My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

UBL.h 15KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "Marlin.h"
  23. #include "math.h"
  24. #include "vector_3.h"
  25. #ifndef UNIFIED_BED_LEVELING_H
  26. #define UNIFIED_BED_LEVELING_H
  27. #if ENABLED(AUTO_BED_LEVELING_UBL)
  28. #define UBL_OK false
  29. #define UBL_ERR true
  30. typedef struct {
  31. int8_t x_index, y_index;
  32. float distance; // When populated, the distance from the search location
  33. } mesh_index_pair;
  34. enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
  35. void dump(char * const str, const float &f);
  36. bool ubl_lcd_clicked();
  37. void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool);
  38. void debug_current_and_destination(char *title);
  39. void ubl_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
  40. void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
  41. vector_3 tilt_mesh_based_on_3pts(const float&, const float&, const float&);
  42. float measure_business_card_thickness(const float&);
  43. mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, unsigned int[16], bool);
  44. void find_mean_mesh_height();
  45. void shift_mesh_height();
  46. bool g29_parameter_parsing();
  47. void g29_what_command();
  48. void g29_eeprom_dump();
  49. void g29_compare_current_mesh_to_stored_mesh();
  50. void fine_tune_mesh(const float&, const float&, const bool);
  51. void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y);
  52. void bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
  53. bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
  54. char *ftostr43sign(const float&, char);
  55. void gcode_G26();
  56. void gcode_G28();
  57. void gcode_G29();
  58. extern char conv[9];
  59. void save_ubl_active_state_and_disable();
  60. void restore_ubl_active_state_and_leave();
  61. ///////////////////////////////////////////////////////////////////////////////////////////////////////
  62. #if ENABLED(ULTRA_LCD)
  63. extern char lcd_status_message[];
  64. void lcd_quick_feedback();
  65. #endif
  66. enum MBLStatus { MBL_STATUS_NONE = 0, MBL_STATUS_HAS_MESH_BIT = 0, MBL_STATUS_ACTIVE_BIT = 1 };
  67. #define MESH_X_DIST (float(UBL_MESH_MAX_X - (UBL_MESH_MIN_X)) / float(UBL_MESH_NUM_X_POINTS - 1))
  68. #define MESH_Y_DIST (float(UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)) / float(UBL_MESH_NUM_Y_POINTS - 1))
  69. typedef struct {
  70. bool active = false;
  71. float z_offset = 0.0;
  72. int8_t eeprom_storage_slot = -1,
  73. n_x = UBL_MESH_NUM_X_POINTS,
  74. n_y = UBL_MESH_NUM_Y_POINTS;
  75. float mesh_x_min = UBL_MESH_MIN_X,
  76. mesh_y_min = UBL_MESH_MIN_Y,
  77. mesh_x_max = UBL_MESH_MAX_X,
  78. mesh_y_max = UBL_MESH_MAX_Y,
  79. mesh_x_dist = MESH_X_DIST,
  80. mesh_y_dist = MESH_Y_DIST;
  81. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  82. float g29_correction_fade_height = 10.0,
  83. g29_fade_height_multiplier = 1.0 / 10.0; // It's cheaper to do a floating point multiply than divide,
  84. // so keep this value and its reciprocal.
  85. #else
  86. const float g29_correction_fade_height = 10.0,
  87. g29_fade_height_multiplier = 1.0 / 10.0;
  88. #endif
  89. // If you change this struct, adjust TOTAL_STRUCT_SIZE
  90. #define TOTAL_STRUCT_SIZE 40 // Total size of the above fields
  91. // padding provides space to add state variables without
  92. // changing the location of data structures in the EEPROM.
  93. // This is for compatibility with future versions to keep
  94. // users from having to regenerate their mesh data.
  95. unsigned char padding[64 - TOTAL_STRUCT_SIZE];
  96. } ubl_state;
  97. class unified_bed_leveling {
  98. private:
  99. static float last_specified_z,
  100. fade_scaling_factor_for_current_height;
  101. public:
  102. static ubl_state state, pre_initialized;
  103. static float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS],
  104. mesh_index_to_xpos[UBL_MESH_NUM_X_POINTS + 1], // +1 safety margin for now, until determinism prevails
  105. mesh_index_to_ypos[UBL_MESH_NUM_Y_POINTS + 1];
  106. static bool g26_debug_flag,
  107. has_control_of_lcd_panel;
  108. static int8_t eeprom_start;
  109. static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
  110. unified_bed_leveling();
  111. static void display_map(const int);
  112. static void reset();
  113. static void invalidate();
  114. static void store_state();
  115. static void load_state();
  116. static void store_mesh(const int16_t);
  117. static void load_mesh(const int16_t);
  118. static bool sanity_check();
  119. static FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
  120. static int8_t get_cell_index_x(const float &x) {
  121. const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
  122. return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1); // -1 is appropriate if we want all movement to the X_MAX
  123. } // position. But with this defined this way, it is possible
  124. // to extrapolate off of this point even further out. Probably
  125. // that is OK because something else should be keeping that from
  126. // happening and should not be worried about at this level.
  127. static int8_t get_cell_index_y(const float &y) {
  128. const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
  129. return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1); // -1 is appropriate if we want all movement to the Y_MAX
  130. } // position. But with this defined this way, it is possible
  131. // to extrapolate off of this point even further out. Probably
  132. // that is OK because something else should be keeping that from
  133. // happening and should not be worried about at this level.
  134. static int8_t find_closest_x_index(const float &x) {
  135. const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
  136. return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1;
  137. }
  138. static int8_t find_closest_y_index(const float &y) {
  139. const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
  140. return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1;
  141. }
  142. /**
  143. * z2 --|
  144. * z0 | |
  145. * | | + (z2-z1)
  146. * z1 | | |
  147. * ---+-------------+--------+-- --|
  148. * a1 a0 a2
  149. * |<---delta_a---------->|
  150. *
  151. * calc_z0 is the basis for all the Mesh Based correction. It is used to
  152. * find the expected Z Height at a position between two known Z-Height locations.
  153. *
  154. * It is fairly expensive with its 4 floating point additions and 2 floating point
  155. * multiplications.
  156. */
  157. static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
  158. const float delta_z = (z2 - z1),
  159. delta_a = (a0 - a1) / (a2 - a1);
  160. return z1 + delta_a * delta_z;
  161. }
  162. /**
  163. * get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes
  164. * three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory
  165. * we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling
  166. * the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have
  167. * the X index of the x0 intersection available and we don't want to perform any extra floating
  168. * point operations.
  169. */
  170. static inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(const float &x0, const int x1_i, const int yi) {
  171. if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) {
  172. SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0);
  173. SERIAL_ECHOPAIR(",x1_i=", x1_i);
  174. SERIAL_ECHOPAIR(",yi=", yi);
  175. SERIAL_CHAR(')');
  176. SERIAL_EOL;
  177. return NAN;
  178. }
  179. const float xratio = (RAW_X_POSITION(x0) - mesh_index_to_xpos[x1_i]) * (1.0 / (MESH_X_DIST)),
  180. z1 = z_values[x1_i][yi],
  181. z2 = z_values[x1_i + 1][yi],
  182. dz = (z2 - z1);
  183. return z1 + xratio * dz;
  184. }
  185. //
  186. // See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X
  187. //
  188. static inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(const float &y0, const int xi, const int y1_i) {
  189. if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) {
  190. SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0);
  191. SERIAL_ECHOPAIR(", x1_i=", xi);
  192. SERIAL_ECHOPAIR(", yi=", y1_i);
  193. SERIAL_CHAR(')');
  194. SERIAL_EOL;
  195. return NAN;
  196. }
  197. const float yratio = (RAW_Y_POSITION(y0) - mesh_index_to_ypos[y1_i]) * (1.0 / (MESH_Y_DIST)),
  198. z1 = z_values[xi][y1_i],
  199. z2 = z_values[xi][y1_i + 1],
  200. dz = (z2 - z1);
  201. return z1 + yratio * dz;
  202. }
  203. /**
  204. * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
  205. * does a linear interpolation along both of the bounding X-Mesh-Lines to find the
  206. * Z-Height at both ends. Then it does a linear interpolation of these heights based
  207. * on the Y position within the cell.
  208. */
  209. static float get_z_correction(const float &x0, const float &y0) {
  210. const int8_t cx = get_cell_index_x(RAW_X_POSITION(x0)),
  211. cy = get_cell_index_y(RAW_Y_POSITION(y0));
  212. if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) {
  213. SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0);
  214. SERIAL_ECHOPAIR(", y0=", y0);
  215. SERIAL_CHAR(')');
  216. SERIAL_EOL;
  217. #if ENABLED(ULTRA_LCD)
  218. strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
  219. lcd_quick_feedback();
  220. #endif
  221. return 0.0; // this used to return state.z_offset
  222. }
  223. const float z1 = calc_z0(RAW_X_POSITION(x0),
  224. mesh_index_to_xpos[cx], z_values[cx][cy],
  225. mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy]),
  226. z2 = calc_z0(RAW_X_POSITION(x0),
  227. mesh_index_to_xpos[cx], z_values[cx][cy + 1],
  228. mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy + 1]);
  229. float z0 = calc_z0(RAW_Y_POSITION(y0),
  230. mesh_index_to_ypos[cy], z1,
  231. mesh_index_to_ypos[cy + 1], z2);
  232. #if ENABLED(DEBUG_LEVELING_FEATURE)
  233. if (DEBUGGING(MESH_ADJUST)) {
  234. SERIAL_ECHOPAIR(" raw get_z_correction(", x0);
  235. SERIAL_CHAR(',')
  236. SERIAL_ECHO(y0);
  237. SERIAL_ECHOPGM(") = ");
  238. SERIAL_ECHO_F(z0, 6);
  239. }
  240. #endif
  241. #if ENABLED(DEBUG_LEVELING_FEATURE)
  242. if (DEBUGGING(MESH_ADJUST)) {
  243. SERIAL_ECHOPGM(" >>>---> ");
  244. SERIAL_ECHO_F(z0, 6);
  245. SERIAL_EOL;
  246. }
  247. #endif
  248. if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
  249. z0 = 0.0; // in ubl.z_values[][] and propagate through the
  250. // calculations. If our correction is NAN, we throw it out
  251. // because part of the Mesh is undefined and we don't have the
  252. // information we need to complete the height correction.
  253. #if ENABLED(DEBUG_LEVELING_FEATURE)
  254. if (DEBUGGING(MESH_ADJUST)) {
  255. SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", x0);
  256. SERIAL_CHAR(',');
  257. SERIAL_ECHO(y0);
  258. SERIAL_CHAR(')');
  259. SERIAL_EOL;
  260. }
  261. #endif
  262. }
  263. return z0; // there used to be a +state.z_offset on this line
  264. }
  265. /**
  266. * This routine is used to scale the Z correction depending upon the current nozzle height. It is
  267. * optimized for speed. It avoids floating point operations by checking if the requested scaling
  268. * factor is going to be the same as the last time the function calculated a value. If so, it just
  269. * returns it.
  270. *
  271. * It returns a scaling factor of 1.0 if UBL is inactive.
  272. * It returns a scaling factor of 0.0 if Z is past the specified 'Fade Height'
  273. */
  274. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  275. FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) {
  276. const float rz = RAW_Z_POSITION(lz);
  277. if (last_specified_z != rz) {
  278. last_specified_z = rz;
  279. fade_scaling_factor_for_current_height =
  280. state.active && rz < state.g29_correction_fade_height
  281. ? 1.0 - (rz * state.g29_fade_height_multiplier)
  282. : 0.0;
  283. }
  284. return fade_scaling_factor_for_current_height;
  285. }
  286. #else
  287. static constexpr float fade_scaling_factor_for_z(const float &lz) { UNUSED(lz); return 1.0; }
  288. #endif
  289. }; // class unified_bed_leveling
  290. extern unified_bed_leveling ubl;
  291. #define UBL_LAST_EEPROM_INDEX (E2END - sizeof(unified_bed_leveling::state))
  292. #endif // AUTO_BED_LEVELING_UBL
  293. #endif // UNIFIED_BED_LEVELING_H