E_AXIS_N] / HYPOT(da * steps_to_mm[X_AXIS], db * steps_to_mm[Y_AXIS]) : advance_ed_ratio) // Use the fixed ratio, if set
1412 1357
         * (block->nominal_speed / (float)block->nominal_rate)
1413 1358
         * axis_steps_per_mm[E_AXIS_N] * 256.0
1414 1359
       );
@@ -1422,12 +1367,6 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
1422 1367
 
1423 1368
   // Update the position (only when a move was queued)
1424 1369
   COPY(position, target);
1425
-  #if ENABLED(LIN_ADVANCE)
1426
-    position_float[X_AXIS] = a;
1427
-    position_float[Y_AXIS] = b;
1428
-    position_float[Z_AXIS] = c;
1429
-    position_float[E_AXIS] = e;
1430
-  #endif
1431 1370
 
1432 1371
   recalculate();
1433 1372
 
@@ -1449,16 +1388,10 @@ void Planner::_set_position_mm(const float &a, const float &b, const float &c, c
1449 1388
   #else
1450 1389
     #define _EINDEX E_AXIS
1451 1390
   #endif
1452
-  const long na = position[X_AXIS] = LROUND(a * axis_steps_per_mm[X_AXIS]),
1453
-             nb = position[Y_AXIS] = LROUND(b * axis_steps_per_mm[Y_AXIS]),
1454
-             nc = position[Z_AXIS] = LROUND(c * axis_steps_per_mm[Z_AXIS]),
1455
-             ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]);
1456
-  #if ENABLED(LIN_ADVANCE)
1457
-    position_float[X_AXIS] = a;
1458
-    position_float[Y_AXIS] = b;
1459
-    position_float[Z_AXIS] = c;
1460
-    position_float[E_AXIS] = e;
1461
-  #endif
1391
+  const int32_t na = position[X_AXIS] = LROUND(a * axis_steps_per_mm[X_AXIS]),
1392
+                nb = position[Y_AXIS] = LROUND(b * axis_steps_per_mm[Y_AXIS]),
1393
+                nc = position[Z_AXIS] = LROUND(c * axis_steps_per_mm[Z_AXIS]),
1394
+                ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]);
1462 1395
   stepper.set_position(na, nb, nc, ne);
1463 1396
   previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
1464 1397
   ZERO(previous_speed);
@@ -1483,16 +1416,8 @@ void Planner::set_position_mm_kinematic(const float position[NUM_AXIS]) {
1483 1416
  * Sync from the stepper positions. (e.g., after an interrupted move)
1484 1417
  */
1485 1418
 void Planner::sync_from_steppers() {
1486
-  LOOP_XYZE(i) {
1419
+  LOOP_XYZE(i)
1487 1420
     position[i] = stepper.position((AxisEnum)i);
1488
-    #if ENABLED(LIN_ADVANCE)
1489
-      position_float[i] = position[i] * steps_to_mm[i
1490
-        #if ENABLED(DISTINCT_E_FACTORS)
1491
-          + (i == E_AXIS ? active_extruder : 0)
1492
-        #endif
1493
-      ];
1494
-    #endif
1495
-  }
1496 1421
 }
1497 1422
 
1498 1423
 /**
@@ -1506,9 +1431,6 @@ void Planner::set_position_mm(const AxisEnum axis, const float &v) {
1506 1431
     const uint8_t axis_index = axis;
1507 1432
   #endif
1508 1433
   position[axis] = LROUND(v * axis_steps_per_mm[axis_index]);
1509
-  #if ENABLED(LIN_ADVANCE)
1510
-    position_float[axis] = v;
1511
-  #endif
1512 1434
   stepper.set_position(axis, v);
1513 1435
   previous_speed[axis] = 0.0;
1514 1436
 }

+ 9
- 13
Marlin/src/module/planner.h Parādīt failu

@@ -144,7 +144,7 @@ class Planner {
144 144
       static uint8_t last_extruder;             // Respond to extruder change
145 145
     #endif
146 146
 
147
-    static int16_t flow_percentage[EXTRUDERS];  // Extrusion factor for each extruder
147
+    static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
148 148
 
149 149
     static float e_factor[EXTRUDERS],               // The flow percentage and volumetric multiplier combine to scale E movement
150 150
                  filament_size[EXTRUDERS],          // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
@@ -167,7 +167,7 @@ class Planner {
167 167
                  min_travel_feedrate_mm_s;
168 168
 
169 169
     #if HAS_LEVELING
170
-      static bool leveling_active;              // Flag that bed leveling is enabled
170
+      static bool leveling_active;          // Flag that bed leveling is enabled
171 171
       #if ABL_PLANAR
172 172
         static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
173 173
       #endif
@@ -186,7 +186,7 @@ class Planner {
186 186
      * The current position of the tool in absolute steps
187 187
      * Recalculated if any axis_steps_per_mm are changed by gcode
188 188
      */
189
-    static long position[NUM_AXIS];
189
+    static int32_t position[NUM_AXIS];
190 190
 
191 191
     /**
192 192
      * Speed of previous path line segment
@@ -220,11 +220,7 @@ class Planner {
220 220
       // Old direction bits. Used for speed calculations
221 221
       static unsigned char old_direction_bits;
222 222
       // Segment times (in µs). Used for speed calculations
223
-      static long axis_segment_time_us[2][3];
224
-    #endif
225
-
226
-    #if ENABLED(LIN_ADVANCE)
227
-      static float position_float[NUM_AXIS];
223
+      static uint32_t axis_segment_time_us[2][3];
228 224
     #endif
229 225
 
230 226
     #if ENABLED(ULTRA_LCD)
@@ -342,12 +338,12 @@ class Planner {
342 338
     /**
343 339
      * Planner::_buffer_line
344 340
      *
345
-     * Add a new direct linear movement to the buffer.
341
+     * Add a new linear movement to the buffer in axis units.
346 342
      *
347
-     * Leveling and kinematics should be applied ahead of this.
343
+     * Leveling and kinematics should be applied ahead of calling this.
348 344
      *
349
-     *  a,b,c,e   - target position in mm or degrees
350
-     *  fr_mm_s   - (target) speed of the move (mm/s)
345
+     *  a,b,c,e   - target positions in mm and/or degrees
346
+     *  fr_mm_s   - (target) speed of the move
351 347
      *  extruder  - target extruder
352 348
      */
353 349
     static void _buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder);
@@ -444,7 +440,7 @@ class Planner {
444 440
       if (blocks_queued()) {
445 441
         block_t* block = &block_buffer[block_buffer_tail];
446 442
         #if ENABLED(ULTRA_LCD)
447
-          block_buffer_runtime_us -= block->segment_time_us; //We can't be sure how long an active block will take, so don't count it.
443
+          block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it.
448 444
         #endif
449 445
         SBI(block->flag, BLOCK_BIT_BUSY);
450 446
         return block;

Notiek ielāde…
Atcelt
Saglabāt