My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 195KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define HAS_LCD_BUZZ (defined(ULTRALCD) || (defined(BEEPER) && BEEPER >= 0) || defined(LCD_USE_I2C_BUZZER))
  31. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  32. #ifdef MESH_BED_LEVELING
  33. #include "mesh_bed_leveling.h"
  34. #endif
  35. #include "ultralcd.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "configuration_store.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #ifdef BLINKM
  47. #include "blinkm.h"
  48. #include "Wire.h"
  49. #endif
  50. #if NUM_SERVOS > 0
  51. #include "servo.h"
  52. #endif
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. /**
  57. * Look here for descriptions of G-codes:
  58. * - http://linuxcnc.org/handbook/gcode/g-code.html
  59. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  60. *
  61. * Help us document these G-codes online:
  62. * - http://reprap.org/wiki/G-code
  63. * - https://github.com/MarlinFirmware/Marlin/wiki/Marlin-G-Code
  64. */
  65. /**
  66. * Implemented Codes
  67. * -------------------
  68. *
  69. * "G" Codes
  70. *
  71. * G0 -> G1
  72. * G1 - Coordinated Movement X Y Z E
  73. * G2 - CW ARC
  74. * G3 - CCW ARC
  75. * G4 - Dwell S<seconds> or P<milliseconds>
  76. * G10 - retract filament according to settings of M207
  77. * G11 - retract recover filament according to settings of M208
  78. * G28 - Home one or more axes
  79. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  80. * G30 - Single Z Probe, probes bed at current XY location.
  81. * G31 - Dock sled (Z_PROBE_SLED only)
  82. * G32 - Undock sled (Z_PROBE_SLED only)
  83. * G90 - Use Absolute Coordinates
  84. * G91 - Use Relative Coordinates
  85. * G92 - Set current position to coordinates given
  86. *
  87. * "M" Codes
  88. *
  89. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  90. * M1 - Same as M0
  91. * M17 - Enable/Power all stepper motors
  92. * M18 - Disable all stepper motors; same as M84
  93. * M20 - List SD card
  94. * M21 - Init SD card
  95. * M22 - Release SD card
  96. * M23 - Select SD file (M23 filename.g)
  97. * M24 - Start/resume SD print
  98. * M25 - Pause SD print
  99. * M26 - Set SD position in bytes (M26 S12345)
  100. * M27 - Report SD print status
  101. * M28 - Start SD write (M28 filename.g)
  102. * M29 - Stop SD write
  103. * M30 - Delete file from SD (M30 filename.g)
  104. * M31 - Output time since last M109 or SD card start to serial
  105. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  106. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  107. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  108. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  109. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  110. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  111. * M80 - Turn on Power Supply
  112. * M81 - Turn off Power Supply
  113. * M82 - Set E codes absolute (default)
  114. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  115. * M84 - Disable steppers until next move,
  116. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  117. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  118. * M92 - Set axis_steps_per_unit - same syntax as G92
  119. * M104 - Set extruder target temp
  120. * M105 - Read current temp
  121. * M106 - Fan on
  122. * M107 - Fan off
  123. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  124. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  125. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  126. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  127. * M112 - Emergency stop
  128. * M114 - Output current position to serial port
  129. * M115 - Capabilities string
  130. * M117 - display message
  131. * M119 - Output Endstop status to serial port
  132. * M120 - Enable endstop detection
  133. * M121 - Disable endstop detection
  134. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  135. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  136. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  138. * M140 - Set bed target temp
  139. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  140. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  141. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  142. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  143. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  144. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  145. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  146. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  147. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  148. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  149. * M206 - Set additional homing offset
  150. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  151. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  152. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  153. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  154. * M220 - Set speed factor override percentage: S<factor in percent>
  155. * M221 - Set extrude factor override percentage: S<factor in percent>
  156. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  157. * M240 - Trigger a camera to take a photograph
  158. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  159. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  160. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  161. * M301 - Set PID parameters P I and D
  162. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  163. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  164. * M304 - Set bed PID parameters P I and D
  165. * M380 - Activate solenoid on active extruder
  166. * M381 - Disable all solenoids
  167. * M400 - Finish all moves
  168. * M401 - Lower z-probe if present
  169. * M402 - Raise z-probe if present
  170. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  171. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  172. * M406 - Turn off Filament Sensor extrusion control
  173. * M407 - Display measured filament diameter
  174. * M410 - Quickstop. Abort all the planned moves
  175. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  176. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  177. * M428 - Set the home_offset logically based on the current_position
  178. * M500 - Store parameters in EEPROM
  179. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  180. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  181. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  182. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  183. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  184. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  185. * M666 - Set delta endstop adjustment
  186. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  187. * M907 - Set digital trimpot motor current using axis codes.
  188. * M908 - Control digital trimpot directly.
  189. * M350 - Set microstepping mode.
  190. * M351 - Toggle MS1 MS2 pins directly.
  191. *
  192. * ************ SCARA Specific - This can change to suit future G-code regulations
  193. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  194. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  195. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  196. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  197. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  198. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  199. * ************* SCARA End ***************
  200. *
  201. * M928 - Start SD logging (M928 filename.g) - ended by M29
  202. * M999 - Restart after being stopped by error
  203. */
  204. #ifdef SDSUPPORT
  205. CardReader card;
  206. #endif
  207. bool Running = true;
  208. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  209. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  210. float current_position[NUM_AXIS] = { 0.0 };
  211. static float destination[NUM_AXIS] = { 0.0 };
  212. bool axis_known_position[3] = { false };
  213. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  214. static int cmd_queue_index_r = 0;
  215. static int cmd_queue_index_w = 0;
  216. static int commands_in_queue = 0;
  217. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  218. float homing_feedrate[] = HOMING_FEEDRATE;
  219. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  220. int feedrate_multiplier = 100; //100->1 200->2
  221. int saved_feedrate_multiplier;
  222. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  223. bool volumetric_enabled = false;
  224. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  225. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  226. float home_offset[3] = { 0 };
  227. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  228. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  229. uint8_t active_extruder = 0;
  230. int fanSpeed = 0;
  231. bool cancel_heatup = false;
  232. const char errormagic[] PROGMEM = "Error:";
  233. const char echomagic[] PROGMEM = "echo:";
  234. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  235. static float offset[3] = { 0 };
  236. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  237. static char serial_char;
  238. static int serial_count = 0;
  239. static boolean comment_mode = false;
  240. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  241. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  242. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  243. // Inactivity shutdown
  244. millis_t previous_cmd_ms = 0;
  245. static millis_t max_inactive_time = 0;
  246. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  247. millis_t print_job_start_ms = 0; ///< Print job start time
  248. millis_t print_job_stop_ms = 0; ///< Print job stop time
  249. static uint8_t target_extruder;
  250. bool no_wait_for_cooling = true;
  251. bool target_direction;
  252. #ifdef ENABLE_AUTO_BED_LEVELING
  253. int xy_travel_speed = XY_TRAVEL_SPEED;
  254. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  255. #endif
  256. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  257. float z_endstop_adj = 0;
  258. #endif
  259. // Extruder offsets
  260. #if EXTRUDERS > 1
  261. #ifndef EXTRUDER_OFFSET_X
  262. #define EXTRUDER_OFFSET_X { 0 }
  263. #endif
  264. #ifndef EXTRUDER_OFFSET_Y
  265. #define EXTRUDER_OFFSET_Y { 0 }
  266. #endif
  267. float extruder_offset[][EXTRUDERS] = {
  268. EXTRUDER_OFFSET_X,
  269. EXTRUDER_OFFSET_Y
  270. #ifdef DUAL_X_CARRIAGE
  271. , { 0 } // supports offsets in XYZ plane
  272. #endif
  273. };
  274. #endif
  275. #ifdef SERVO_ENDSTOPS
  276. int servo_endstops[] = SERVO_ENDSTOPS;
  277. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  278. #endif
  279. #ifdef BARICUDA
  280. int ValvePressure = 0;
  281. int EtoPPressure = 0;
  282. #endif
  283. #ifdef FWRETRACT
  284. bool autoretract_enabled = false;
  285. bool retracted[EXTRUDERS] = { false };
  286. bool retracted_swap[EXTRUDERS] = { false };
  287. float retract_length = RETRACT_LENGTH;
  288. float retract_length_swap = RETRACT_LENGTH_SWAP;
  289. float retract_feedrate = RETRACT_FEEDRATE;
  290. float retract_zlift = RETRACT_ZLIFT;
  291. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  292. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  293. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  294. #endif // FWRETRACT
  295. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  296. bool powersupply =
  297. #ifdef PS_DEFAULT_OFF
  298. false
  299. #else
  300. true
  301. #endif
  302. ;
  303. #endif
  304. #ifdef DELTA
  305. float delta[3] = { 0 };
  306. #define SIN_60 0.8660254037844386
  307. #define COS_60 0.5
  308. float endstop_adj[3] = { 0 };
  309. // these are the default values, can be overriden with M665
  310. float delta_radius = DELTA_RADIUS;
  311. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  312. float delta_tower1_y = -COS_60 * delta_radius;
  313. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  314. float delta_tower2_y = -COS_60 * delta_radius;
  315. float delta_tower3_x = 0; // back middle tower
  316. float delta_tower3_y = delta_radius;
  317. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  318. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  319. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  320. #ifdef ENABLE_AUTO_BED_LEVELING
  321. int delta_grid_spacing[2] = { 0, 0 };
  322. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  323. #endif
  324. #else
  325. static bool home_all_axis = true;
  326. #endif
  327. #ifdef SCARA
  328. static float delta[3] = { 0 };
  329. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  330. #endif
  331. #ifdef FILAMENT_SENSOR
  332. //Variables for Filament Sensor input
  333. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  334. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  335. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  336. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  337. int delay_index1 = 0; //index into ring buffer
  338. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  339. float delay_dist = 0; //delay distance counter
  340. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  341. #endif
  342. #ifdef FILAMENT_RUNOUT_SENSOR
  343. static bool filrunoutEnqueued = false;
  344. #endif
  345. #ifdef SDSUPPORT
  346. static bool fromsd[BUFSIZE];
  347. #endif
  348. #if NUM_SERVOS > 0
  349. Servo servo[NUM_SERVOS];
  350. #endif
  351. #ifdef CHDK
  352. unsigned long chdkHigh = 0;
  353. boolean chdkActive = false;
  354. #endif
  355. //===========================================================================
  356. //================================ Functions ================================
  357. //===========================================================================
  358. void get_arc_coordinates();
  359. bool setTargetedHotend(int code);
  360. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  361. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  362. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  363. #ifdef PREVENT_DANGEROUS_EXTRUDE
  364. float extrude_min_temp = EXTRUDE_MINTEMP;
  365. #endif
  366. #ifdef SDSUPPORT
  367. #include "SdFatUtil.h"
  368. int freeMemory() { return SdFatUtil::FreeRam(); }
  369. #else
  370. extern "C" {
  371. extern unsigned int __bss_end;
  372. extern unsigned int __heap_start;
  373. extern void *__brkval;
  374. int freeMemory() {
  375. int free_memory;
  376. if ((int)__brkval == 0)
  377. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  378. else
  379. free_memory = ((int)&free_memory) - ((int)__brkval);
  380. return free_memory;
  381. }
  382. }
  383. #endif //!SDSUPPORT
  384. /**
  385. * Inject the next command from the command queue, when possible
  386. * Return false only if no command was pending
  387. */
  388. static bool drain_queued_commands_P() {
  389. if (!queued_commands_P) return false;
  390. // Get the next 30 chars from the sequence of gcodes to run
  391. char cmd[30];
  392. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  393. cmd[sizeof(cmd) - 1] = '\0';
  394. // Look for the end of line, or the end of sequence
  395. size_t i = 0;
  396. char c;
  397. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  398. cmd[i] = '\0';
  399. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  400. if (c)
  401. queued_commands_P += i + 1; // move to next command
  402. else
  403. queued_commands_P = NULL; // will have no more commands in the sequence
  404. }
  405. return true;
  406. }
  407. /**
  408. * Record one or many commands to run from program memory.
  409. * Aborts the current queue, if any.
  410. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  411. */
  412. void enqueuecommands_P(const char* pgcode) {
  413. queued_commands_P = pgcode;
  414. drain_queued_commands_P(); // first command executed asap (when possible)
  415. }
  416. /**
  417. * Copy a command directly into the main command buffer, from RAM.
  418. *
  419. * This is done in a non-safe way and needs a rework someday.
  420. * Returns false if it doesn't add any command
  421. */
  422. bool enqueuecommand(const char *cmd) {
  423. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  424. // This is dangerous if a mixing of serial and this happens
  425. char *command = command_queue[cmd_queue_index_w];
  426. strcpy(command, cmd);
  427. SERIAL_ECHO_START;
  428. SERIAL_ECHOPGM(MSG_Enqueueing);
  429. SERIAL_ECHO(command);
  430. SERIAL_ECHOLNPGM("\"");
  431. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  432. commands_in_queue++;
  433. return true;
  434. }
  435. void setup_killpin() {
  436. #if HAS_KILL
  437. SET_INPUT(KILL_PIN);
  438. WRITE(KILL_PIN, HIGH);
  439. #endif
  440. }
  441. void setup_filrunoutpin() {
  442. #if HAS_FILRUNOUT
  443. pinMode(FILRUNOUT_PIN, INPUT);
  444. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  445. WRITE(FILRUNOUT_PIN, HIGH);
  446. #endif
  447. #endif
  448. }
  449. // Set home pin
  450. void setup_homepin(void) {
  451. #if HAS_HOME
  452. SET_INPUT(HOME_PIN);
  453. WRITE(HOME_PIN, HIGH);
  454. #endif
  455. }
  456. void setup_photpin() {
  457. #if HAS_PHOTOGRAPH
  458. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  459. #endif
  460. }
  461. void setup_powerhold() {
  462. #if HAS_SUICIDE
  463. OUT_WRITE(SUICIDE_PIN, HIGH);
  464. #endif
  465. #if HAS_POWER_SWITCH
  466. #ifdef PS_DEFAULT_OFF
  467. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  468. #else
  469. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  470. #endif
  471. #endif
  472. }
  473. void suicide() {
  474. #if HAS_SUICIDE
  475. OUT_WRITE(SUICIDE_PIN, LOW);
  476. #endif
  477. }
  478. void servo_init() {
  479. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  480. servo[0].attach(SERVO0_PIN);
  481. #endif
  482. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  483. servo[1].attach(SERVO1_PIN);
  484. #endif
  485. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  486. servo[2].attach(SERVO2_PIN);
  487. #endif
  488. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  489. servo[3].attach(SERVO3_PIN);
  490. #endif
  491. // Set position of Servo Endstops that are defined
  492. #ifdef SERVO_ENDSTOPS
  493. for (int i = 0; i < 3; i++)
  494. if (servo_endstops[i] >= 0)
  495. servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  496. #endif
  497. #if SERVO_LEVELING
  498. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  499. servo[servo_endstops[Z_AXIS]].detach();
  500. #endif
  501. }
  502. /**
  503. * Marlin entry-point: Set up before the program loop
  504. * - Set up the kill pin, filament runout, power hold
  505. * - Start the serial port
  506. * - Print startup messages and diagnostics
  507. * - Get EEPROM or default settings
  508. * - Initialize managers for:
  509. * • temperature
  510. * • planner
  511. * • watchdog
  512. * • stepper
  513. * • photo pin
  514. * • servos
  515. * • LCD controller
  516. * • Digipot I2C
  517. * • Z probe sled
  518. * • status LEDs
  519. */
  520. void setup() {
  521. setup_killpin();
  522. setup_filrunoutpin();
  523. setup_powerhold();
  524. MYSERIAL.begin(BAUDRATE);
  525. SERIAL_PROTOCOLLNPGM("start");
  526. SERIAL_ECHO_START;
  527. // Check startup - does nothing if bootloader sets MCUSR to 0
  528. byte mcu = MCUSR;
  529. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  530. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  531. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  532. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  533. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  534. MCUSR = 0;
  535. SERIAL_ECHOPGM(MSG_MARLIN);
  536. SERIAL_ECHOLNPGM(" " STRING_VERSION);
  537. #ifdef STRING_VERSION_CONFIG_H
  538. #ifdef STRING_CONFIG_H_AUTHOR
  539. SERIAL_ECHO_START;
  540. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  541. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  542. SERIAL_ECHOPGM(MSG_AUTHOR);
  543. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  544. SERIAL_ECHOPGM("Compiled: ");
  545. SERIAL_ECHOLNPGM(__DATE__);
  546. #endif // STRING_CONFIG_H_AUTHOR
  547. #endif // STRING_VERSION_CONFIG_H
  548. SERIAL_ECHO_START;
  549. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  550. SERIAL_ECHO(freeMemory());
  551. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  552. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  553. #ifdef SDSUPPORT
  554. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  555. #endif
  556. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  557. Config_RetrieveSettings();
  558. tp_init(); // Initialize temperature loop
  559. plan_init(); // Initialize planner;
  560. watchdog_init();
  561. st_init(); // Initialize stepper, this enables interrupts!
  562. setup_photpin();
  563. servo_init();
  564. lcd_init();
  565. _delay_ms(1000); // wait 1sec to display the splash screen
  566. #if HAS_CONTROLLERFAN
  567. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  568. #endif
  569. #ifdef DIGIPOT_I2C
  570. digipot_i2c_init();
  571. #endif
  572. #ifdef Z_PROBE_SLED
  573. pinMode(SERVO0_PIN, OUTPUT);
  574. digitalWrite(SERVO0_PIN, LOW); // turn it off
  575. #endif // Z_PROBE_SLED
  576. setup_homepin();
  577. #ifdef STAT_LED_RED
  578. pinMode(STAT_LED_RED, OUTPUT);
  579. digitalWrite(STAT_LED_RED, LOW); // turn it off
  580. #endif
  581. #ifdef STAT_LED_BLUE
  582. pinMode(STAT_LED_BLUE, OUTPUT);
  583. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  584. #endif
  585. }
  586. /**
  587. * The main Marlin program loop
  588. *
  589. * - Save or log commands to SD
  590. * - Process available commands (if not saving)
  591. * - Call heater manager
  592. * - Call inactivity manager
  593. * - Call endstop manager
  594. * - Call LCD update
  595. */
  596. void loop() {
  597. if (commands_in_queue < BUFSIZE - 1) get_command();
  598. #ifdef SDSUPPORT
  599. card.checkautostart(false);
  600. #endif
  601. if (commands_in_queue) {
  602. #ifdef SDSUPPORT
  603. if (card.saving) {
  604. char *command = command_queue[cmd_queue_index_r];
  605. if (strstr_P(command, PSTR("M29"))) {
  606. // M29 closes the file
  607. card.closefile();
  608. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  609. }
  610. else {
  611. // Write the string from the read buffer to SD
  612. card.write_command(command);
  613. if (card.logging)
  614. process_commands(); // The card is saving because it's logging
  615. else
  616. SERIAL_PROTOCOLLNPGM(MSG_OK);
  617. }
  618. }
  619. else
  620. process_commands();
  621. #else
  622. process_commands();
  623. #endif // SDSUPPORT
  624. commands_in_queue--;
  625. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  626. }
  627. // Check heater every n milliseconds
  628. manage_heater();
  629. manage_inactivity();
  630. checkHitEndstops();
  631. lcd_update();
  632. }
  633. /**
  634. * Add to the circular command queue the next command from:
  635. * - The command-injection queue (queued_commands_P)
  636. * - The active serial input (usually USB)
  637. * - The SD card file being actively printed
  638. */
  639. void get_command() {
  640. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  641. while (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  642. serial_char = MYSERIAL.read();
  643. if (serial_char == '\n' || serial_char == '\r' ||
  644. serial_count >= (MAX_CMD_SIZE - 1)
  645. ) {
  646. // end of line == end of comment
  647. comment_mode = false;
  648. if (!serial_count) return; // shortcut for empty lines
  649. char *command = command_queue[cmd_queue_index_w];
  650. command[serial_count] = 0; // terminate string
  651. #ifdef SDSUPPORT
  652. fromsd[cmd_queue_index_w] = false;
  653. #endif
  654. if (strchr(command, 'N') != NULL) {
  655. strchr_pointer = strchr(command, 'N');
  656. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  657. if (gcode_N != gcode_LastN + 1 && strstr_P(command, PSTR("M110")) == NULL) {
  658. SERIAL_ERROR_START;
  659. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  660. SERIAL_ERRORLN(gcode_LastN);
  661. //Serial.println(gcode_N);
  662. FlushSerialRequestResend();
  663. serial_count = 0;
  664. return;
  665. }
  666. if (strchr(command, '*') != NULL) {
  667. byte checksum = 0;
  668. byte count = 0;
  669. while (command[count] != '*') checksum ^= command[count++];
  670. strchr_pointer = strchr(command, '*');
  671. if (strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  672. SERIAL_ERROR_START;
  673. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  674. SERIAL_ERRORLN(gcode_LastN);
  675. FlushSerialRequestResend();
  676. serial_count = 0;
  677. return;
  678. }
  679. //if no errors, continue parsing
  680. }
  681. else {
  682. SERIAL_ERROR_START;
  683. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  684. SERIAL_ERRORLN(gcode_LastN);
  685. FlushSerialRequestResend();
  686. serial_count = 0;
  687. return;
  688. }
  689. gcode_LastN = gcode_N;
  690. //if no errors, continue parsing
  691. }
  692. else { // if we don't receive 'N' but still see '*'
  693. if ((strchr(command, '*') != NULL)) {
  694. SERIAL_ERROR_START;
  695. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  696. SERIAL_ERRORLN(gcode_LastN);
  697. serial_count = 0;
  698. return;
  699. }
  700. }
  701. if (strchr(command, 'G') != NULL) {
  702. strchr_pointer = strchr(command, 'G');
  703. switch (strtol(strchr_pointer + 1, NULL, 10)) {
  704. case 0:
  705. case 1:
  706. case 2:
  707. case 3:
  708. if (IsStopped()) {
  709. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  710. LCD_MESSAGEPGM(MSG_STOPPED);
  711. }
  712. break;
  713. default:
  714. break;
  715. }
  716. }
  717. // If command was e-stop process now
  718. if (strcmp(command, "M112") == 0) kill();
  719. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  720. commands_in_queue += 1;
  721. serial_count = 0; //clear buffer
  722. }
  723. else if (serial_char == '\\') { // Handle escapes
  724. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  725. // if we have one more character, copy it over
  726. serial_char = MYSERIAL.read();
  727. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  728. }
  729. // otherwise do nothing
  730. }
  731. else { // its not a newline, carriage return or escape char
  732. if (serial_char == ';') comment_mode = true;
  733. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  734. }
  735. }
  736. #ifdef SDSUPPORT
  737. if (!card.sdprinting || serial_count) return;
  738. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  739. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  740. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  741. static bool stop_buffering = false;
  742. if (commands_in_queue == 0) stop_buffering = false;
  743. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  744. int16_t n = card.get();
  745. serial_char = (char)n;
  746. if (serial_char == '\n' || serial_char == '\r' ||
  747. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  748. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  749. ) {
  750. if (card.eof()) {
  751. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  752. print_job_stop_ms = millis();
  753. char time[30];
  754. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  755. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  756. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  757. SERIAL_ECHO_START;
  758. SERIAL_ECHOLN(time);
  759. lcd_setstatus(time, true);
  760. card.printingHasFinished();
  761. card.checkautostart(true);
  762. }
  763. if (serial_char == '#') stop_buffering = true;
  764. if (!serial_count) {
  765. comment_mode = false; //for new command
  766. return; //if empty line
  767. }
  768. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  769. // if (!comment_mode) {
  770. fromsd[cmd_queue_index_w] = true;
  771. commands_in_queue += 1;
  772. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  773. // }
  774. comment_mode = false; //for new command
  775. serial_count = 0; //clear buffer
  776. }
  777. else {
  778. if (serial_char == ';') comment_mode = true;
  779. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  780. }
  781. }
  782. #endif // SDSUPPORT
  783. }
  784. bool code_has_value() {
  785. int i = 1;
  786. char c = strchr_pointer[i];
  787. if (c == '-' || c == '+') c = strchr_pointer[++i];
  788. if (c == '.') c = strchr_pointer[++i];
  789. return (c >= '0' && c <= '9');
  790. }
  791. float code_value() {
  792. float ret;
  793. char *e = strchr(strchr_pointer, 'E');
  794. if (e) {
  795. *e = 0;
  796. ret = strtod(strchr_pointer+1, NULL);
  797. *e = 'E';
  798. }
  799. else
  800. ret = strtod(strchr_pointer+1, NULL);
  801. return ret;
  802. }
  803. long code_value_long() { return strtol(strchr_pointer + 1, NULL, 10); }
  804. int16_t code_value_short() { return (int16_t)strtol(strchr_pointer + 1, NULL, 10); }
  805. bool code_seen(char code) {
  806. strchr_pointer = strchr(command_queue[cmd_queue_index_r], code);
  807. return (strchr_pointer != NULL); //Return True if a character was found
  808. }
  809. #define DEFINE_PGM_READ_ANY(type, reader) \
  810. static inline type pgm_read_any(const type *p) \
  811. { return pgm_read_##reader##_near(p); }
  812. DEFINE_PGM_READ_ANY(float, float);
  813. DEFINE_PGM_READ_ANY(signed char, byte);
  814. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  815. static const PROGMEM type array##_P[3] = \
  816. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  817. static inline type array(int axis) \
  818. { return pgm_read_any(&array##_P[axis]); }
  819. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  820. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  821. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  822. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  823. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  824. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  825. #ifdef DUAL_X_CARRIAGE
  826. #define DXC_FULL_CONTROL_MODE 0
  827. #define DXC_AUTO_PARK_MODE 1
  828. #define DXC_DUPLICATION_MODE 2
  829. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  830. static float x_home_pos(int extruder) {
  831. if (extruder == 0)
  832. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  833. else
  834. // In dual carriage mode the extruder offset provides an override of the
  835. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  836. // This allow soft recalibration of the second extruder offset position without firmware reflash
  837. // (through the M218 command).
  838. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  839. }
  840. static int x_home_dir(int extruder) {
  841. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  842. }
  843. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  844. static bool active_extruder_parked = false; // used in mode 1 & 2
  845. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  846. static millis_t delayed_move_time = 0; // used in mode 1
  847. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  848. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  849. bool extruder_duplication_enabled = false; // used in mode 2
  850. #endif //DUAL_X_CARRIAGE
  851. static void axis_is_at_home(int axis) {
  852. #ifdef DUAL_X_CARRIAGE
  853. if (axis == X_AXIS) {
  854. if (active_extruder != 0) {
  855. current_position[X_AXIS] = x_home_pos(active_extruder);
  856. min_pos[X_AXIS] = X2_MIN_POS;
  857. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  858. return;
  859. }
  860. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  861. float xoff = home_offset[X_AXIS];
  862. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  863. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  864. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  865. return;
  866. }
  867. }
  868. #endif
  869. #ifdef SCARA
  870. if (axis == X_AXIS || axis == Y_AXIS) {
  871. float homeposition[3];
  872. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  873. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  874. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  875. // Works out real Homeposition angles using inverse kinematics,
  876. // and calculates homing offset using forward kinematics
  877. calculate_delta(homeposition);
  878. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  879. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  880. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  881. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  882. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  883. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  884. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  885. calculate_SCARA_forward_Transform(delta);
  886. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  887. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  888. current_position[axis] = delta[axis];
  889. // SCARA home positions are based on configuration since the actual limits are determined by the
  890. // inverse kinematic transform.
  891. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  892. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  893. }
  894. else
  895. #endif
  896. {
  897. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  898. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  899. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  900. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  901. if (axis == Z_AXIS) current_position[Z_AXIS] += zprobe_zoffset;
  902. #endif
  903. }
  904. }
  905. /**
  906. * Some planner shorthand inline functions
  907. */
  908. inline void set_homing_bump_feedrate(AxisEnum axis) {
  909. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  910. if (homing_bump_divisor[axis] >= 1)
  911. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  912. else {
  913. feedrate = homing_feedrate[axis] / 10;
  914. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  915. }
  916. }
  917. inline void line_to_current_position() {
  918. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  919. }
  920. inline void line_to_z(float zPosition) {
  921. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  922. }
  923. inline void line_to_destination(float mm_m) {
  924. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  925. }
  926. inline void line_to_destination() {
  927. line_to_destination(feedrate);
  928. }
  929. inline void sync_plan_position() {
  930. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  931. }
  932. #if defined(DELTA) || defined(SCARA)
  933. inline void sync_plan_position_delta() {
  934. calculate_delta(current_position);
  935. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  936. }
  937. #endif
  938. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  939. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  940. #ifdef ENABLE_AUTO_BED_LEVELING
  941. #ifdef DELTA
  942. /**
  943. * Calculate delta, start a line, and set current_position to destination
  944. */
  945. void prepare_move_raw() {
  946. refresh_cmd_timeout();
  947. calculate_delta(destination);
  948. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  949. set_current_to_destination();
  950. }
  951. #endif
  952. #ifdef AUTO_BED_LEVELING_GRID
  953. #ifndef DELTA
  954. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  955. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  956. planeNormal.debug("planeNormal");
  957. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  958. //bedLevel.debug("bedLevel");
  959. //plan_bed_level_matrix.debug("bed level before");
  960. //vector_3 uncorrected_position = plan_get_position_mm();
  961. //uncorrected_position.debug("position before");
  962. vector_3 corrected_position = plan_get_position();
  963. //corrected_position.debug("position after");
  964. current_position[X_AXIS] = corrected_position.x;
  965. current_position[Y_AXIS] = corrected_position.y;
  966. current_position[Z_AXIS] = corrected_position.z;
  967. sync_plan_position();
  968. }
  969. #endif // !DELTA
  970. #else // !AUTO_BED_LEVELING_GRID
  971. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  972. plan_bed_level_matrix.set_to_identity();
  973. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  974. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  975. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  976. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  977. if (planeNormal.z < 0) {
  978. planeNormal.x = -planeNormal.x;
  979. planeNormal.y = -planeNormal.y;
  980. planeNormal.z = -planeNormal.z;
  981. }
  982. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  983. vector_3 corrected_position = plan_get_position();
  984. current_position[X_AXIS] = corrected_position.x;
  985. current_position[Y_AXIS] = corrected_position.y;
  986. current_position[Z_AXIS] = corrected_position.z;
  987. sync_plan_position();
  988. }
  989. #endif // !AUTO_BED_LEVELING_GRID
  990. static void run_z_probe() {
  991. #ifdef DELTA
  992. float start_z = current_position[Z_AXIS];
  993. long start_steps = st_get_position(Z_AXIS);
  994. // move down slowly until you find the bed
  995. feedrate = homing_feedrate[Z_AXIS] / 4;
  996. destination[Z_AXIS] = -10;
  997. prepare_move_raw(); // this will also set_current_to_destination
  998. st_synchronize();
  999. endstops_hit_on_purpose(); // clear endstop hit flags
  1000. // we have to let the planner know where we are right now as it is not where we said to go.
  1001. long stop_steps = st_get_position(Z_AXIS);
  1002. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1003. current_position[Z_AXIS] = mm;
  1004. sync_plan_position_delta();
  1005. #else // !DELTA
  1006. plan_bed_level_matrix.set_to_identity();
  1007. feedrate = homing_feedrate[Z_AXIS];
  1008. // move down until you find the bed
  1009. float zPosition = -10;
  1010. line_to_z(zPosition);
  1011. st_synchronize();
  1012. // we have to let the planner know where we are right now as it is not where we said to go.
  1013. zPosition = st_get_position_mm(Z_AXIS);
  1014. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1015. // move up the retract distance
  1016. zPosition += home_bump_mm(Z_AXIS);
  1017. line_to_z(zPosition);
  1018. st_synchronize();
  1019. endstops_hit_on_purpose(); // clear endstop hit flags
  1020. // move back down slowly to find bed
  1021. set_homing_bump_feedrate(Z_AXIS);
  1022. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1023. line_to_z(zPosition);
  1024. st_synchronize();
  1025. endstops_hit_on_purpose(); // clear endstop hit flags
  1026. // Get the current stepper position after bumping an endstop
  1027. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1028. sync_plan_position();
  1029. #endif // !DELTA
  1030. }
  1031. /**
  1032. * Plan a move to (X, Y, Z) and set the current_position
  1033. * The final current_position may not be the one that was requested
  1034. */
  1035. static void do_blocking_move_to(float x, float y, float z) {
  1036. float oldFeedRate = feedrate;
  1037. #ifdef DELTA
  1038. feedrate = XY_TRAVEL_SPEED;
  1039. destination[X_AXIS] = x;
  1040. destination[Y_AXIS] = y;
  1041. destination[Z_AXIS] = z;
  1042. prepare_move_raw(); // this will also set_current_to_destination
  1043. st_synchronize();
  1044. #else
  1045. feedrate = homing_feedrate[Z_AXIS];
  1046. current_position[Z_AXIS] = z;
  1047. line_to_current_position();
  1048. st_synchronize();
  1049. feedrate = xy_travel_speed;
  1050. current_position[X_AXIS] = x;
  1051. current_position[Y_AXIS] = y;
  1052. line_to_current_position();
  1053. st_synchronize();
  1054. #endif
  1055. feedrate = oldFeedRate;
  1056. }
  1057. static void setup_for_endstop_move() {
  1058. saved_feedrate = feedrate;
  1059. saved_feedrate_multiplier = feedrate_multiplier;
  1060. feedrate_multiplier = 100;
  1061. refresh_cmd_timeout();
  1062. enable_endstops(true);
  1063. }
  1064. static void clean_up_after_endstop_move() {
  1065. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1066. enable_endstops(false);
  1067. #endif
  1068. feedrate = saved_feedrate;
  1069. feedrate_multiplier = saved_feedrate_multiplier;
  1070. refresh_cmd_timeout();
  1071. }
  1072. static void deploy_z_probe() {
  1073. #ifdef SERVO_ENDSTOPS
  1074. // Engage Z Servo endstop if enabled
  1075. if (servo_endstops[Z_AXIS] >= 0) {
  1076. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1077. #if SERVO_LEVELING
  1078. srv->attach(0);
  1079. #endif
  1080. srv->write(servo_endstop_angles[Z_AXIS * 2]);
  1081. #if SERVO_LEVELING
  1082. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1083. srv->detach();
  1084. #endif
  1085. }
  1086. #elif defined(Z_PROBE_ALLEN_KEY)
  1087. feedrate = homing_feedrate[X_AXIS];
  1088. // Move to the start position to initiate deployment
  1089. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1090. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1091. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1092. prepare_move_raw(); // this will also set_current_to_destination
  1093. // Home X to touch the belt
  1094. feedrate = homing_feedrate[X_AXIS]/10;
  1095. destination[X_AXIS] = 0;
  1096. prepare_move_raw(); // this will also set_current_to_destination
  1097. // Home Y for safety
  1098. feedrate = homing_feedrate[X_AXIS]/2;
  1099. destination[Y_AXIS] = 0;
  1100. prepare_move_raw(); // this will also set_current_to_destination
  1101. st_synchronize();
  1102. #ifdef Z_PROBE_ENDSTOP
  1103. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1104. if (z_probe_endstop)
  1105. #else
  1106. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1107. if (z_min_endstop)
  1108. #endif
  1109. {
  1110. if (IsRunning()) {
  1111. SERIAL_ERROR_START;
  1112. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1113. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1114. }
  1115. Stop();
  1116. }
  1117. #endif // Z_PROBE_ALLEN_KEY
  1118. }
  1119. static void stow_z_probe(bool doRaise=true) {
  1120. #ifdef SERVO_ENDSTOPS
  1121. // Retract Z Servo endstop if enabled
  1122. if (servo_endstops[Z_AXIS] >= 0) {
  1123. #if Z_RAISE_AFTER_PROBING > 0
  1124. if (doRaise) {
  1125. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1126. st_synchronize();
  1127. }
  1128. #endif
  1129. // Change the Z servo angle
  1130. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1131. #if SERVO_LEVELING
  1132. srv->attach(0);
  1133. #endif
  1134. srv->write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1135. #if SERVO_LEVELING
  1136. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1137. srv->detach();
  1138. #endif
  1139. }
  1140. #elif defined(Z_PROBE_ALLEN_KEY)
  1141. // Move up for safety
  1142. feedrate = homing_feedrate[X_AXIS];
  1143. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1144. prepare_move_raw(); // this will also set_current_to_destination
  1145. // Move to the start position to initiate retraction
  1146. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1147. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1148. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1149. prepare_move_raw(); // this will also set_current_to_destination
  1150. // Move the nozzle down to push the probe into retracted position
  1151. feedrate = homing_feedrate[Z_AXIS]/10;
  1152. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1153. prepare_move_raw(); // this will also set_current_to_destination
  1154. // Move up for safety
  1155. feedrate = homing_feedrate[Z_AXIS]/2;
  1156. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1157. prepare_move_raw(); // this will also set_current_to_destination
  1158. // Home XY for safety
  1159. feedrate = homing_feedrate[X_AXIS]/2;
  1160. destination[X_AXIS] = 0;
  1161. destination[Y_AXIS] = 0;
  1162. prepare_move_raw(); // this will also set_current_to_destination
  1163. st_synchronize();
  1164. #ifdef Z_PROBE_ENDSTOP
  1165. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1166. if (!z_probe_endstop)
  1167. #else
  1168. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1169. if (!z_min_endstop)
  1170. #endif
  1171. {
  1172. if (IsRunning()) {
  1173. SERIAL_ERROR_START;
  1174. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1175. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1176. }
  1177. Stop();
  1178. }
  1179. #endif
  1180. }
  1181. enum ProbeAction {
  1182. ProbeStay = 0,
  1183. ProbeDeploy = BIT(0),
  1184. ProbeStow = BIT(1),
  1185. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1186. };
  1187. // Probe bed height at position (x,y), returns the measured z value
  1188. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) {
  1189. // move to right place
  1190. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1191. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1192. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1193. if (retract_action & ProbeDeploy) deploy_z_probe();
  1194. #endif
  1195. run_z_probe();
  1196. float measured_z = current_position[Z_AXIS];
  1197. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1198. if (retract_action == ProbeStay) {
  1199. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position
  1200. st_synchronize();
  1201. }
  1202. #endif
  1203. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1204. if (retract_action & ProbeStow) stow_z_probe();
  1205. #endif
  1206. if (verbose_level > 2) {
  1207. SERIAL_PROTOCOLPGM("Bed");
  1208. SERIAL_PROTOCOLPGM(" X: ");
  1209. SERIAL_PROTOCOL_F(x, 3);
  1210. SERIAL_PROTOCOLPGM(" Y: ");
  1211. SERIAL_PROTOCOL_F(y, 3);
  1212. SERIAL_PROTOCOLPGM(" Z: ");
  1213. SERIAL_PROTOCOL_F(measured_z, 3);
  1214. SERIAL_EOL;
  1215. }
  1216. return measured_z;
  1217. }
  1218. #ifdef DELTA
  1219. /**
  1220. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1221. */
  1222. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1223. if (bed_level[x][y] != 0.0) {
  1224. return; // Don't overwrite good values.
  1225. }
  1226. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1227. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1228. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1229. float median = c; // Median is robust (ignores outliers).
  1230. if (a < b) {
  1231. if (b < c) median = b;
  1232. if (c < a) median = a;
  1233. } else { // b <= a
  1234. if (c < b) median = b;
  1235. if (a < c) median = a;
  1236. }
  1237. bed_level[x][y] = median;
  1238. }
  1239. // Fill in the unprobed points (corners of circular print surface)
  1240. // using linear extrapolation, away from the center.
  1241. static void extrapolate_unprobed_bed_level() {
  1242. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1243. for (int y = 0; y <= half; y++) {
  1244. for (int x = 0; x <= half; x++) {
  1245. if (x + y < 3) continue;
  1246. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1247. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1248. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1249. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1250. }
  1251. }
  1252. }
  1253. // Print calibration results for plotting or manual frame adjustment.
  1254. static void print_bed_level() {
  1255. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1256. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1257. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1258. SERIAL_PROTOCOLCHAR(' ');
  1259. }
  1260. SERIAL_EOL;
  1261. }
  1262. }
  1263. // Reset calibration results to zero.
  1264. void reset_bed_level() {
  1265. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1266. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1267. bed_level[x][y] = 0.0;
  1268. }
  1269. }
  1270. }
  1271. #endif // DELTA
  1272. #endif // ENABLE_AUTO_BED_LEVELING
  1273. /**
  1274. * Home an individual axis
  1275. */
  1276. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1277. static void homeaxis(AxisEnum axis) {
  1278. #define HOMEAXIS_DO(LETTER) \
  1279. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1280. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1281. int axis_home_dir =
  1282. #ifdef DUAL_X_CARRIAGE
  1283. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1284. #endif
  1285. home_dir(axis);
  1286. // Set the axis position as setup for the move
  1287. current_position[axis] = 0;
  1288. sync_plan_position();
  1289. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1290. // Deploy a probe if there is one, and homing towards the bed
  1291. if (axis == Z_AXIS) {
  1292. if (axis_home_dir < 0) deploy_z_probe();
  1293. }
  1294. else
  1295. #endif
  1296. #ifdef SERVO_ENDSTOPS
  1297. {
  1298. // Engage Servo endstop if enabled
  1299. if (servo_endstops[axis] > -1)
  1300. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1301. }
  1302. #endif
  1303. // Set a flag for Z motor locking
  1304. #ifdef Z_DUAL_ENDSTOPS
  1305. if (axis == Z_AXIS) In_Homing_Process(true);
  1306. #endif
  1307. // Move towards the endstop until an endstop is triggered
  1308. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1309. feedrate = homing_feedrate[axis];
  1310. line_to_destination();
  1311. st_synchronize();
  1312. // Set the axis position as setup for the move
  1313. current_position[axis] = 0;
  1314. sync_plan_position();
  1315. enable_endstops(false); // Disable endstops while moving away
  1316. // Move away from the endstop by the axis HOME_BUMP_MM
  1317. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1318. line_to_destination();
  1319. st_synchronize();
  1320. enable_endstops(true); // Enable endstops for next homing move
  1321. // Slow down the feedrate for the next move
  1322. set_homing_bump_feedrate(axis);
  1323. // Move slowly towards the endstop until triggered
  1324. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1325. line_to_destination();
  1326. st_synchronize();
  1327. #ifdef Z_DUAL_ENDSTOPS
  1328. if (axis == Z_AXIS) {
  1329. float adj = fabs(z_endstop_adj);
  1330. bool lockZ1;
  1331. if (axis_home_dir > 0) {
  1332. adj = -adj;
  1333. lockZ1 = (z_endstop_adj > 0);
  1334. }
  1335. else
  1336. lockZ1 = (z_endstop_adj < 0);
  1337. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1338. sync_plan_position();
  1339. // Move to the adjusted endstop height
  1340. feedrate = homing_feedrate[axis];
  1341. destination[Z_AXIS] = adj;
  1342. line_to_destination();
  1343. st_synchronize();
  1344. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1345. In_Homing_Process(false);
  1346. } // Z_AXIS
  1347. #endif
  1348. #ifdef DELTA
  1349. // retrace by the amount specified in endstop_adj
  1350. if (endstop_adj[axis] * axis_home_dir < 0) {
  1351. enable_endstops(false); // Disable endstops while moving away
  1352. sync_plan_position();
  1353. destination[axis] = endstop_adj[axis];
  1354. line_to_destination();
  1355. st_synchronize();
  1356. enable_endstops(true); // Enable endstops for next homing move
  1357. }
  1358. #endif
  1359. // Set the axis position to its home position (plus home offsets)
  1360. axis_is_at_home(axis);
  1361. sync_plan_position();
  1362. destination[axis] = current_position[axis];
  1363. feedrate = 0.0;
  1364. endstops_hit_on_purpose(); // clear endstop hit flags
  1365. axis_known_position[axis] = true;
  1366. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1367. // Deploy a probe if there is one, and homing towards the bed
  1368. if (axis == Z_AXIS) {
  1369. if (axis_home_dir < 0) stow_z_probe();
  1370. }
  1371. else
  1372. #endif
  1373. #ifdef SERVO_ENDSTOPS
  1374. {
  1375. // Retract Servo endstop if enabled
  1376. if (servo_endstops[axis] > -1)
  1377. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1378. }
  1379. #endif
  1380. }
  1381. }
  1382. #ifdef FWRETRACT
  1383. void retract(bool retracting, bool swapretract = false) {
  1384. if (retracting == retracted[active_extruder]) return;
  1385. float oldFeedrate = feedrate;
  1386. set_destination_to_current();
  1387. if (retracting) {
  1388. feedrate = retract_feedrate * 60;
  1389. current_position[E_AXIS] += (swapretract ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1390. plan_set_e_position(current_position[E_AXIS]);
  1391. prepare_move();
  1392. if (retract_zlift > 0.01) {
  1393. current_position[Z_AXIS] -= retract_zlift;
  1394. #ifdef DELTA
  1395. sync_plan_position_delta();
  1396. #else
  1397. sync_plan_position();
  1398. #endif
  1399. prepare_move();
  1400. }
  1401. }
  1402. else {
  1403. if (retract_zlift > 0.01) {
  1404. current_position[Z_AXIS] += retract_zlift;
  1405. #ifdef DELTA
  1406. sync_plan_position_delta();
  1407. #else
  1408. sync_plan_position();
  1409. #endif
  1410. //prepare_move();
  1411. }
  1412. feedrate = retract_recover_feedrate * 60;
  1413. float move_e = swapretract ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1414. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1415. plan_set_e_position(current_position[E_AXIS]);
  1416. prepare_move();
  1417. }
  1418. feedrate = oldFeedrate;
  1419. retracted[active_extruder] = retracting;
  1420. } // retract()
  1421. #endif // FWRETRACT
  1422. #ifdef Z_PROBE_SLED
  1423. #ifndef SLED_DOCKING_OFFSET
  1424. #define SLED_DOCKING_OFFSET 0
  1425. #endif
  1426. /**
  1427. * Method to dock/undock a sled designed by Charles Bell.
  1428. *
  1429. * dock[in] If true, move to MAX_X and engage the electromagnet
  1430. * offset[in] The additional distance to move to adjust docking location
  1431. */
  1432. static void dock_sled(bool dock, int offset=0) {
  1433. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1434. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1435. SERIAL_ECHO_START;
  1436. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1437. return;
  1438. }
  1439. if (dock) {
  1440. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]); // this also updates current_position
  1441. digitalWrite(SERVO0_PIN, LOW); // turn off magnet
  1442. } else {
  1443. float z_loc = current_position[Z_AXIS];
  1444. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1445. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc); // this also updates current_position
  1446. digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
  1447. }
  1448. }
  1449. #endif // Z_PROBE_SLED
  1450. /**
  1451. *
  1452. * G-Code Handler functions
  1453. *
  1454. */
  1455. /**
  1456. * G0, G1: Coordinated movement of X Y Z E axes
  1457. */
  1458. inline void gcode_G0_G1() {
  1459. if (IsRunning()) {
  1460. get_coordinates(); // For X Y Z E F
  1461. #ifdef FWRETRACT
  1462. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1463. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1464. // Is this move an attempt to retract or recover?
  1465. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1466. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1467. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1468. retract(!retracted[active_extruder]);
  1469. return;
  1470. }
  1471. }
  1472. #endif //FWRETRACT
  1473. prepare_move();
  1474. //ClearToSend();
  1475. }
  1476. }
  1477. /**
  1478. * G2: Clockwise Arc
  1479. * G3: Counterclockwise Arc
  1480. */
  1481. inline void gcode_G2_G3(bool clockwise) {
  1482. if (IsRunning()) {
  1483. get_arc_coordinates();
  1484. prepare_arc_move(clockwise);
  1485. }
  1486. }
  1487. /**
  1488. * G4: Dwell S<seconds> or P<milliseconds>
  1489. */
  1490. inline void gcode_G4() {
  1491. millis_t codenum = 0;
  1492. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1493. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1494. st_synchronize();
  1495. refresh_cmd_timeout();
  1496. codenum += previous_cmd_ms; // keep track of when we started waiting
  1497. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1498. while (millis() < codenum) {
  1499. manage_heater();
  1500. manage_inactivity();
  1501. lcd_update();
  1502. }
  1503. }
  1504. #ifdef FWRETRACT
  1505. /**
  1506. * G10 - Retract filament according to settings of M207
  1507. * G11 - Recover filament according to settings of M208
  1508. */
  1509. inline void gcode_G10_G11(bool doRetract=false) {
  1510. #if EXTRUDERS > 1
  1511. if (doRetract) {
  1512. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1513. }
  1514. #endif
  1515. retract(doRetract
  1516. #if EXTRUDERS > 1
  1517. , retracted_swap[active_extruder]
  1518. #endif
  1519. );
  1520. }
  1521. #endif //FWRETRACT
  1522. /**
  1523. * G28: Home all axes according to settings
  1524. *
  1525. * Parameters
  1526. *
  1527. * None Home to all axes with no parameters.
  1528. * With QUICK_HOME enabled XY will home together, then Z.
  1529. *
  1530. * Cartesian parameters
  1531. *
  1532. * X Home to the X endstop
  1533. * Y Home to the Y endstop
  1534. * Z Home to the Z endstop
  1535. *
  1536. */
  1537. inline void gcode_G28() {
  1538. // For auto bed leveling, clear the level matrix
  1539. #ifdef ENABLE_AUTO_BED_LEVELING
  1540. plan_bed_level_matrix.set_to_identity();
  1541. #ifdef DELTA
  1542. reset_bed_level();
  1543. #endif
  1544. #endif
  1545. // For manual bed leveling deactivate the matrix temporarily
  1546. #ifdef MESH_BED_LEVELING
  1547. uint8_t mbl_was_active = mbl.active;
  1548. mbl.active = 0;
  1549. #endif
  1550. saved_feedrate = feedrate;
  1551. saved_feedrate_multiplier = feedrate_multiplier;
  1552. feedrate_multiplier = 100;
  1553. refresh_cmd_timeout();
  1554. enable_endstops(true);
  1555. set_destination_to_current();
  1556. feedrate = 0.0;
  1557. #ifdef DELTA
  1558. // A delta can only safely home all axis at the same time
  1559. // all axis have to home at the same time
  1560. // Pretend the current position is 0,0,0
  1561. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1562. sync_plan_position();
  1563. // Move all carriages up together until the first endstop is hit.
  1564. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1565. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1566. line_to_destination();
  1567. st_synchronize();
  1568. endstops_hit_on_purpose(); // clear endstop hit flags
  1569. // Destination reached
  1570. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1571. // take care of back off and rehome now we are all at the top
  1572. HOMEAXIS(X);
  1573. HOMEAXIS(Y);
  1574. HOMEAXIS(Z);
  1575. sync_plan_position_delta();
  1576. #else // NOT DELTA
  1577. bool homeX = code_seen(axis_codes[X_AXIS]),
  1578. homeY = code_seen(axis_codes[Y_AXIS]),
  1579. homeZ = code_seen(axis_codes[Z_AXIS]);
  1580. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1581. if (home_all_axis || homeZ) {
  1582. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1583. HOMEAXIS(Z);
  1584. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1585. // Raise Z before homing any other axes
  1586. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1587. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1588. feedrate = max_feedrate[Z_AXIS] * 60;
  1589. line_to_destination();
  1590. st_synchronize();
  1591. #endif
  1592. } // home_all_axis || homeZ
  1593. #ifdef QUICK_HOME
  1594. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1595. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1596. #ifdef DUAL_X_CARRIAGE
  1597. int x_axis_home_dir = x_home_dir(active_extruder);
  1598. extruder_duplication_enabled = false;
  1599. #else
  1600. int x_axis_home_dir = home_dir(X_AXIS);
  1601. #endif
  1602. sync_plan_position();
  1603. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1604. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1605. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1606. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1607. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1608. line_to_destination();
  1609. st_synchronize();
  1610. axis_is_at_home(X_AXIS);
  1611. axis_is_at_home(Y_AXIS);
  1612. sync_plan_position();
  1613. destination[X_AXIS] = current_position[X_AXIS];
  1614. destination[Y_AXIS] = current_position[Y_AXIS];
  1615. line_to_destination();
  1616. feedrate = 0.0;
  1617. st_synchronize();
  1618. endstops_hit_on_purpose(); // clear endstop hit flags
  1619. current_position[X_AXIS] = destination[X_AXIS];
  1620. current_position[Y_AXIS] = destination[Y_AXIS];
  1621. #ifndef SCARA
  1622. current_position[Z_AXIS] = destination[Z_AXIS];
  1623. #endif
  1624. }
  1625. #endif // QUICK_HOME
  1626. #ifdef HOME_Y_BEFORE_X
  1627. // Home Y
  1628. if (home_all_axis || homeY) HOMEAXIS(Y);
  1629. #endif
  1630. // Home X
  1631. if (home_all_axis || homeX) {
  1632. #ifdef DUAL_X_CARRIAGE
  1633. int tmp_extruder = active_extruder;
  1634. extruder_duplication_enabled = false;
  1635. active_extruder = !active_extruder;
  1636. HOMEAXIS(X);
  1637. inactive_extruder_x_pos = current_position[X_AXIS];
  1638. active_extruder = tmp_extruder;
  1639. HOMEAXIS(X);
  1640. // reset state used by the different modes
  1641. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1642. delayed_move_time = 0;
  1643. active_extruder_parked = true;
  1644. #else
  1645. HOMEAXIS(X);
  1646. #endif
  1647. }
  1648. #ifndef HOME_Y_BEFORE_X
  1649. // Home Y
  1650. if (home_all_axis || homeY) HOMEAXIS(Y);
  1651. #endif
  1652. // Home Z last if homing towards the bed
  1653. #if Z_HOME_DIR < 0
  1654. if (home_all_axis || homeZ) {
  1655. #ifdef Z_SAFE_HOMING
  1656. if (home_all_axis) {
  1657. current_position[Z_AXIS] = 0;
  1658. sync_plan_position();
  1659. //
  1660. // Set the probe (or just the nozzle) destination to the safe homing point
  1661. //
  1662. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1663. // then this may not work as expected.
  1664. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1665. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1666. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1667. feedrate = XY_TRAVEL_SPEED;
  1668. // This could potentially move X, Y, Z all together
  1669. line_to_destination();
  1670. st_synchronize();
  1671. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1672. current_position[X_AXIS] = destination[X_AXIS];
  1673. current_position[Y_AXIS] = destination[Y_AXIS];
  1674. // Home the Z axis
  1675. HOMEAXIS(Z);
  1676. }
  1677. else if (homeZ) { // Don't need to Home Z twice
  1678. // Let's see if X and Y are homed
  1679. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1680. // Make sure the probe is within the physical limits
  1681. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1682. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1683. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1684. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1685. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1686. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1687. // Set the plan current position to X, Y, 0
  1688. current_position[Z_AXIS] = 0;
  1689. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1690. // Set Z destination away from bed and raise the axis
  1691. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1692. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1693. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1694. line_to_destination();
  1695. st_synchronize();
  1696. // Home the Z axis
  1697. HOMEAXIS(Z);
  1698. }
  1699. else {
  1700. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1701. SERIAL_ECHO_START;
  1702. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1703. }
  1704. }
  1705. else {
  1706. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1707. SERIAL_ECHO_START;
  1708. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1709. }
  1710. } // !home_all_axes && homeZ
  1711. #else // !Z_SAFE_HOMING
  1712. HOMEAXIS(Z);
  1713. #endif // !Z_SAFE_HOMING
  1714. } // home_all_axis || homeZ
  1715. #endif // Z_HOME_DIR < 0
  1716. sync_plan_position();
  1717. #endif // else DELTA
  1718. #ifdef SCARA
  1719. sync_plan_position_delta();
  1720. #endif
  1721. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1722. enable_endstops(false);
  1723. #endif
  1724. // For manual leveling move back to 0,0
  1725. #ifdef MESH_BED_LEVELING
  1726. if (mbl_was_active) {
  1727. current_position[X_AXIS] = mbl.get_x(0);
  1728. current_position[Y_AXIS] = mbl.get_y(0);
  1729. set_destination_to_current();
  1730. feedrate = homing_feedrate[X_AXIS];
  1731. line_to_destination();
  1732. st_synchronize();
  1733. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1734. sync_plan_position();
  1735. mbl.active = 1;
  1736. }
  1737. #endif
  1738. feedrate = saved_feedrate;
  1739. feedrate_multiplier = saved_feedrate_multiplier;
  1740. refresh_cmd_timeout();
  1741. endstops_hit_on_purpose(); // clear endstop hit flags
  1742. }
  1743. #ifdef MESH_BED_LEVELING
  1744. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1745. /**
  1746. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1747. * mesh to compensate for variable bed height
  1748. *
  1749. * Parameters With MESH_BED_LEVELING:
  1750. *
  1751. * S0 Produce a mesh report
  1752. * S1 Start probing mesh points
  1753. * S2 Probe the next mesh point
  1754. * S3 Xn Yn Zn.nn Manually modify a single point
  1755. *
  1756. * The S0 report the points as below
  1757. *
  1758. * +----> X-axis
  1759. * |
  1760. * |
  1761. * v Y-axis
  1762. *
  1763. */
  1764. inline void gcode_G29() {
  1765. static int probe_point = -1;
  1766. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1767. if (state < 0 || state > 3) {
  1768. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1769. return;
  1770. }
  1771. int ix, iy;
  1772. float z;
  1773. switch(state) {
  1774. case MeshReport:
  1775. if (mbl.active) {
  1776. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1777. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1778. SERIAL_PROTOCOLCHAR(',');
  1779. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1780. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1781. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1782. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1783. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1784. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1785. SERIAL_PROTOCOLPGM(" ");
  1786. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1787. }
  1788. SERIAL_EOL;
  1789. }
  1790. }
  1791. else
  1792. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1793. break;
  1794. case MeshStart:
  1795. mbl.reset();
  1796. probe_point = 0;
  1797. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1798. break;
  1799. case MeshNext:
  1800. if (probe_point < 0) {
  1801. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1802. return;
  1803. }
  1804. if (probe_point == 0) {
  1805. // Set Z to a positive value before recording the first Z.
  1806. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1807. sync_plan_position();
  1808. }
  1809. else {
  1810. // For others, save the Z of the previous point, then raise Z again.
  1811. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1812. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1813. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1814. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1815. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1816. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1817. st_synchronize();
  1818. }
  1819. // Is there another point to sample? Move there.
  1820. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1821. ix = probe_point % MESH_NUM_X_POINTS;
  1822. iy = probe_point / MESH_NUM_X_POINTS;
  1823. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1824. current_position[X_AXIS] = mbl.get_x(ix);
  1825. current_position[Y_AXIS] = mbl.get_y(iy);
  1826. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1827. st_synchronize();
  1828. probe_point++;
  1829. }
  1830. else {
  1831. // After recording the last point, activate the mbl and home
  1832. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1833. probe_point = -1;
  1834. mbl.active = 1;
  1835. enqueuecommands_P(PSTR("G28"));
  1836. }
  1837. break;
  1838. case MeshSet:
  1839. if (code_seen('X') || code_seen('x')) {
  1840. ix = code_value_long()-1;
  1841. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  1842. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  1843. return;
  1844. }
  1845. } else {
  1846. SERIAL_PROTOCOLPGM("X not entered.\n");
  1847. return;
  1848. }
  1849. if (code_seen('Y') || code_seen('y')) {
  1850. iy = code_value_long()-1;
  1851. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  1852. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  1853. return;
  1854. }
  1855. } else {
  1856. SERIAL_PROTOCOLPGM("Y not entered.\n");
  1857. return;
  1858. }
  1859. if (code_seen('Z') || code_seen('z')) {
  1860. z = code_value();
  1861. } else {
  1862. SERIAL_PROTOCOLPGM("Z not entered.\n");
  1863. return;
  1864. }
  1865. mbl.z_values[iy][ix] = z;
  1866. } // switch(state)
  1867. }
  1868. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1869. /**
  1870. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1871. * Will fail if the printer has not been homed with G28.
  1872. *
  1873. * Enhanced G29 Auto Bed Leveling Probe Routine
  1874. *
  1875. * Parameters With AUTO_BED_LEVELING_GRID:
  1876. *
  1877. * P Set the size of the grid that will be probed (P x P points).
  1878. * Not supported by non-linear delta printer bed leveling.
  1879. * Example: "G29 P4"
  1880. *
  1881. * S Set the XY travel speed between probe points (in mm/min)
  1882. *
  1883. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1884. * or clean the rotation Matrix. Useful to check the topology
  1885. * after a first run of G29.
  1886. *
  1887. * V Set the verbose level (0-4). Example: "G29 V3"
  1888. *
  1889. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1890. * This is useful for manual bed leveling and finding flaws in the bed (to
  1891. * assist with part placement).
  1892. * Not supported by non-linear delta printer bed leveling.
  1893. *
  1894. * F Set the Front limit of the probing grid
  1895. * B Set the Back limit of the probing grid
  1896. * L Set the Left limit of the probing grid
  1897. * R Set the Right limit of the probing grid
  1898. *
  1899. * Global Parameters:
  1900. *
  1901. * E/e By default G29 will engage the probe, test the bed, then disengage.
  1902. * Include "E" to engage/disengage the probe for each sample.
  1903. * There's no extra effect if you have a fixed probe.
  1904. * Usage: "G29 E" or "G29 e"
  1905. *
  1906. */
  1907. inline void gcode_G29() {
  1908. // Don't allow auto-leveling without homing first
  1909. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1910. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1911. SERIAL_ECHO_START;
  1912. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1913. return;
  1914. }
  1915. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  1916. if (verbose_level < 0 || verbose_level > 4) {
  1917. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  1918. return;
  1919. }
  1920. bool dryrun = code_seen('D') || code_seen('d'),
  1921. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  1922. #ifdef AUTO_BED_LEVELING_GRID
  1923. #ifndef DELTA
  1924. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1925. #endif
  1926. if (verbose_level > 0) {
  1927. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1928. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  1929. }
  1930. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1931. #ifndef DELTA
  1932. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  1933. if (auto_bed_leveling_grid_points < 2) {
  1934. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1935. return;
  1936. }
  1937. #endif
  1938. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  1939. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  1940. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  1941. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  1942. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  1943. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1944. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1945. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1946. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1947. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1948. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1949. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1950. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1951. if (left_out || right_out || front_out || back_out) {
  1952. if (left_out) {
  1953. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1954. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1955. }
  1956. if (right_out) {
  1957. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1958. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1959. }
  1960. if (front_out) {
  1961. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1962. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1963. }
  1964. if (back_out) {
  1965. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1966. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1967. }
  1968. return;
  1969. }
  1970. #endif // AUTO_BED_LEVELING_GRID
  1971. #ifdef Z_PROBE_SLED
  1972. dock_sled(false); // engage (un-dock) the probe
  1973. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1974. deploy_z_probe();
  1975. #endif
  1976. st_synchronize();
  1977. if (!dryrun) {
  1978. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  1979. plan_bed_level_matrix.set_to_identity();
  1980. #ifdef DELTA
  1981. reset_bed_level();
  1982. #else //!DELTA
  1983. //vector_3 corrected_position = plan_get_position_mm();
  1984. //corrected_position.debug("position before G29");
  1985. vector_3 uncorrected_position = plan_get_position();
  1986. //uncorrected_position.debug("position during G29");
  1987. current_position[X_AXIS] = uncorrected_position.x;
  1988. current_position[Y_AXIS] = uncorrected_position.y;
  1989. current_position[Z_AXIS] = uncorrected_position.z;
  1990. sync_plan_position();
  1991. #endif // !DELTA
  1992. }
  1993. setup_for_endstop_move();
  1994. feedrate = homing_feedrate[Z_AXIS];
  1995. #ifdef AUTO_BED_LEVELING_GRID
  1996. // probe at the points of a lattice grid
  1997. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  1998. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1999. #ifdef DELTA
  2000. delta_grid_spacing[0] = xGridSpacing;
  2001. delta_grid_spacing[1] = yGridSpacing;
  2002. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  2003. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2004. #else // !DELTA
  2005. // solve the plane equation ax + by + d = z
  2006. // A is the matrix with rows [x y 1] for all the probed points
  2007. // B is the vector of the Z positions
  2008. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2009. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2010. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2011. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2012. eqnBVector[abl2], // "B" vector of Z points
  2013. mean = 0.0;
  2014. #endif // !DELTA
  2015. int probePointCounter = 0;
  2016. bool zig = true;
  2017. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2018. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2019. int xStart, xStop, xInc;
  2020. if (zig) {
  2021. xStart = 0;
  2022. xStop = auto_bed_leveling_grid_points;
  2023. xInc = 1;
  2024. }
  2025. else {
  2026. xStart = auto_bed_leveling_grid_points - 1;
  2027. xStop = -1;
  2028. xInc = -1;
  2029. }
  2030. #ifndef DELTA
  2031. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2032. // This gets the probe points in more readable order.
  2033. if (!do_topography_map) zig = !zig;
  2034. #endif
  2035. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2036. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2037. // raise extruder
  2038. float measured_z,
  2039. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2040. #ifdef DELTA
  2041. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2042. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2043. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2044. #endif //DELTA
  2045. ProbeAction act;
  2046. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2047. act = ProbeDeployAndStow;
  2048. else if (yCount == 0 && xCount == xStart)
  2049. act = ProbeDeploy;
  2050. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2051. act = ProbeStow;
  2052. else
  2053. act = ProbeStay;
  2054. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2055. #ifndef DELTA
  2056. mean += measured_z;
  2057. eqnBVector[probePointCounter] = measured_z;
  2058. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2059. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2060. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2061. #else
  2062. bed_level[xCount][yCount] = measured_z + z_offset;
  2063. #endif
  2064. probePointCounter++;
  2065. manage_heater();
  2066. manage_inactivity();
  2067. lcd_update();
  2068. } //xProbe
  2069. } //yProbe
  2070. clean_up_after_endstop_move();
  2071. #ifdef DELTA
  2072. if (!dryrun) extrapolate_unprobed_bed_level();
  2073. print_bed_level();
  2074. #else // !DELTA
  2075. // solve lsq problem
  2076. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2077. mean /= abl2;
  2078. if (verbose_level) {
  2079. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2080. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2081. SERIAL_PROTOCOLPGM(" b: ");
  2082. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2083. SERIAL_PROTOCOLPGM(" d: ");
  2084. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2085. SERIAL_EOL;
  2086. if (verbose_level > 2) {
  2087. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2088. SERIAL_PROTOCOL_F(mean, 8);
  2089. SERIAL_EOL;
  2090. }
  2091. }
  2092. // Show the Topography map if enabled
  2093. if (do_topography_map) {
  2094. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2095. SERIAL_PROTOCOLPGM("+-----------+\n");
  2096. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2097. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2098. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2099. SERIAL_PROTOCOLPGM("+-----------+\n");
  2100. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2101. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2102. int ind = yy * auto_bed_leveling_grid_points + xx;
  2103. float diff = eqnBVector[ind] - mean;
  2104. if (diff >= 0.0)
  2105. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2106. else
  2107. SERIAL_PROTOCOLCHAR(' ');
  2108. SERIAL_PROTOCOL_F(diff, 5);
  2109. } // xx
  2110. SERIAL_EOL;
  2111. } // yy
  2112. SERIAL_EOL;
  2113. } //do_topography_map
  2114. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2115. free(plane_equation_coefficients);
  2116. #endif //!DELTA
  2117. #else // !AUTO_BED_LEVELING_GRID
  2118. // Actions for each probe
  2119. ProbeAction p1, p2, p3;
  2120. if (deploy_probe_for_each_reading)
  2121. p1 = p2 = p3 = ProbeDeployAndStow;
  2122. else
  2123. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2124. // Probe at 3 arbitrary points
  2125. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2126. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2127. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2128. clean_up_after_endstop_move();
  2129. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2130. #endif // !AUTO_BED_LEVELING_GRID
  2131. #ifndef DELTA
  2132. if (verbose_level > 0)
  2133. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2134. if (!dryrun) {
  2135. // Correct the Z height difference from z-probe position and hotend tip position.
  2136. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2137. // When the bed is uneven, this height must be corrected.
  2138. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2139. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2140. z_tmp = current_position[Z_AXIS],
  2141. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2142. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2143. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2144. sync_plan_position();
  2145. }
  2146. #endif // !DELTA
  2147. #ifdef Z_PROBE_SLED
  2148. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2149. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2150. stow_z_probe();
  2151. #endif
  2152. #ifdef Z_PROBE_END_SCRIPT
  2153. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2154. st_synchronize();
  2155. #endif
  2156. }
  2157. #ifndef Z_PROBE_SLED
  2158. inline void gcode_G30() {
  2159. deploy_z_probe(); // Engage Z Servo endstop if available
  2160. st_synchronize();
  2161. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2162. setup_for_endstop_move();
  2163. feedrate = homing_feedrate[Z_AXIS];
  2164. run_z_probe();
  2165. SERIAL_PROTOCOLPGM("Bed");
  2166. SERIAL_PROTOCOLPGM(" X: ");
  2167. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2168. SERIAL_PROTOCOLPGM(" Y: ");
  2169. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2170. SERIAL_PROTOCOLPGM(" Z: ");
  2171. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2172. SERIAL_EOL;
  2173. clean_up_after_endstop_move();
  2174. stow_z_probe(); // Retract Z Servo endstop if available
  2175. }
  2176. #endif //!Z_PROBE_SLED
  2177. #endif //ENABLE_AUTO_BED_LEVELING
  2178. /**
  2179. * G92: Set current position to given X Y Z E
  2180. */
  2181. inline void gcode_G92() {
  2182. if (!code_seen(axis_codes[E_AXIS]))
  2183. st_synchronize();
  2184. bool didXYZ = false;
  2185. for (int i = 0; i < NUM_AXIS; i++) {
  2186. if (code_seen(axis_codes[i])) {
  2187. float v = current_position[i] = code_value();
  2188. if (i == E_AXIS)
  2189. plan_set_e_position(v);
  2190. else
  2191. didXYZ = true;
  2192. }
  2193. }
  2194. if (didXYZ) sync_plan_position();
  2195. }
  2196. #ifdef ULTIPANEL
  2197. /**
  2198. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2199. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2200. */
  2201. inline void gcode_M0_M1() {
  2202. char *src = strchr_pointer + 2;
  2203. millis_t codenum = 0;
  2204. bool hasP = false, hasS = false;
  2205. if (code_seen('P')) {
  2206. codenum = code_value_short(); // milliseconds to wait
  2207. hasP = codenum > 0;
  2208. }
  2209. if (code_seen('S')) {
  2210. codenum = code_value_short() * 1000UL; // seconds to wait
  2211. hasS = codenum > 0;
  2212. }
  2213. char* starpos = strchr(src, '*');
  2214. if (starpos != NULL) *(starpos) = '\0';
  2215. while (*src == ' ') ++src;
  2216. if (!hasP && !hasS && *src != '\0')
  2217. lcd_setstatus(src, true);
  2218. else {
  2219. LCD_MESSAGEPGM(MSG_USERWAIT);
  2220. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2221. dontExpireStatus();
  2222. #endif
  2223. }
  2224. lcd_ignore_click();
  2225. st_synchronize();
  2226. refresh_cmd_timeout();
  2227. if (codenum > 0) {
  2228. codenum += previous_cmd_ms; // keep track of when we started waiting
  2229. while(millis() < codenum && !lcd_clicked()) {
  2230. manage_heater();
  2231. manage_inactivity();
  2232. lcd_update();
  2233. }
  2234. lcd_ignore_click(false);
  2235. }
  2236. else {
  2237. if (!lcd_detected()) return;
  2238. while (!lcd_clicked()) {
  2239. manage_heater();
  2240. manage_inactivity();
  2241. lcd_update();
  2242. }
  2243. }
  2244. if (IS_SD_PRINTING)
  2245. LCD_MESSAGEPGM(MSG_RESUMING);
  2246. else
  2247. LCD_MESSAGEPGM(WELCOME_MSG);
  2248. }
  2249. #endif // ULTIPANEL
  2250. /**
  2251. * M17: Enable power on all stepper motors
  2252. */
  2253. inline void gcode_M17() {
  2254. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2255. enable_all_steppers();
  2256. }
  2257. #ifdef SDSUPPORT
  2258. /**
  2259. * M20: List SD card to serial output
  2260. */
  2261. inline void gcode_M20() {
  2262. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2263. card.ls();
  2264. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2265. }
  2266. /**
  2267. * M21: Init SD Card
  2268. */
  2269. inline void gcode_M21() {
  2270. card.initsd();
  2271. }
  2272. /**
  2273. * M22: Release SD Card
  2274. */
  2275. inline void gcode_M22() {
  2276. card.release();
  2277. }
  2278. /**
  2279. * M23: Select a file
  2280. */
  2281. inline void gcode_M23() {
  2282. char* codepos = strchr_pointer + 4;
  2283. char* starpos = strchr(codepos, '*');
  2284. if (starpos) *starpos = '\0';
  2285. card.openFile(codepos, true);
  2286. }
  2287. /**
  2288. * M24: Start SD Print
  2289. */
  2290. inline void gcode_M24() {
  2291. card.startFileprint();
  2292. print_job_start_ms = millis();
  2293. }
  2294. /**
  2295. * M25: Pause SD Print
  2296. */
  2297. inline void gcode_M25() {
  2298. card.pauseSDPrint();
  2299. }
  2300. /**
  2301. * M26: Set SD Card file index
  2302. */
  2303. inline void gcode_M26() {
  2304. if (card.cardOK && code_seen('S'))
  2305. card.setIndex(code_value_short());
  2306. }
  2307. /**
  2308. * M27: Get SD Card status
  2309. */
  2310. inline void gcode_M27() {
  2311. card.getStatus();
  2312. }
  2313. /**
  2314. * M28: Start SD Write
  2315. */
  2316. inline void gcode_M28() {
  2317. char* codepos = strchr_pointer + 4;
  2318. char* starpos = strchr(codepos, '*');
  2319. if (starpos) {
  2320. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2321. strchr_pointer = strchr(npos, ' ') + 1;
  2322. *(starpos) = '\0';
  2323. }
  2324. card.openFile(codepos, false);
  2325. }
  2326. /**
  2327. * M29: Stop SD Write
  2328. * Processed in write to file routine above
  2329. */
  2330. inline void gcode_M29() {
  2331. // card.saving = false;
  2332. }
  2333. /**
  2334. * M30 <filename>: Delete SD Card file
  2335. */
  2336. inline void gcode_M30() {
  2337. if (card.cardOK) {
  2338. card.closefile();
  2339. char* starpos = strchr(strchr_pointer + 4, '*');
  2340. if (starpos) {
  2341. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2342. strchr_pointer = strchr(npos, ' ') + 1;
  2343. *(starpos) = '\0';
  2344. }
  2345. card.removeFile(strchr_pointer + 4);
  2346. }
  2347. }
  2348. #endif
  2349. /**
  2350. * M31: Get the time since the start of SD Print (or last M109)
  2351. */
  2352. inline void gcode_M31() {
  2353. print_job_stop_ms = millis();
  2354. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2355. int min = t / 60, sec = t % 60;
  2356. char time[30];
  2357. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2358. SERIAL_ECHO_START;
  2359. SERIAL_ECHOLN(time);
  2360. lcd_setstatus(time);
  2361. autotempShutdown();
  2362. }
  2363. #ifdef SDSUPPORT
  2364. /**
  2365. * M32: Select file and start SD Print
  2366. */
  2367. inline void gcode_M32() {
  2368. if (card.sdprinting)
  2369. st_synchronize();
  2370. char* codepos = strchr_pointer + 4;
  2371. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2372. if (! namestartpos)
  2373. namestartpos = codepos; //default name position, 4 letters after the M
  2374. else
  2375. namestartpos++; //to skip the '!'
  2376. char* starpos = strchr(codepos, '*');
  2377. if (starpos) *(starpos) = '\0';
  2378. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2379. if (card.cardOK) {
  2380. card.openFile(namestartpos, true, !call_procedure);
  2381. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2382. card.setIndex(code_value_short());
  2383. card.startFileprint();
  2384. if (!call_procedure)
  2385. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2386. }
  2387. }
  2388. /**
  2389. * M928: Start SD Write
  2390. */
  2391. inline void gcode_M928() {
  2392. char* starpos = strchr(strchr_pointer + 5, '*');
  2393. if (starpos) {
  2394. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2395. strchr_pointer = strchr(npos, ' ') + 1;
  2396. *(starpos) = '\0';
  2397. }
  2398. card.openLogFile(strchr_pointer + 5);
  2399. }
  2400. #endif // SDSUPPORT
  2401. /**
  2402. * M42: Change pin status via GCode
  2403. */
  2404. inline void gcode_M42() {
  2405. if (code_seen('S')) {
  2406. int pin_status = code_value_short(),
  2407. pin_number = LED_PIN;
  2408. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2409. pin_number = code_value_short();
  2410. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2411. if (sensitive_pins[i] == pin_number) {
  2412. pin_number = -1;
  2413. break;
  2414. }
  2415. }
  2416. #if HAS_FAN
  2417. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2418. #endif
  2419. if (pin_number > -1) {
  2420. pinMode(pin_number, OUTPUT);
  2421. digitalWrite(pin_number, pin_status);
  2422. analogWrite(pin_number, pin_status);
  2423. }
  2424. } // code_seen('S')
  2425. }
  2426. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2427. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2428. #ifdef Z_PROBE_ENDSTOP
  2429. #if !HAS_Z_PROBE
  2430. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2431. #endif
  2432. #elif !HAS_Z_MIN
  2433. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2434. #endif
  2435. /**
  2436. * M48: Z-Probe repeatability measurement function.
  2437. *
  2438. * Usage:
  2439. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2440. * P = Number of sampled points (4-50, default 10)
  2441. * X = Sample X position
  2442. * Y = Sample Y position
  2443. * V = Verbose level (0-4, default=1)
  2444. * E = Engage probe for each reading
  2445. * L = Number of legs of movement before probe
  2446. *
  2447. * This function assumes the bed has been homed. Specifically, that a G28 command
  2448. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2449. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2450. * regenerated.
  2451. */
  2452. inline void gcode_M48() {
  2453. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2454. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2455. if (code_seen('V') || code_seen('v')) {
  2456. verbose_level = code_value_short();
  2457. if (verbose_level < 0 || verbose_level > 4 ) {
  2458. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2459. return;
  2460. }
  2461. }
  2462. if (verbose_level > 0)
  2463. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2464. if (code_seen('P') || code_seen('p')) {
  2465. n_samples = code_value_short();
  2466. if (n_samples < 4 || n_samples > 50) {
  2467. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2468. return;
  2469. }
  2470. }
  2471. double X_current = st_get_position_mm(X_AXIS),
  2472. Y_current = st_get_position_mm(Y_AXIS),
  2473. Z_current = st_get_position_mm(Z_AXIS),
  2474. E_current = st_get_position_mm(E_AXIS),
  2475. X_probe_location = X_current, Y_probe_location = Y_current,
  2476. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2477. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2478. if (code_seen('X') || code_seen('x')) {
  2479. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2480. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2481. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2482. return;
  2483. }
  2484. }
  2485. if (code_seen('Y') || code_seen('y')) {
  2486. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2487. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2488. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2489. return;
  2490. }
  2491. }
  2492. if (code_seen('L') || code_seen('l')) {
  2493. n_legs = code_value_short();
  2494. if (n_legs == 1) n_legs = 2;
  2495. if (n_legs < 0 || n_legs > 15) {
  2496. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2497. return;
  2498. }
  2499. }
  2500. //
  2501. // Do all the preliminary setup work. First raise the probe.
  2502. //
  2503. st_synchronize();
  2504. plan_bed_level_matrix.set_to_identity();
  2505. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2506. st_synchronize();
  2507. //
  2508. // Now get everything to the specified probe point So we can safely do a probe to
  2509. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2510. // use that as a starting point for each probe.
  2511. //
  2512. if (verbose_level > 2)
  2513. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2514. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2515. E_current,
  2516. homing_feedrate[X_AXIS]/60,
  2517. active_extruder);
  2518. st_synchronize();
  2519. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2520. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2521. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2522. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2523. //
  2524. // OK, do the initial probe to get us close to the bed.
  2525. // Then retrace the right amount and use that in subsequent probes
  2526. //
  2527. deploy_z_probe();
  2528. setup_for_endstop_move();
  2529. run_z_probe();
  2530. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2531. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2532. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2533. E_current,
  2534. homing_feedrate[X_AXIS]/60,
  2535. active_extruder);
  2536. st_synchronize();
  2537. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2538. if (deploy_probe_for_each_reading) stow_z_probe();
  2539. for (uint8_t n=0; n < n_samples; n++) {
  2540. // Make sure we are at the probe location
  2541. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2542. if (n_legs) {
  2543. millis_t ms = millis();
  2544. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2545. theta = RADIANS(ms % 360L);
  2546. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2547. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2548. //SERIAL_ECHOPAIR(" theta: ",theta);
  2549. //SERIAL_ECHOPAIR(" direction: ",dir);
  2550. //SERIAL_EOL;
  2551. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2552. ms = millis();
  2553. theta += RADIANS(dir * (ms % 20L));
  2554. radius += (ms % 10L) - 5L;
  2555. if (radius < 0.0) radius = -radius;
  2556. X_current = X_probe_location + cos(theta) * radius;
  2557. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2558. Y_current = Y_probe_location + sin(theta) * radius;
  2559. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2560. if (verbose_level > 3) {
  2561. SERIAL_ECHOPAIR("x: ", X_current);
  2562. SERIAL_ECHOPAIR("y: ", Y_current);
  2563. SERIAL_EOL;
  2564. }
  2565. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2566. } // n_legs loop
  2567. // Go back to the probe location
  2568. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2569. } // n_legs
  2570. if (deploy_probe_for_each_reading) {
  2571. deploy_z_probe();
  2572. delay(1000);
  2573. }
  2574. setup_for_endstop_move();
  2575. run_z_probe();
  2576. sample_set[n] = current_position[Z_AXIS];
  2577. //
  2578. // Get the current mean for the data points we have so far
  2579. //
  2580. sum = 0.0;
  2581. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2582. mean = sum / (n + 1);
  2583. //
  2584. // Now, use that mean to calculate the standard deviation for the
  2585. // data points we have so far
  2586. //
  2587. sum = 0.0;
  2588. for (uint8_t j = 0; j <= n; j++) {
  2589. float ss = sample_set[j] - mean;
  2590. sum += ss * ss;
  2591. }
  2592. sigma = sqrt(sum / (n + 1));
  2593. if (verbose_level > 1) {
  2594. SERIAL_PROTOCOL(n+1);
  2595. SERIAL_PROTOCOLPGM(" of ");
  2596. SERIAL_PROTOCOL(n_samples);
  2597. SERIAL_PROTOCOLPGM(" z: ");
  2598. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2599. if (verbose_level > 2) {
  2600. SERIAL_PROTOCOLPGM(" mean: ");
  2601. SERIAL_PROTOCOL_F(mean,6);
  2602. SERIAL_PROTOCOLPGM(" sigma: ");
  2603. SERIAL_PROTOCOL_F(sigma,6);
  2604. }
  2605. }
  2606. if (verbose_level > 0) SERIAL_EOL;
  2607. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2608. st_synchronize();
  2609. // Stow between
  2610. if (deploy_probe_for_each_reading) {
  2611. stow_z_probe();
  2612. delay(1000);
  2613. }
  2614. }
  2615. // Stow after
  2616. if (!deploy_probe_for_each_reading) {
  2617. stow_z_probe();
  2618. delay(1000);
  2619. }
  2620. clean_up_after_endstop_move();
  2621. // enable_endstops(true);
  2622. if (verbose_level > 0) {
  2623. SERIAL_PROTOCOLPGM("Mean: ");
  2624. SERIAL_PROTOCOL_F(mean, 6);
  2625. SERIAL_EOL;
  2626. }
  2627. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2628. SERIAL_PROTOCOL_F(sigma, 6);
  2629. SERIAL_EOL; SERIAL_EOL;
  2630. }
  2631. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2632. /**
  2633. * M104: Set hot end temperature
  2634. */
  2635. inline void gcode_M104() {
  2636. if (setTargetedHotend(104)) return;
  2637. if (code_seen('S')) {
  2638. float temp = code_value();
  2639. setTargetHotend(temp, target_extruder);
  2640. #ifdef DUAL_X_CARRIAGE
  2641. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2642. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2643. #endif
  2644. setWatch();
  2645. }
  2646. }
  2647. /**
  2648. * M105: Read hot end and bed temperature
  2649. */
  2650. inline void gcode_M105() {
  2651. if (setTargetedHotend(105)) return;
  2652. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2653. SERIAL_PROTOCOLPGM("ok");
  2654. #if HAS_TEMP_0
  2655. SERIAL_PROTOCOLPGM(" T:");
  2656. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2657. SERIAL_PROTOCOLPGM(" /");
  2658. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2659. #endif
  2660. #if HAS_TEMP_BED
  2661. SERIAL_PROTOCOLPGM(" B:");
  2662. SERIAL_PROTOCOL_F(degBed(), 1);
  2663. SERIAL_PROTOCOLPGM(" /");
  2664. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2665. #endif
  2666. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2667. SERIAL_PROTOCOLPGM(" T");
  2668. SERIAL_PROTOCOL(e);
  2669. SERIAL_PROTOCOLCHAR(':');
  2670. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2671. SERIAL_PROTOCOLPGM(" /");
  2672. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2673. }
  2674. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2675. SERIAL_ERROR_START;
  2676. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2677. #endif
  2678. SERIAL_PROTOCOLPGM(" @:");
  2679. #ifdef EXTRUDER_WATTS
  2680. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2681. SERIAL_PROTOCOLCHAR('W');
  2682. #else
  2683. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2684. #endif
  2685. SERIAL_PROTOCOLPGM(" B@:");
  2686. #ifdef BED_WATTS
  2687. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2688. SERIAL_PROTOCOLCHAR('W');
  2689. #else
  2690. SERIAL_PROTOCOL(getHeaterPower(-1));
  2691. #endif
  2692. #ifdef SHOW_TEMP_ADC_VALUES
  2693. #if HAS_TEMP_BED
  2694. SERIAL_PROTOCOLPGM(" ADC B:");
  2695. SERIAL_PROTOCOL_F(degBed(),1);
  2696. SERIAL_PROTOCOLPGM("C->");
  2697. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2698. #endif
  2699. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2700. SERIAL_PROTOCOLPGM(" T");
  2701. SERIAL_PROTOCOL(cur_extruder);
  2702. SERIAL_PROTOCOLCHAR(':');
  2703. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2704. SERIAL_PROTOCOLPGM("C->");
  2705. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2706. }
  2707. #endif
  2708. SERIAL_EOL;
  2709. }
  2710. #if HAS_FAN
  2711. /**
  2712. * M106: Set Fan Speed
  2713. */
  2714. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2715. /**
  2716. * M107: Fan Off
  2717. */
  2718. inline void gcode_M107() { fanSpeed = 0; }
  2719. #endif // HAS_FAN
  2720. /**
  2721. * M109: Wait for extruder(s) to reach temperature
  2722. */
  2723. inline void gcode_M109() {
  2724. if (setTargetedHotend(109)) return;
  2725. LCD_MESSAGEPGM(MSG_HEATING);
  2726. no_wait_for_cooling = code_seen('S');
  2727. if (no_wait_for_cooling || code_seen('R')) {
  2728. float temp = code_value();
  2729. setTargetHotend(temp, target_extruder);
  2730. #ifdef DUAL_X_CARRIAGE
  2731. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2732. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2733. #endif
  2734. }
  2735. #ifdef AUTOTEMP
  2736. autotemp_enabled = code_seen('F');
  2737. if (autotemp_enabled) autotemp_factor = code_value();
  2738. if (code_seen('S')) autotemp_min = code_value();
  2739. if (code_seen('B')) autotemp_max = code_value();
  2740. #endif
  2741. setWatch();
  2742. millis_t temp_ms = millis();
  2743. /* See if we are heating up or cooling down */
  2744. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2745. cancel_heatup = false;
  2746. #ifdef TEMP_RESIDENCY_TIME
  2747. long residency_start_ms = -1;
  2748. /* continue to loop until we have reached the target temp
  2749. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2750. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2751. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2752. #else
  2753. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2754. #endif //TEMP_RESIDENCY_TIME
  2755. { // while loop
  2756. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2757. SERIAL_PROTOCOLPGM("T:");
  2758. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2759. SERIAL_PROTOCOLPGM(" E:");
  2760. SERIAL_PROTOCOL((int)target_extruder);
  2761. #ifdef TEMP_RESIDENCY_TIME
  2762. SERIAL_PROTOCOLPGM(" W:");
  2763. if (residency_start_ms > -1) {
  2764. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2765. SERIAL_PROTOCOLLN(temp_ms);
  2766. }
  2767. else {
  2768. SERIAL_PROTOCOLLNPGM("?");
  2769. }
  2770. #else
  2771. SERIAL_EOL;
  2772. #endif
  2773. temp_ms = millis();
  2774. }
  2775. manage_heater();
  2776. manage_inactivity();
  2777. lcd_update();
  2778. #ifdef TEMP_RESIDENCY_TIME
  2779. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2780. // or when current temp falls outside the hysteresis after target temp was reached
  2781. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2782. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2783. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2784. {
  2785. residency_start_ms = millis();
  2786. }
  2787. #endif //TEMP_RESIDENCY_TIME
  2788. }
  2789. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2790. refresh_cmd_timeout();
  2791. print_job_start_ms = previous_cmd_ms;
  2792. }
  2793. #if HAS_TEMP_BED
  2794. /**
  2795. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2796. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2797. */
  2798. inline void gcode_M190() {
  2799. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2800. no_wait_for_cooling = code_seen('S');
  2801. if (no_wait_for_cooling || code_seen('R'))
  2802. setTargetBed(code_value());
  2803. millis_t temp_ms = millis();
  2804. cancel_heatup = false;
  2805. target_direction = isHeatingBed(); // true if heating, false if cooling
  2806. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  2807. millis_t ms = millis();
  2808. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2809. temp_ms = ms;
  2810. float tt = degHotend(active_extruder);
  2811. SERIAL_PROTOCOLPGM("T:");
  2812. SERIAL_PROTOCOL(tt);
  2813. SERIAL_PROTOCOLPGM(" E:");
  2814. SERIAL_PROTOCOL((int)active_extruder);
  2815. SERIAL_PROTOCOLPGM(" B:");
  2816. SERIAL_PROTOCOL_F(degBed(), 1);
  2817. SERIAL_EOL;
  2818. }
  2819. manage_heater();
  2820. manage_inactivity();
  2821. lcd_update();
  2822. }
  2823. LCD_MESSAGEPGM(MSG_BED_DONE);
  2824. refresh_cmd_timeout();
  2825. }
  2826. #endif // HAS_TEMP_BED
  2827. /**
  2828. * M111: Set the debug level
  2829. */
  2830. inline void gcode_M111() {
  2831. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_ERRORS;
  2832. }
  2833. /**
  2834. * M112: Emergency Stop
  2835. */
  2836. inline void gcode_M112() { kill(); }
  2837. #ifdef BARICUDA
  2838. #if HAS_HEATER_1
  2839. /**
  2840. * M126: Heater 1 valve open
  2841. */
  2842. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2843. /**
  2844. * M127: Heater 1 valve close
  2845. */
  2846. inline void gcode_M127() { ValvePressure = 0; }
  2847. #endif
  2848. #if HAS_HEATER_2
  2849. /**
  2850. * M128: Heater 2 valve open
  2851. */
  2852. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2853. /**
  2854. * M129: Heater 2 valve close
  2855. */
  2856. inline void gcode_M129() { EtoPPressure = 0; }
  2857. #endif
  2858. #endif //BARICUDA
  2859. /**
  2860. * M140: Set bed temperature
  2861. */
  2862. inline void gcode_M140() {
  2863. if (code_seen('S')) setTargetBed(code_value());
  2864. }
  2865. #ifdef ULTIPANEL
  2866. /**
  2867. * M145: Set the heatup state for a material in the LCD menu
  2868. * S<material> (0=PLA, 1=ABS)
  2869. * H<hotend temp>
  2870. * B<bed temp>
  2871. * F<fan speed>
  2872. */
  2873. inline void gcode_M145() {
  2874. uint8_t material = code_seen('S') ? code_value_short() : 0;
  2875. if (material < 0 || material > 1) {
  2876. SERIAL_ERROR_START;
  2877. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  2878. }
  2879. else {
  2880. int v;
  2881. switch (material) {
  2882. case 0:
  2883. if (code_seen('H')) {
  2884. v = code_value_short();
  2885. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  2886. }
  2887. if (code_seen('F')) {
  2888. v = code_value_short();
  2889. plaPreheatFanSpeed = constrain(v, 0, 255);
  2890. }
  2891. #if TEMP_SENSOR_BED != 0
  2892. if (code_seen('B')) {
  2893. v = code_value_short();
  2894. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  2895. }
  2896. #endif
  2897. break;
  2898. case 1:
  2899. if (code_seen('H')) {
  2900. v = code_value_short();
  2901. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  2902. }
  2903. if (code_seen('F')) {
  2904. v = code_value_short();
  2905. absPreheatFanSpeed = constrain(v, 0, 255);
  2906. }
  2907. #if TEMP_SENSOR_BED != 0
  2908. if (code_seen('B')) {
  2909. v = code_value_short();
  2910. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  2911. }
  2912. #endif
  2913. break;
  2914. }
  2915. }
  2916. }
  2917. #endif
  2918. #if HAS_POWER_SWITCH
  2919. /**
  2920. * M80: Turn on Power Supply
  2921. */
  2922. inline void gcode_M80() {
  2923. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2924. // If you have a switch on suicide pin, this is useful
  2925. // if you want to start another print with suicide feature after
  2926. // a print without suicide...
  2927. #if HAS_SUICIDE
  2928. OUT_WRITE(SUICIDE_PIN, HIGH);
  2929. #endif
  2930. #ifdef ULTIPANEL
  2931. powersupply = true;
  2932. LCD_MESSAGEPGM(WELCOME_MSG);
  2933. lcd_update();
  2934. #endif
  2935. }
  2936. #endif // HAS_POWER_SWITCH
  2937. /**
  2938. * M81: Turn off Power, including Power Supply, if there is one.
  2939. *
  2940. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  2941. */
  2942. inline void gcode_M81() {
  2943. disable_all_heaters();
  2944. st_synchronize();
  2945. disable_e0();
  2946. disable_e1();
  2947. disable_e2();
  2948. disable_e3();
  2949. finishAndDisableSteppers();
  2950. fanSpeed = 0;
  2951. delay(1000); // Wait 1 second before switching off
  2952. #if HAS_SUICIDE
  2953. st_synchronize();
  2954. suicide();
  2955. #elif HAS_POWER_SWITCH
  2956. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2957. #endif
  2958. #ifdef ULTIPANEL
  2959. #if HAS_POWER_SWITCH
  2960. powersupply = false;
  2961. #endif
  2962. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2963. lcd_update();
  2964. #endif
  2965. }
  2966. /**
  2967. * M82: Set E codes absolute (default)
  2968. */
  2969. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2970. /**
  2971. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2972. */
  2973. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2974. /**
  2975. * M18, M84: Disable all stepper motors
  2976. */
  2977. inline void gcode_M18_M84() {
  2978. if (code_seen('S')) {
  2979. stepper_inactive_time = code_value() * 1000;
  2980. }
  2981. else {
  2982. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2983. if (all_axis) {
  2984. st_synchronize();
  2985. disable_e0();
  2986. disable_e1();
  2987. disable_e2();
  2988. disable_e3();
  2989. finishAndDisableSteppers();
  2990. }
  2991. else {
  2992. st_synchronize();
  2993. if (code_seen('X')) disable_x();
  2994. if (code_seen('Y')) disable_y();
  2995. if (code_seen('Z')) disable_z();
  2996. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2997. if (code_seen('E')) {
  2998. disable_e0();
  2999. disable_e1();
  3000. disable_e2();
  3001. disable_e3();
  3002. }
  3003. #endif
  3004. }
  3005. }
  3006. }
  3007. /**
  3008. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3009. */
  3010. inline void gcode_M85() {
  3011. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3012. }
  3013. /**
  3014. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3015. * (Follows the same syntax as G92)
  3016. */
  3017. inline void gcode_M92() {
  3018. for(int8_t i=0; i < NUM_AXIS; i++) {
  3019. if (code_seen(axis_codes[i])) {
  3020. if (i == E_AXIS) {
  3021. float value = code_value();
  3022. if (value < 20.0) {
  3023. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3024. max_e_jerk *= factor;
  3025. max_feedrate[i] *= factor;
  3026. axis_steps_per_sqr_second[i] *= factor;
  3027. }
  3028. axis_steps_per_unit[i] = value;
  3029. }
  3030. else {
  3031. axis_steps_per_unit[i] = code_value();
  3032. }
  3033. }
  3034. }
  3035. }
  3036. /**
  3037. * M114: Output current position to serial port
  3038. */
  3039. inline void gcode_M114() {
  3040. SERIAL_PROTOCOLPGM("X:");
  3041. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3042. SERIAL_PROTOCOLPGM(" Y:");
  3043. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3044. SERIAL_PROTOCOLPGM(" Z:");
  3045. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3046. SERIAL_PROTOCOLPGM(" E:");
  3047. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3048. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3049. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3050. SERIAL_PROTOCOLPGM(" Y:");
  3051. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3052. SERIAL_PROTOCOLPGM(" Z:");
  3053. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3054. SERIAL_EOL;
  3055. #ifdef SCARA
  3056. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3057. SERIAL_PROTOCOL(delta[X_AXIS]);
  3058. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3059. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3060. SERIAL_EOL;
  3061. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3062. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3063. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3064. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3065. SERIAL_EOL;
  3066. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3067. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3068. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3069. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3070. SERIAL_EOL; SERIAL_EOL;
  3071. #endif
  3072. }
  3073. /**
  3074. * M115: Capabilities string
  3075. */
  3076. inline void gcode_M115() {
  3077. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3078. }
  3079. /**
  3080. * M117: Set LCD Status Message
  3081. */
  3082. inline void gcode_M117() {
  3083. char* codepos = strchr_pointer + 5;
  3084. char* starpos = strchr(codepos, '*');
  3085. if (starpos) *starpos = '\0';
  3086. lcd_setstatus(codepos);
  3087. }
  3088. /**
  3089. * M119: Output endstop states to serial output
  3090. */
  3091. inline void gcode_M119() {
  3092. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3093. #if HAS_X_MIN
  3094. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3095. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3096. #endif
  3097. #if HAS_X_MAX
  3098. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3099. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3100. #endif
  3101. #if HAS_Y_MIN
  3102. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3103. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3104. #endif
  3105. #if HAS_Y_MAX
  3106. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3107. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3108. #endif
  3109. #if HAS_Z_MIN
  3110. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3111. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3112. #endif
  3113. #if HAS_Z_MAX
  3114. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3115. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3116. #endif
  3117. #if HAS_Z2_MAX
  3118. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3119. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3120. #endif
  3121. #if HAS_Z_PROBE
  3122. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3123. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3124. #endif
  3125. }
  3126. /**
  3127. * M120: Enable endstops
  3128. */
  3129. inline void gcode_M120() { enable_endstops(false); }
  3130. /**
  3131. * M121: Disable endstops
  3132. */
  3133. inline void gcode_M121() { enable_endstops(true); }
  3134. #ifdef BLINKM
  3135. /**
  3136. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3137. */
  3138. inline void gcode_M150() {
  3139. SendColors(
  3140. code_seen('R') ? (byte)code_value_short() : 0,
  3141. code_seen('U') ? (byte)code_value_short() : 0,
  3142. code_seen('B') ? (byte)code_value_short() : 0
  3143. );
  3144. }
  3145. #endif // BLINKM
  3146. /**
  3147. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3148. * T<extruder>
  3149. * D<millimeters>
  3150. */
  3151. inline void gcode_M200() {
  3152. int tmp_extruder = active_extruder;
  3153. if (code_seen('T')) {
  3154. tmp_extruder = code_value_short();
  3155. if (tmp_extruder >= EXTRUDERS) {
  3156. SERIAL_ECHO_START;
  3157. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3158. return;
  3159. }
  3160. }
  3161. if (code_seen('D')) {
  3162. float diameter = code_value();
  3163. // setting any extruder filament size disables volumetric on the assumption that
  3164. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3165. // for all extruders
  3166. volumetric_enabled = (diameter != 0.0);
  3167. if (volumetric_enabled) {
  3168. filament_size[tmp_extruder] = diameter;
  3169. // make sure all extruders have some sane value for the filament size
  3170. for (int i=0; i<EXTRUDERS; i++)
  3171. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3172. }
  3173. }
  3174. else {
  3175. //reserved for setting filament diameter via UFID or filament measuring device
  3176. return;
  3177. }
  3178. calculate_volumetric_multipliers();
  3179. }
  3180. /**
  3181. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3182. */
  3183. inline void gcode_M201() {
  3184. for (int8_t i=0; i < NUM_AXIS; i++) {
  3185. if (code_seen(axis_codes[i])) {
  3186. max_acceleration_units_per_sq_second[i] = code_value();
  3187. }
  3188. }
  3189. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3190. reset_acceleration_rates();
  3191. }
  3192. #if 0 // Not used for Sprinter/grbl gen6
  3193. inline void gcode_M202() {
  3194. for(int8_t i=0; i < NUM_AXIS; i++) {
  3195. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3196. }
  3197. }
  3198. #endif
  3199. /**
  3200. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3201. */
  3202. inline void gcode_M203() {
  3203. for (int8_t i=0; i < NUM_AXIS; i++) {
  3204. if (code_seen(axis_codes[i])) {
  3205. max_feedrate[i] = code_value();
  3206. }
  3207. }
  3208. }
  3209. /**
  3210. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3211. *
  3212. * P = Printing moves
  3213. * R = Retract only (no X, Y, Z) moves
  3214. * T = Travel (non printing) moves
  3215. *
  3216. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3217. */
  3218. inline void gcode_M204() {
  3219. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3220. acceleration = code_value();
  3221. travel_acceleration = acceleration;
  3222. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3223. SERIAL_EOL;
  3224. }
  3225. if (code_seen('P')) {
  3226. acceleration = code_value();
  3227. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3228. SERIAL_EOL;
  3229. }
  3230. if (code_seen('R')) {
  3231. retract_acceleration = code_value();
  3232. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3233. SERIAL_EOL;
  3234. }
  3235. if (code_seen('T')) {
  3236. travel_acceleration = code_value();
  3237. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3238. SERIAL_EOL;
  3239. }
  3240. }
  3241. /**
  3242. * M205: Set Advanced Settings
  3243. *
  3244. * S = Min Feed Rate (mm/s)
  3245. * T = Min Travel Feed Rate (mm/s)
  3246. * B = Min Segment Time (µs)
  3247. * X = Max XY Jerk (mm/s/s)
  3248. * Z = Max Z Jerk (mm/s/s)
  3249. * E = Max E Jerk (mm/s/s)
  3250. */
  3251. inline void gcode_M205() {
  3252. if (code_seen('S')) minimumfeedrate = code_value();
  3253. if (code_seen('T')) mintravelfeedrate = code_value();
  3254. if (code_seen('B')) minsegmenttime = code_value();
  3255. if (code_seen('X')) max_xy_jerk = code_value();
  3256. if (code_seen('Z')) max_z_jerk = code_value();
  3257. if (code_seen('E')) max_e_jerk = code_value();
  3258. }
  3259. /**
  3260. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3261. */
  3262. inline void gcode_M206() {
  3263. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3264. if (code_seen(axis_codes[i])) {
  3265. home_offset[i] = code_value();
  3266. }
  3267. }
  3268. #ifdef SCARA
  3269. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3270. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3271. #endif
  3272. }
  3273. #ifdef DELTA
  3274. /**
  3275. * M665: Set delta configurations
  3276. *
  3277. * L = diagonal rod
  3278. * R = delta radius
  3279. * S = segments per second
  3280. */
  3281. inline void gcode_M665() {
  3282. if (code_seen('L')) delta_diagonal_rod = code_value();
  3283. if (code_seen('R')) delta_radius = code_value();
  3284. if (code_seen('S')) delta_segments_per_second = code_value();
  3285. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3286. }
  3287. /**
  3288. * M666: Set delta endstop adjustment
  3289. */
  3290. inline void gcode_M666() {
  3291. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3292. if (code_seen(axis_codes[i])) {
  3293. endstop_adj[i] = code_value();
  3294. }
  3295. }
  3296. }
  3297. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3298. /**
  3299. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3300. */
  3301. inline void gcode_M666() {
  3302. if (code_seen('Z')) z_endstop_adj = code_value();
  3303. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3304. SERIAL_EOL;
  3305. }
  3306. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3307. #ifdef FWRETRACT
  3308. /**
  3309. * M207: Set firmware retraction values
  3310. *
  3311. * S[+mm] retract_length
  3312. * W[+mm] retract_length_swap (multi-extruder)
  3313. * F[mm/min] retract_feedrate
  3314. * Z[mm] retract_zlift
  3315. */
  3316. inline void gcode_M207() {
  3317. if (code_seen('S')) retract_length = code_value();
  3318. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3319. if (code_seen('Z')) retract_zlift = code_value();
  3320. #if EXTRUDERS > 1
  3321. if (code_seen('W')) retract_length_swap = code_value();
  3322. #endif
  3323. }
  3324. /**
  3325. * M208: Set firmware un-retraction values
  3326. *
  3327. * S[+mm] retract_recover_length (in addition to M207 S*)
  3328. * W[+mm] retract_recover_length_swap (multi-extruder)
  3329. * F[mm/min] retract_recover_feedrate
  3330. */
  3331. inline void gcode_M208() {
  3332. if (code_seen('S')) retract_recover_length = code_value();
  3333. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3334. #if EXTRUDERS > 1
  3335. if (code_seen('W')) retract_recover_length_swap = code_value();
  3336. #endif
  3337. }
  3338. /**
  3339. * M209: Enable automatic retract (M209 S1)
  3340. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3341. */
  3342. inline void gcode_M209() {
  3343. if (code_seen('S')) {
  3344. int t = code_value_short();
  3345. switch(t) {
  3346. case 0:
  3347. autoretract_enabled = false;
  3348. break;
  3349. case 1:
  3350. autoretract_enabled = true;
  3351. break;
  3352. default:
  3353. SERIAL_ECHO_START;
  3354. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3355. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  3356. SERIAL_ECHOLNPGM("\"");
  3357. return;
  3358. }
  3359. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3360. }
  3361. }
  3362. #endif // FWRETRACT
  3363. #if EXTRUDERS > 1
  3364. /**
  3365. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3366. */
  3367. inline void gcode_M218() {
  3368. if (setTargetedHotend(218)) return;
  3369. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3370. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3371. #ifdef DUAL_X_CARRIAGE
  3372. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3373. #endif
  3374. SERIAL_ECHO_START;
  3375. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3376. for (int e = 0; e < EXTRUDERS; e++) {
  3377. SERIAL_CHAR(' ');
  3378. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3379. SERIAL_CHAR(',');
  3380. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3381. #ifdef DUAL_X_CARRIAGE
  3382. SERIAL_CHAR(',');
  3383. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3384. #endif
  3385. }
  3386. SERIAL_EOL;
  3387. }
  3388. #endif // EXTRUDERS > 1
  3389. /**
  3390. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3391. */
  3392. inline void gcode_M220() {
  3393. if (code_seen('S')) feedrate_multiplier = code_value();
  3394. }
  3395. /**
  3396. * M221: Set extrusion percentage (M221 T0 S95)
  3397. */
  3398. inline void gcode_M221() {
  3399. if (code_seen('S')) {
  3400. int sval = code_value();
  3401. if (code_seen('T')) {
  3402. if (setTargetedHotend(221)) return;
  3403. extruder_multiply[target_extruder] = sval;
  3404. }
  3405. else {
  3406. extruder_multiply[active_extruder] = sval;
  3407. }
  3408. }
  3409. }
  3410. /**
  3411. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3412. */
  3413. inline void gcode_M226() {
  3414. if (code_seen('P')) {
  3415. int pin_number = code_value();
  3416. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3417. if (pin_state >= -1 && pin_state <= 1) {
  3418. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3419. if (sensitive_pins[i] == pin_number) {
  3420. pin_number = -1;
  3421. break;
  3422. }
  3423. }
  3424. if (pin_number > -1) {
  3425. int target = LOW;
  3426. st_synchronize();
  3427. pinMode(pin_number, INPUT);
  3428. switch(pin_state){
  3429. case 1:
  3430. target = HIGH;
  3431. break;
  3432. case 0:
  3433. target = LOW;
  3434. break;
  3435. case -1:
  3436. target = !digitalRead(pin_number);
  3437. break;
  3438. }
  3439. while(digitalRead(pin_number) != target) {
  3440. manage_heater();
  3441. manage_inactivity();
  3442. lcd_update();
  3443. }
  3444. } // pin_number > -1
  3445. } // pin_state -1 0 1
  3446. } // code_seen('P')
  3447. }
  3448. #if NUM_SERVOS > 0
  3449. /**
  3450. * M280: Get or set servo position. P<index> S<angle>
  3451. */
  3452. inline void gcode_M280() {
  3453. int servo_index = code_seen('P') ? code_value_short() : -1;
  3454. int servo_position = 0;
  3455. if (code_seen('S')) {
  3456. servo_position = code_value_short();
  3457. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  3458. Servo *srv = &servo[servo_index];
  3459. #if SERVO_LEVELING
  3460. srv->attach(0);
  3461. #endif
  3462. srv->write(servo_position);
  3463. #if SERVO_LEVELING
  3464. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3465. srv->detach();
  3466. #endif
  3467. }
  3468. else {
  3469. SERIAL_ECHO_START;
  3470. SERIAL_ECHO("Servo ");
  3471. SERIAL_ECHO(servo_index);
  3472. SERIAL_ECHOLN(" out of range");
  3473. }
  3474. }
  3475. else if (servo_index >= 0) {
  3476. SERIAL_PROTOCOL(MSG_OK);
  3477. SERIAL_PROTOCOL(" Servo ");
  3478. SERIAL_PROTOCOL(servo_index);
  3479. SERIAL_PROTOCOL(": ");
  3480. SERIAL_PROTOCOL(servo[servo_index].read());
  3481. SERIAL_EOL;
  3482. }
  3483. }
  3484. #endif // NUM_SERVOS > 0
  3485. #if HAS_LCD_BUZZ
  3486. /**
  3487. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3488. */
  3489. inline void gcode_M300() {
  3490. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3491. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3492. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3493. lcd_buzz(beepP, beepS);
  3494. }
  3495. #endif // HAS_LCD_BUZZ
  3496. #ifdef PIDTEMP
  3497. /**
  3498. * M301: Set PID parameters P I D (and optionally C)
  3499. */
  3500. inline void gcode_M301() {
  3501. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3502. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3503. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3504. if (e < EXTRUDERS) { // catch bad input value
  3505. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3506. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3507. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3508. #ifdef PID_ADD_EXTRUSION_RATE
  3509. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3510. #endif
  3511. updatePID();
  3512. SERIAL_PROTOCOL(MSG_OK);
  3513. #ifdef PID_PARAMS_PER_EXTRUDER
  3514. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3515. SERIAL_PROTOCOL(e);
  3516. #endif // PID_PARAMS_PER_EXTRUDER
  3517. SERIAL_PROTOCOL(" p:");
  3518. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3519. SERIAL_PROTOCOL(" i:");
  3520. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3521. SERIAL_PROTOCOL(" d:");
  3522. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3523. #ifdef PID_ADD_EXTRUSION_RATE
  3524. SERIAL_PROTOCOL(" c:");
  3525. //Kc does not have scaling applied above, or in resetting defaults
  3526. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3527. #endif
  3528. SERIAL_EOL;
  3529. }
  3530. else {
  3531. SERIAL_ECHO_START;
  3532. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3533. }
  3534. }
  3535. #endif // PIDTEMP
  3536. #ifdef PIDTEMPBED
  3537. inline void gcode_M304() {
  3538. if (code_seen('P')) bedKp = code_value();
  3539. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3540. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3541. updatePID();
  3542. SERIAL_PROTOCOL(MSG_OK);
  3543. SERIAL_PROTOCOL(" p:");
  3544. SERIAL_PROTOCOL(bedKp);
  3545. SERIAL_PROTOCOL(" i:");
  3546. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3547. SERIAL_PROTOCOL(" d:");
  3548. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3549. SERIAL_EOL;
  3550. }
  3551. #endif // PIDTEMPBED
  3552. #if defined(CHDK) || HAS_PHOTOGRAPH
  3553. /**
  3554. * M240: Trigger a camera by emulating a Canon RC-1
  3555. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3556. */
  3557. inline void gcode_M240() {
  3558. #ifdef CHDK
  3559. OUT_WRITE(CHDK, HIGH);
  3560. chdkHigh = millis();
  3561. chdkActive = true;
  3562. #elif HAS_PHOTOGRAPH
  3563. const uint8_t NUM_PULSES = 16;
  3564. const float PULSE_LENGTH = 0.01524;
  3565. for (int i = 0; i < NUM_PULSES; i++) {
  3566. WRITE(PHOTOGRAPH_PIN, HIGH);
  3567. _delay_ms(PULSE_LENGTH);
  3568. WRITE(PHOTOGRAPH_PIN, LOW);
  3569. _delay_ms(PULSE_LENGTH);
  3570. }
  3571. delay(7.33);
  3572. for (int i = 0; i < NUM_PULSES; i++) {
  3573. WRITE(PHOTOGRAPH_PIN, HIGH);
  3574. _delay_ms(PULSE_LENGTH);
  3575. WRITE(PHOTOGRAPH_PIN, LOW);
  3576. _delay_ms(PULSE_LENGTH);
  3577. }
  3578. #endif // !CHDK && HAS_PHOTOGRAPH
  3579. }
  3580. #endif // CHDK || PHOTOGRAPH_PIN
  3581. #ifdef HAS_LCD_CONTRAST
  3582. /**
  3583. * M250: Read and optionally set the LCD contrast
  3584. */
  3585. inline void gcode_M250() {
  3586. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3587. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3588. SERIAL_PROTOCOL(lcd_contrast);
  3589. SERIAL_EOL;
  3590. }
  3591. #endif // HAS_LCD_CONTRAST
  3592. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3593. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3594. /**
  3595. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3596. */
  3597. inline void gcode_M302() {
  3598. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3599. }
  3600. #endif // PREVENT_DANGEROUS_EXTRUDE
  3601. /**
  3602. * M303: PID relay autotune
  3603. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3604. * E<extruder> (-1 for the bed)
  3605. * C<cycles>
  3606. */
  3607. inline void gcode_M303() {
  3608. int e = code_seen('E') ? code_value_short() : 0;
  3609. int c = code_seen('C') ? code_value_short() : 5;
  3610. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3611. PID_autotune(temp, e, c);
  3612. }
  3613. #ifdef SCARA
  3614. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3615. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3616. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3617. if (IsRunning()) {
  3618. //get_coordinates(); // For X Y Z E F
  3619. delta[X_AXIS] = delta_x;
  3620. delta[Y_AXIS] = delta_y;
  3621. calculate_SCARA_forward_Transform(delta);
  3622. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3623. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3624. prepare_move();
  3625. //ClearToSend();
  3626. return true;
  3627. }
  3628. return false;
  3629. }
  3630. /**
  3631. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3632. */
  3633. inline bool gcode_M360() {
  3634. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3635. return SCARA_move_to_cal(0, 120);
  3636. }
  3637. /**
  3638. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3639. */
  3640. inline bool gcode_M361() {
  3641. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3642. return SCARA_move_to_cal(90, 130);
  3643. }
  3644. /**
  3645. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3646. */
  3647. inline bool gcode_M362() {
  3648. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3649. return SCARA_move_to_cal(60, 180);
  3650. }
  3651. /**
  3652. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3653. */
  3654. inline bool gcode_M363() {
  3655. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3656. return SCARA_move_to_cal(50, 90);
  3657. }
  3658. /**
  3659. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3660. */
  3661. inline bool gcode_M364() {
  3662. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3663. return SCARA_move_to_cal(45, 135);
  3664. }
  3665. /**
  3666. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3667. */
  3668. inline void gcode_M365() {
  3669. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3670. if (code_seen(axis_codes[i])) {
  3671. axis_scaling[i] = code_value();
  3672. }
  3673. }
  3674. }
  3675. #endif // SCARA
  3676. #ifdef EXT_SOLENOID
  3677. void enable_solenoid(uint8_t num) {
  3678. switch(num) {
  3679. case 0:
  3680. OUT_WRITE(SOL0_PIN, HIGH);
  3681. break;
  3682. #if HAS_SOLENOID_1
  3683. case 1:
  3684. OUT_WRITE(SOL1_PIN, HIGH);
  3685. break;
  3686. #endif
  3687. #if HAS_SOLENOID_2
  3688. case 2:
  3689. OUT_WRITE(SOL2_PIN, HIGH);
  3690. break;
  3691. #endif
  3692. #if HAS_SOLENOID_3
  3693. case 3:
  3694. OUT_WRITE(SOL3_PIN, HIGH);
  3695. break;
  3696. #endif
  3697. default:
  3698. SERIAL_ECHO_START;
  3699. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3700. break;
  3701. }
  3702. }
  3703. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3704. void disable_all_solenoids() {
  3705. OUT_WRITE(SOL0_PIN, LOW);
  3706. OUT_WRITE(SOL1_PIN, LOW);
  3707. OUT_WRITE(SOL2_PIN, LOW);
  3708. OUT_WRITE(SOL3_PIN, LOW);
  3709. }
  3710. /**
  3711. * M380: Enable solenoid on the active extruder
  3712. */
  3713. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3714. /**
  3715. * M381: Disable all solenoids
  3716. */
  3717. inline void gcode_M381() { disable_all_solenoids(); }
  3718. #endif // EXT_SOLENOID
  3719. /**
  3720. * M400: Finish all moves
  3721. */
  3722. inline void gcode_M400() { st_synchronize(); }
  3723. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(Z_PROBE_SLED) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY))
  3724. #ifdef SERVO_ENDSTOPS
  3725. void raise_z_for_servo() {
  3726. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3727. z_dest += axis_known_position[Z_AXIS] ? -zprobe_zoffset : zpos;
  3728. if (zpos < z_dest)
  3729. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_dest); // also updates current_position
  3730. }
  3731. #endif
  3732. /**
  3733. * M401: Engage Z Servo endstop if available
  3734. */
  3735. inline void gcode_M401() {
  3736. #ifdef SERVO_ENDSTOPS
  3737. raise_z_for_servo();
  3738. #endif
  3739. deploy_z_probe();
  3740. }
  3741. /**
  3742. * M402: Retract Z Servo endstop if enabled
  3743. */
  3744. inline void gcode_M402() {
  3745. #ifdef SERVO_ENDSTOPS
  3746. raise_z_for_servo();
  3747. #endif
  3748. stow_z_probe(false);
  3749. }
  3750. #endif
  3751. #ifdef FILAMENT_SENSOR
  3752. /**
  3753. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3754. */
  3755. inline void gcode_M404() {
  3756. #if HAS_FILWIDTH
  3757. if (code_seen('W')) {
  3758. filament_width_nominal = code_value();
  3759. }
  3760. else {
  3761. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3762. SERIAL_PROTOCOLLN(filament_width_nominal);
  3763. }
  3764. #endif
  3765. }
  3766. /**
  3767. * M405: Turn on filament sensor for control
  3768. */
  3769. inline void gcode_M405() {
  3770. if (code_seen('D')) meas_delay_cm = code_value();
  3771. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3772. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3773. int temp_ratio = widthFil_to_size_ratio();
  3774. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3775. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3776. delay_index1 = delay_index2 = 0;
  3777. }
  3778. filament_sensor = true;
  3779. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3780. //SERIAL_PROTOCOL(filament_width_meas);
  3781. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3782. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3783. }
  3784. /**
  3785. * M406: Turn off filament sensor for control
  3786. */
  3787. inline void gcode_M406() { filament_sensor = false; }
  3788. /**
  3789. * M407: Get measured filament diameter on serial output
  3790. */
  3791. inline void gcode_M407() {
  3792. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3793. SERIAL_PROTOCOLLN(filament_width_meas);
  3794. }
  3795. #endif // FILAMENT_SENSOR
  3796. /**
  3797. * M410: Quickstop - Abort all planned moves
  3798. *
  3799. * This will stop the carriages mid-move, so most likely they
  3800. * will be out of sync with the stepper position after this.
  3801. */
  3802. inline void gcode_M410() { quickStop(); }
  3803. #ifdef MESH_BED_LEVELING
  3804. /**
  3805. * M420: Enable/Disable Mesh Bed Leveling
  3806. */
  3807. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  3808. /**
  3809. * M421: Set a single Mesh Bed Leveling Z coordinate
  3810. */
  3811. inline void gcode_M421() {
  3812. float x, y, z;
  3813. bool err = false, hasX, hasY, hasZ;
  3814. if ((hasX = code_seen('X'))) x = code_value();
  3815. if ((hasY = code_seen('Y'))) y = code_value();
  3816. if ((hasZ = code_seen('Z'))) z = code_value();
  3817. if (!hasX || !hasY || !hasZ) {
  3818. SERIAL_ERROR_START;
  3819. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  3820. err = true;
  3821. }
  3822. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  3823. SERIAL_ERROR_START;
  3824. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  3825. err = true;
  3826. }
  3827. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  3828. }
  3829. #endif
  3830. /**
  3831. * M428: Set home_offset based on the distance between the
  3832. * current_position and the nearest "reference point."
  3833. * If an axis is past center its endstop position
  3834. * is the reference-point. Otherwise it uses 0. This allows
  3835. * the Z offset to be set near the bed when using a max endstop.
  3836. *
  3837. * M428 can't be used more than 2cm away from 0 or an endstop.
  3838. *
  3839. * Use M206 to set these values directly.
  3840. */
  3841. inline void gcode_M428() {
  3842. bool err = false;
  3843. float new_offs[3], new_pos[3];
  3844. memcpy(new_pos, current_position, sizeof(new_pos));
  3845. memcpy(new_offs, home_offset, sizeof(new_offs));
  3846. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3847. if (axis_known_position[i]) {
  3848. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  3849. diff = new_pos[i] - base;
  3850. if (diff > -20 && diff < 20) {
  3851. new_offs[i] -= diff;
  3852. new_pos[i] = base;
  3853. }
  3854. else {
  3855. SERIAL_ERROR_START;
  3856. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  3857. LCD_ALERTMESSAGEPGM("Err: Too far!");
  3858. #if HAS_LCD_BUZZ
  3859. enqueuecommands_P(PSTR("M300 S40 P200"));
  3860. #endif
  3861. err = true;
  3862. break;
  3863. }
  3864. }
  3865. }
  3866. if (!err) {
  3867. memcpy(current_position, new_pos, sizeof(new_pos));
  3868. memcpy(home_offset, new_offs, sizeof(new_offs));
  3869. sync_plan_position();
  3870. LCD_ALERTMESSAGEPGM("Offset applied.");
  3871. #if HAS_LCD_BUZZ
  3872. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  3873. #endif
  3874. }
  3875. }
  3876. /**
  3877. * M500: Store settings in EEPROM
  3878. */
  3879. inline void gcode_M500() {
  3880. Config_StoreSettings();
  3881. }
  3882. /**
  3883. * M501: Read settings from EEPROM
  3884. */
  3885. inline void gcode_M501() {
  3886. Config_RetrieveSettings();
  3887. }
  3888. /**
  3889. * M502: Revert to default settings
  3890. */
  3891. inline void gcode_M502() {
  3892. Config_ResetDefault();
  3893. }
  3894. /**
  3895. * M503: print settings currently in memory
  3896. */
  3897. inline void gcode_M503() {
  3898. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3899. }
  3900. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3901. /**
  3902. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3903. */
  3904. inline void gcode_M540() {
  3905. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3906. }
  3907. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3908. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3909. inline void gcode_SET_Z_PROBE_OFFSET() {
  3910. float value;
  3911. if (code_seen('Z')) {
  3912. value = code_value();
  3913. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3914. zprobe_zoffset = -value; // compare w/ line 278 of configuration_store.cpp
  3915. SERIAL_ECHO_START;
  3916. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3917. SERIAL_EOL;
  3918. }
  3919. else {
  3920. SERIAL_ECHO_START;
  3921. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3922. SERIAL_ECHOPGM(MSG_Z_MIN);
  3923. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3924. SERIAL_ECHOPGM(MSG_Z_MAX);
  3925. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3926. SERIAL_EOL;
  3927. }
  3928. }
  3929. else {
  3930. SERIAL_ECHO_START;
  3931. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3932. SERIAL_ECHO(-zprobe_zoffset);
  3933. SERIAL_EOL;
  3934. }
  3935. }
  3936. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3937. #ifdef FILAMENTCHANGEENABLE
  3938. /**
  3939. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3940. */
  3941. inline void gcode_M600() {
  3942. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3943. for (int i=0; i<NUM_AXIS; i++)
  3944. target[i] = lastpos[i] = current_position[i];
  3945. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3946. #ifdef DELTA
  3947. #define RUNPLAN calculate_delta(target); BASICPLAN
  3948. #else
  3949. #define RUNPLAN BASICPLAN
  3950. #endif
  3951. //retract by E
  3952. if (code_seen('E')) target[E_AXIS] += code_value();
  3953. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3954. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3955. #endif
  3956. RUNPLAN;
  3957. //lift Z
  3958. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3959. #ifdef FILAMENTCHANGE_ZADD
  3960. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3961. #endif
  3962. RUNPLAN;
  3963. //move xy
  3964. if (code_seen('X')) target[X_AXIS] = code_value();
  3965. #ifdef FILAMENTCHANGE_XPOS
  3966. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3967. #endif
  3968. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3969. #ifdef FILAMENTCHANGE_YPOS
  3970. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3971. #endif
  3972. RUNPLAN;
  3973. if (code_seen('L')) target[E_AXIS] += code_value();
  3974. #ifdef FILAMENTCHANGE_FINALRETRACT
  3975. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3976. #endif
  3977. RUNPLAN;
  3978. //finish moves
  3979. st_synchronize();
  3980. //disable extruder steppers so filament can be removed
  3981. disable_e0();
  3982. disable_e1();
  3983. disable_e2();
  3984. disable_e3();
  3985. delay(100);
  3986. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3987. uint8_t cnt = 0;
  3988. while (!lcd_clicked()) {
  3989. if (++cnt == 0) lcd_quick_feedback(); // every 256th frame till the lcd is clicked
  3990. manage_heater();
  3991. manage_inactivity(true);
  3992. lcd_update();
  3993. } // while(!lcd_clicked)
  3994. //return to normal
  3995. if (code_seen('L')) target[E_AXIS] -= code_value();
  3996. #ifdef FILAMENTCHANGE_FINALRETRACT
  3997. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3998. #endif
  3999. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4000. plan_set_e_position(current_position[E_AXIS]);
  4001. RUNPLAN; //should do nothing
  4002. lcd_reset_alert_level();
  4003. #ifdef DELTA
  4004. calculate_delta(lastpos);
  4005. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  4006. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4007. #else
  4008. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  4009. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  4010. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  4011. #endif
  4012. #ifdef FILAMENT_RUNOUT_SENSOR
  4013. filrunoutEnqueued = false;
  4014. #endif
  4015. }
  4016. #endif // FILAMENTCHANGEENABLE
  4017. #ifdef DUAL_X_CARRIAGE
  4018. /**
  4019. * M605: Set dual x-carriage movement mode
  4020. *
  4021. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4022. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4023. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4024. * millimeters x-offset and an optional differential hotend temperature of
  4025. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4026. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4027. *
  4028. * Note: the X axis should be homed after changing dual x-carriage mode.
  4029. */
  4030. inline void gcode_M605() {
  4031. st_synchronize();
  4032. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4033. switch(dual_x_carriage_mode) {
  4034. case DXC_DUPLICATION_MODE:
  4035. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4036. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4037. SERIAL_ECHO_START;
  4038. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4039. SERIAL_CHAR(' ');
  4040. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4041. SERIAL_CHAR(',');
  4042. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4043. SERIAL_CHAR(' ');
  4044. SERIAL_ECHO(duplicate_extruder_x_offset);
  4045. SERIAL_CHAR(',');
  4046. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4047. break;
  4048. case DXC_FULL_CONTROL_MODE:
  4049. case DXC_AUTO_PARK_MODE:
  4050. break;
  4051. default:
  4052. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4053. break;
  4054. }
  4055. active_extruder_parked = false;
  4056. extruder_duplication_enabled = false;
  4057. delayed_move_time = 0;
  4058. }
  4059. #endif // DUAL_X_CARRIAGE
  4060. /**
  4061. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4062. */
  4063. inline void gcode_M907() {
  4064. #if HAS_DIGIPOTSS
  4065. for (int i=0;i<NUM_AXIS;i++)
  4066. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4067. if (code_seen('B')) digipot_current(4, code_value());
  4068. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4069. #endif
  4070. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4071. if (code_seen('X')) digipot_current(0, code_value());
  4072. #endif
  4073. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4074. if (code_seen('Z')) digipot_current(1, code_value());
  4075. #endif
  4076. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4077. if (code_seen('E')) digipot_current(2, code_value());
  4078. #endif
  4079. #ifdef DIGIPOT_I2C
  4080. // this one uses actual amps in floating point
  4081. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4082. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4083. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4084. #endif
  4085. }
  4086. #if HAS_DIGIPOTSS
  4087. /**
  4088. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4089. */
  4090. inline void gcode_M908() {
  4091. digitalPotWrite(
  4092. code_seen('P') ? code_value() : 0,
  4093. code_seen('S') ? code_value() : 0
  4094. );
  4095. }
  4096. #endif // HAS_DIGIPOTSS
  4097. #if HAS_MICROSTEPS
  4098. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4099. inline void gcode_M350() {
  4100. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4101. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4102. if(code_seen('B')) microstep_mode(4,code_value());
  4103. microstep_readings();
  4104. }
  4105. /**
  4106. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4107. * S# determines MS1 or MS2, X# sets the pin high/low.
  4108. */
  4109. inline void gcode_M351() {
  4110. if (code_seen('S')) switch(code_value_short()) {
  4111. case 1:
  4112. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4113. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4114. break;
  4115. case 2:
  4116. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4117. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4118. break;
  4119. }
  4120. microstep_readings();
  4121. }
  4122. #endif // HAS_MICROSTEPS
  4123. /**
  4124. * M999: Restart after being stopped
  4125. */
  4126. inline void gcode_M999() {
  4127. Running = true;
  4128. lcd_reset_alert_level();
  4129. gcode_LastN = Stopped_gcode_LastN;
  4130. FlushSerialRequestResend();
  4131. }
  4132. /**
  4133. * T0-T3: Switch tool, usually switching extruders
  4134. */
  4135. inline void gcode_T() {
  4136. int tmp_extruder = code_value();
  4137. if (tmp_extruder >= EXTRUDERS) {
  4138. SERIAL_ECHO_START;
  4139. SERIAL_CHAR('T');
  4140. SERIAL_ECHO(tmp_extruder);
  4141. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4142. }
  4143. else {
  4144. target_extruder = tmp_extruder;
  4145. #if EXTRUDERS > 1
  4146. bool make_move = false;
  4147. #endif
  4148. if (code_seen('F')) {
  4149. #if EXTRUDERS > 1
  4150. make_move = true;
  4151. #endif
  4152. next_feedrate = code_value();
  4153. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4154. }
  4155. #if EXTRUDERS > 1
  4156. if (tmp_extruder != active_extruder) {
  4157. // Save current position to return to after applying extruder offset
  4158. set_destination_to_current();
  4159. #ifdef DUAL_X_CARRIAGE
  4160. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4161. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4162. // Park old head: 1) raise 2) move to park position 3) lower
  4163. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4164. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4165. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4166. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4167. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4168. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4169. st_synchronize();
  4170. }
  4171. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4172. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4173. extruder_offset[Y_AXIS][active_extruder] +
  4174. extruder_offset[Y_AXIS][tmp_extruder];
  4175. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4176. extruder_offset[Z_AXIS][active_extruder] +
  4177. extruder_offset[Z_AXIS][tmp_extruder];
  4178. active_extruder = tmp_extruder;
  4179. // This function resets the max/min values - the current position may be overwritten below.
  4180. axis_is_at_home(X_AXIS);
  4181. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4182. current_position[X_AXIS] = inactive_extruder_x_pos;
  4183. inactive_extruder_x_pos = destination[X_AXIS];
  4184. }
  4185. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4186. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4187. if (active_extruder == 0 || active_extruder_parked)
  4188. current_position[X_AXIS] = inactive_extruder_x_pos;
  4189. else
  4190. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4191. inactive_extruder_x_pos = destination[X_AXIS];
  4192. extruder_duplication_enabled = false;
  4193. }
  4194. else {
  4195. // record raised toolhead position for use by unpark
  4196. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4197. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4198. active_extruder_parked = true;
  4199. delayed_move_time = 0;
  4200. }
  4201. #else // !DUAL_X_CARRIAGE
  4202. // Offset extruder (only by XY)
  4203. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4204. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4205. // Set the new active extruder and position
  4206. active_extruder = tmp_extruder;
  4207. #endif // !DUAL_X_CARRIAGE
  4208. #ifdef DELTA
  4209. sync_plan_position_delta();
  4210. #else
  4211. sync_plan_position();
  4212. #endif
  4213. // Move to the old position if 'F' was in the parameters
  4214. if (make_move && IsRunning()) prepare_move();
  4215. }
  4216. #ifdef EXT_SOLENOID
  4217. st_synchronize();
  4218. disable_all_solenoids();
  4219. enable_solenoid_on_active_extruder();
  4220. #endif // EXT_SOLENOID
  4221. #endif // EXTRUDERS > 1
  4222. SERIAL_ECHO_START;
  4223. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4224. SERIAL_PROTOCOLLN((int)active_extruder);
  4225. }
  4226. }
  4227. /**
  4228. * Process Commands and dispatch them to handlers
  4229. * This is called from the main loop()
  4230. */
  4231. void process_commands() {
  4232. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4233. SERIAL_ECHO_START;
  4234. SERIAL_ECHOLN(command_queue[cmd_queue_index_r]);
  4235. }
  4236. if (code_seen('G')) {
  4237. int gCode = code_value_short();
  4238. switch(gCode) {
  4239. // G0, G1
  4240. case 0:
  4241. case 1:
  4242. gcode_G0_G1();
  4243. break;
  4244. // G2, G3
  4245. #ifndef SCARA
  4246. case 2: // G2 - CW ARC
  4247. case 3: // G3 - CCW ARC
  4248. gcode_G2_G3(gCode == 2);
  4249. break;
  4250. #endif
  4251. // G4 Dwell
  4252. case 4:
  4253. gcode_G4();
  4254. break;
  4255. #ifdef FWRETRACT
  4256. case 10: // G10: retract
  4257. case 11: // G11: retract_recover
  4258. gcode_G10_G11(gCode == 10);
  4259. break;
  4260. #endif //FWRETRACT
  4261. case 28: // G28: Home all axes, one at a time
  4262. gcode_G28();
  4263. break;
  4264. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4265. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4266. gcode_G29();
  4267. break;
  4268. #endif
  4269. #ifdef ENABLE_AUTO_BED_LEVELING
  4270. #ifndef Z_PROBE_SLED
  4271. case 30: // G30 Single Z Probe
  4272. gcode_G30();
  4273. break;
  4274. #else // Z_PROBE_SLED
  4275. case 31: // G31: dock the sled
  4276. case 32: // G32: undock the sled
  4277. dock_sled(gCode == 31);
  4278. break;
  4279. #endif // Z_PROBE_SLED
  4280. #endif // ENABLE_AUTO_BED_LEVELING
  4281. case 90: // G90
  4282. relative_mode = false;
  4283. break;
  4284. case 91: // G91
  4285. relative_mode = true;
  4286. break;
  4287. case 92: // G92
  4288. gcode_G92();
  4289. break;
  4290. }
  4291. }
  4292. else if (code_seen('M')) {
  4293. switch(code_value_short()) {
  4294. #ifdef ULTIPANEL
  4295. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4296. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4297. gcode_M0_M1();
  4298. break;
  4299. #endif // ULTIPANEL
  4300. case 17:
  4301. gcode_M17();
  4302. break;
  4303. #ifdef SDSUPPORT
  4304. case 20: // M20 - list SD card
  4305. gcode_M20(); break;
  4306. case 21: // M21 - init SD card
  4307. gcode_M21(); break;
  4308. case 22: //M22 - release SD card
  4309. gcode_M22(); break;
  4310. case 23: //M23 - Select file
  4311. gcode_M23(); break;
  4312. case 24: //M24 - Start SD print
  4313. gcode_M24(); break;
  4314. case 25: //M25 - Pause SD print
  4315. gcode_M25(); break;
  4316. case 26: //M26 - Set SD index
  4317. gcode_M26(); break;
  4318. case 27: //M27 - Get SD status
  4319. gcode_M27(); break;
  4320. case 28: //M28 - Start SD write
  4321. gcode_M28(); break;
  4322. case 29: //M29 - Stop SD write
  4323. gcode_M29(); break;
  4324. case 30: //M30 <filename> Delete File
  4325. gcode_M30(); break;
  4326. case 32: //M32 - Select file and start SD print
  4327. gcode_M32(); break;
  4328. case 928: //M928 - Start SD write
  4329. gcode_M928(); break;
  4330. #endif //SDSUPPORT
  4331. case 31: //M31 take time since the start of the SD print or an M109 command
  4332. gcode_M31();
  4333. break;
  4334. case 42: //M42 -Change pin status via gcode
  4335. gcode_M42();
  4336. break;
  4337. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4338. case 48: // M48 Z-Probe repeatability
  4339. gcode_M48();
  4340. break;
  4341. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4342. case 104: // M104
  4343. gcode_M104();
  4344. break;
  4345. case 111: // M111: Set debug level
  4346. gcode_M111();
  4347. break;
  4348. case 112: // M112: Emergency Stop
  4349. gcode_M112();
  4350. break;
  4351. case 140: // M140: Set bed temp
  4352. gcode_M140();
  4353. break;
  4354. case 105: // M105: Read current temperature
  4355. gcode_M105();
  4356. return;
  4357. break;
  4358. case 109: // M109: Wait for temperature
  4359. gcode_M109();
  4360. break;
  4361. #if HAS_TEMP_BED
  4362. case 190: // M190: Wait for bed heater to reach target
  4363. gcode_M190();
  4364. break;
  4365. #endif // HAS_TEMP_BED
  4366. #if HAS_FAN
  4367. case 106: // M106: Fan On
  4368. gcode_M106();
  4369. break;
  4370. case 107: // M107: Fan Off
  4371. gcode_M107();
  4372. break;
  4373. #endif // HAS_FAN
  4374. #ifdef BARICUDA
  4375. // PWM for HEATER_1_PIN
  4376. #if HAS_HEATER_1
  4377. case 126: // M126: valve open
  4378. gcode_M126();
  4379. break;
  4380. case 127: // M127: valve closed
  4381. gcode_M127();
  4382. break;
  4383. #endif // HAS_HEATER_1
  4384. // PWM for HEATER_2_PIN
  4385. #if HAS_HEATER_2
  4386. case 128: // M128: valve open
  4387. gcode_M128();
  4388. break;
  4389. case 129: // M129: valve closed
  4390. gcode_M129();
  4391. break;
  4392. #endif // HAS_HEATER_2
  4393. #endif // BARICUDA
  4394. #if HAS_POWER_SWITCH
  4395. case 80: // M80: Turn on Power Supply
  4396. gcode_M80();
  4397. break;
  4398. #endif // HAS_POWER_SWITCH
  4399. case 81: // M81: Turn off Power, including Power Supply, if possible
  4400. gcode_M81();
  4401. break;
  4402. case 82:
  4403. gcode_M82();
  4404. break;
  4405. case 83:
  4406. gcode_M83();
  4407. break;
  4408. case 18: // (for compatibility)
  4409. case 84: // M84
  4410. gcode_M18_M84();
  4411. break;
  4412. case 85: // M85
  4413. gcode_M85();
  4414. break;
  4415. case 92: // M92: Set the steps-per-unit for one or more axes
  4416. gcode_M92();
  4417. break;
  4418. case 115: // M115: Report capabilities
  4419. gcode_M115();
  4420. break;
  4421. case 117: // M117: Set LCD message text
  4422. gcode_M117();
  4423. break;
  4424. case 114: // M114: Report current position
  4425. gcode_M114();
  4426. break;
  4427. case 120: // M120: Enable endstops
  4428. gcode_M120();
  4429. break;
  4430. case 121: // M121: Disable endstops
  4431. gcode_M121();
  4432. break;
  4433. case 119: // M119: Report endstop states
  4434. gcode_M119();
  4435. break;
  4436. #ifdef ULTIPANEL
  4437. case 145: // M145: Set material heatup parameters
  4438. gcode_M145();
  4439. break;
  4440. #endif
  4441. #ifdef BLINKM
  4442. case 150: // M150
  4443. gcode_M150();
  4444. break;
  4445. #endif //BLINKM
  4446. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4447. gcode_M200();
  4448. break;
  4449. case 201: // M201
  4450. gcode_M201();
  4451. break;
  4452. #if 0 // Not used for Sprinter/grbl gen6
  4453. case 202: // M202
  4454. gcode_M202();
  4455. break;
  4456. #endif
  4457. case 203: // M203 max feedrate mm/sec
  4458. gcode_M203();
  4459. break;
  4460. case 204: // M204 acclereration S normal moves T filmanent only moves
  4461. gcode_M204();
  4462. break;
  4463. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4464. gcode_M205();
  4465. break;
  4466. case 206: // M206 additional homing offset
  4467. gcode_M206();
  4468. break;
  4469. #ifdef DELTA
  4470. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4471. gcode_M665();
  4472. break;
  4473. #endif
  4474. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4475. case 666: // M666 set delta / dual endstop adjustment
  4476. gcode_M666();
  4477. break;
  4478. #endif
  4479. #ifdef FWRETRACT
  4480. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4481. gcode_M207();
  4482. break;
  4483. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4484. gcode_M208();
  4485. break;
  4486. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4487. gcode_M209();
  4488. break;
  4489. #endif // FWRETRACT
  4490. #if EXTRUDERS > 1
  4491. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4492. gcode_M218();
  4493. break;
  4494. #endif
  4495. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4496. gcode_M220();
  4497. break;
  4498. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4499. gcode_M221();
  4500. break;
  4501. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4502. gcode_M226();
  4503. break;
  4504. #if NUM_SERVOS > 0
  4505. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4506. gcode_M280();
  4507. break;
  4508. #endif // NUM_SERVOS > 0
  4509. #if HAS_LCD_BUZZ
  4510. case 300: // M300 - Play beep tone
  4511. gcode_M300();
  4512. break;
  4513. #endif // HAS_LCD_BUZZ
  4514. #ifdef PIDTEMP
  4515. case 301: // M301
  4516. gcode_M301();
  4517. break;
  4518. #endif // PIDTEMP
  4519. #ifdef PIDTEMPBED
  4520. case 304: // M304
  4521. gcode_M304();
  4522. break;
  4523. #endif // PIDTEMPBED
  4524. #if defined(CHDK) || HAS_PHOTOGRAPH
  4525. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4526. gcode_M240();
  4527. break;
  4528. #endif // CHDK || PHOTOGRAPH_PIN
  4529. #ifdef HAS_LCD_CONTRAST
  4530. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4531. gcode_M250();
  4532. break;
  4533. #endif // HAS_LCD_CONTRAST
  4534. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4535. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4536. gcode_M302();
  4537. break;
  4538. #endif // PREVENT_DANGEROUS_EXTRUDE
  4539. case 303: // M303 PID autotune
  4540. gcode_M303();
  4541. break;
  4542. #ifdef SCARA
  4543. case 360: // M360 SCARA Theta pos1
  4544. if (gcode_M360()) return;
  4545. break;
  4546. case 361: // M361 SCARA Theta pos2
  4547. if (gcode_M361()) return;
  4548. break;
  4549. case 362: // M362 SCARA Psi pos1
  4550. if (gcode_M362()) return;
  4551. break;
  4552. case 363: // M363 SCARA Psi pos2
  4553. if (gcode_M363()) return;
  4554. break;
  4555. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4556. if (gcode_M364()) return;
  4557. break;
  4558. case 365: // M365 Set SCARA scaling for X Y Z
  4559. gcode_M365();
  4560. break;
  4561. #endif // SCARA
  4562. case 400: // M400 finish all moves
  4563. gcode_M400();
  4564. break;
  4565. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4566. case 401:
  4567. gcode_M401();
  4568. break;
  4569. case 402:
  4570. gcode_M402();
  4571. break;
  4572. #endif
  4573. #ifdef FILAMENT_SENSOR
  4574. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4575. gcode_M404();
  4576. break;
  4577. case 405: //M405 Turn on filament sensor for control
  4578. gcode_M405();
  4579. break;
  4580. case 406: //M406 Turn off filament sensor for control
  4581. gcode_M406();
  4582. break;
  4583. case 407: //M407 Display measured filament diameter
  4584. gcode_M407();
  4585. break;
  4586. #endif // FILAMENT_SENSOR
  4587. case 410: // M410 quickstop - Abort all the planned moves.
  4588. gcode_M410();
  4589. break;
  4590. #ifdef MESH_BED_LEVELING
  4591. case 420: // M420 Enable/Disable Mesh Bed Leveling
  4592. gcode_M420();
  4593. break;
  4594. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  4595. gcode_M421();
  4596. break;
  4597. #endif
  4598. case 428: // M428 Apply current_position to home_offset
  4599. gcode_M428();
  4600. break;
  4601. case 500: // M500 Store settings in EEPROM
  4602. gcode_M500();
  4603. break;
  4604. case 501: // M501 Read settings from EEPROM
  4605. gcode_M501();
  4606. break;
  4607. case 502: // M502 Revert to default settings
  4608. gcode_M502();
  4609. break;
  4610. case 503: // M503 print settings currently in memory
  4611. gcode_M503();
  4612. break;
  4613. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4614. case 540:
  4615. gcode_M540();
  4616. break;
  4617. #endif
  4618. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4619. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4620. gcode_SET_Z_PROBE_OFFSET();
  4621. break;
  4622. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4623. #ifdef FILAMENTCHANGEENABLE
  4624. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4625. gcode_M600();
  4626. break;
  4627. #endif // FILAMENTCHANGEENABLE
  4628. #ifdef DUAL_X_CARRIAGE
  4629. case 605:
  4630. gcode_M605();
  4631. break;
  4632. #endif // DUAL_X_CARRIAGE
  4633. case 907: // M907 Set digital trimpot motor current using axis codes.
  4634. gcode_M907();
  4635. break;
  4636. #if HAS_DIGIPOTSS
  4637. case 908: // M908 Control digital trimpot directly.
  4638. gcode_M908();
  4639. break;
  4640. #endif // HAS_DIGIPOTSS
  4641. #if HAS_MICROSTEPS
  4642. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4643. gcode_M350();
  4644. break;
  4645. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4646. gcode_M351();
  4647. break;
  4648. #endif // HAS_MICROSTEPS
  4649. case 999: // M999: Restart after being Stopped
  4650. gcode_M999();
  4651. break;
  4652. }
  4653. }
  4654. else if (code_seen('T')) {
  4655. gcode_T();
  4656. }
  4657. else {
  4658. SERIAL_ECHO_START;
  4659. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4660. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  4661. SERIAL_ECHOLNPGM("\"");
  4662. }
  4663. ClearToSend();
  4664. }
  4665. void FlushSerialRequestResend() {
  4666. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4667. MYSERIAL.flush();
  4668. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4669. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4670. ClearToSend();
  4671. }
  4672. void ClearToSend() {
  4673. refresh_cmd_timeout();
  4674. #ifdef SDSUPPORT
  4675. if (fromsd[cmd_queue_index_r]) return;
  4676. #endif
  4677. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4678. }
  4679. void get_coordinates() {
  4680. for (int i = 0; i < NUM_AXIS; i++) {
  4681. if (code_seen(axis_codes[i]))
  4682. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4683. else
  4684. destination[i] = current_position[i];
  4685. }
  4686. if (code_seen('F')) {
  4687. next_feedrate = code_value();
  4688. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4689. }
  4690. }
  4691. void get_arc_coordinates() {
  4692. #ifdef SF_ARC_FIX
  4693. bool relative_mode_backup = relative_mode;
  4694. relative_mode = true;
  4695. #endif
  4696. get_coordinates();
  4697. #ifdef SF_ARC_FIX
  4698. relative_mode = relative_mode_backup;
  4699. #endif
  4700. offset[0] = code_seen('I') ? code_value() : 0;
  4701. offset[1] = code_seen('J') ? code_value() : 0;
  4702. }
  4703. void clamp_to_software_endstops(float target[3]) {
  4704. if (min_software_endstops) {
  4705. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4706. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4707. float negative_z_offset = 0;
  4708. #ifdef ENABLE_AUTO_BED_LEVELING
  4709. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset += Z_PROBE_OFFSET_FROM_EXTRUDER;
  4710. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4711. #endif
  4712. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4713. }
  4714. if (max_software_endstops) {
  4715. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4716. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4717. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4718. }
  4719. }
  4720. #ifdef DELTA
  4721. void recalc_delta_settings(float radius, float diagonal_rod) {
  4722. delta_tower1_x = -SIN_60 * radius; // front left tower
  4723. delta_tower1_y = -COS_60 * radius;
  4724. delta_tower2_x = SIN_60 * radius; // front right tower
  4725. delta_tower2_y = -COS_60 * radius;
  4726. delta_tower3_x = 0.0; // back middle tower
  4727. delta_tower3_y = radius;
  4728. delta_diagonal_rod_2 = sq(diagonal_rod);
  4729. }
  4730. void calculate_delta(float cartesian[3]) {
  4731. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4732. - sq(delta_tower1_x-cartesian[X_AXIS])
  4733. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4734. ) + cartesian[Z_AXIS];
  4735. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4736. - sq(delta_tower2_x-cartesian[X_AXIS])
  4737. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4738. ) + cartesian[Z_AXIS];
  4739. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4740. - sq(delta_tower3_x-cartesian[X_AXIS])
  4741. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4742. ) + cartesian[Z_AXIS];
  4743. /*
  4744. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4745. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4746. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4747. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4748. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4749. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4750. */
  4751. }
  4752. #ifdef ENABLE_AUTO_BED_LEVELING
  4753. // Adjust print surface height by linear interpolation over the bed_level array.
  4754. void adjust_delta(float cartesian[3]) {
  4755. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4756. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4757. float h1 = 0.001 - half, h2 = half - 0.001,
  4758. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4759. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4760. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4761. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4762. z1 = bed_level[floor_x + half][floor_y + half],
  4763. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4764. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4765. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4766. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4767. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4768. offset = (1 - ratio_x) * left + ratio_x * right;
  4769. delta[X_AXIS] += offset;
  4770. delta[Y_AXIS] += offset;
  4771. delta[Z_AXIS] += offset;
  4772. /*
  4773. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4774. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4775. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4776. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4777. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4778. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4779. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4780. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4781. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4782. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4783. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4784. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4785. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4786. */
  4787. }
  4788. #endif // ENABLE_AUTO_BED_LEVELING
  4789. #endif // DELTA
  4790. #ifdef MESH_BED_LEVELING
  4791. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4792. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4793. {
  4794. if (!mbl.active) {
  4795. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4796. set_current_to_destination();
  4797. return;
  4798. }
  4799. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4800. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4801. int ix = mbl.select_x_index(x);
  4802. int iy = mbl.select_y_index(y);
  4803. pix = min(pix, MESH_NUM_X_POINTS - 2);
  4804. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  4805. ix = min(ix, MESH_NUM_X_POINTS - 2);
  4806. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  4807. if (pix == ix && piy == iy) {
  4808. // Start and end on same mesh square
  4809. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4810. set_current_to_destination();
  4811. return;
  4812. }
  4813. float nx, ny, ne, normalized_dist;
  4814. if (ix > pix && (x_splits) & BIT(ix)) {
  4815. nx = mbl.get_x(ix);
  4816. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4817. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4818. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4819. x_splits ^= BIT(ix);
  4820. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4821. nx = mbl.get_x(pix);
  4822. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4823. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4824. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4825. x_splits ^= BIT(pix);
  4826. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4827. ny = mbl.get_y(iy);
  4828. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4829. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4830. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4831. y_splits ^= BIT(iy);
  4832. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4833. ny = mbl.get_y(piy);
  4834. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4835. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4836. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4837. y_splits ^= BIT(piy);
  4838. } else {
  4839. // Already split on a border
  4840. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4841. set_current_to_destination();
  4842. return;
  4843. }
  4844. // Do the split and look for more borders
  4845. destination[X_AXIS] = nx;
  4846. destination[Y_AXIS] = ny;
  4847. destination[E_AXIS] = ne;
  4848. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4849. destination[X_AXIS] = x;
  4850. destination[Y_AXIS] = y;
  4851. destination[E_AXIS] = e;
  4852. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4853. }
  4854. #endif // MESH_BED_LEVELING
  4855. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4856. inline float prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  4857. float de = dest_e - curr_e;
  4858. if (de) {
  4859. if (degHotend(active_extruder) < extrude_min_temp) {
  4860. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4861. SERIAL_ECHO_START;
  4862. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  4863. return 0;
  4864. }
  4865. #ifdef PREVENT_LENGTHY_EXTRUDE
  4866. if (labs(de) > EXTRUDE_MAXLENGTH) {
  4867. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4868. SERIAL_ECHO_START;
  4869. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  4870. return 0;
  4871. }
  4872. #endif
  4873. }
  4874. return de;
  4875. }
  4876. #endif // PREVENT_DANGEROUS_EXTRUDE
  4877. void prepare_move() {
  4878. clamp_to_software_endstops(destination);
  4879. refresh_cmd_timeout();
  4880. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4881. (void)prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  4882. #endif
  4883. #ifdef SCARA //for now same as delta-code
  4884. float difference[NUM_AXIS];
  4885. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4886. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4887. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4888. if (cartesian_mm < 0.000001) { return; }
  4889. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  4890. int steps = max(1, int(scara_segments_per_second * seconds));
  4891. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4892. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4893. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4894. for (int s = 1; s <= steps; s++) {
  4895. float fraction = float(s) / float(steps);
  4896. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4897. calculate_delta(destination);
  4898. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4899. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4900. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4901. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4902. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4903. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4904. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  4905. }
  4906. #endif // SCARA
  4907. #ifdef DELTA
  4908. float difference[NUM_AXIS];
  4909. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4910. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4911. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4912. if (cartesian_mm < 0.000001) return;
  4913. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  4914. int steps = max(1, int(delta_segments_per_second * seconds));
  4915. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4916. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4917. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4918. for (int s = 1; s <= steps; s++) {
  4919. float fraction = float(s) / float(steps);
  4920. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4921. calculate_delta(destination);
  4922. #ifdef ENABLE_AUTO_BED_LEVELING
  4923. adjust_delta(destination);
  4924. #endif
  4925. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  4926. }
  4927. #endif // DELTA
  4928. #ifdef DUAL_X_CARRIAGE
  4929. if (active_extruder_parked) {
  4930. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  4931. // move duplicate extruder into correct duplication position.
  4932. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4933. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  4934. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4935. sync_plan_position();
  4936. st_synchronize();
  4937. extruder_duplication_enabled = true;
  4938. active_extruder_parked = false;
  4939. }
  4940. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  4941. if (current_position[E_AXIS] == destination[E_AXIS]) {
  4942. // This is a travel move (with no extrusion)
  4943. // Skip it, but keep track of the current position
  4944. // (so it can be used as the start of the next non-travel move)
  4945. if (delayed_move_time != 0xFFFFFFFFUL) {
  4946. set_current_to_destination();
  4947. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  4948. delayed_move_time = millis();
  4949. return;
  4950. }
  4951. }
  4952. delayed_move_time = 0;
  4953. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4954. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4955. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  4956. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4957. active_extruder_parked = false;
  4958. }
  4959. }
  4960. #endif // DUAL_X_CARRIAGE
  4961. #if !defined(DELTA) && !defined(SCARA)
  4962. // Do not use feedrate_multiplier for E or Z only moves
  4963. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  4964. line_to_destination();
  4965. }
  4966. else {
  4967. #ifdef MESH_BED_LEVELING
  4968. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  4969. return;
  4970. #else
  4971. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  4972. #endif // MESH_BED_LEVELING
  4973. }
  4974. #endif // !(DELTA || SCARA)
  4975. set_current_to_destination();
  4976. }
  4977. void prepare_arc_move(char isclockwise) {
  4978. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4979. // Trace the arc
  4980. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedrate_multiplier/60/100.0, r, isclockwise, active_extruder);
  4981. // As far as the parser is concerned, the position is now == target. In reality the
  4982. // motion control system might still be processing the action and the real tool position
  4983. // in any intermediate location.
  4984. set_current_to_destination();
  4985. refresh_cmd_timeout();
  4986. }
  4987. #if HAS_CONTROLLERFAN
  4988. millis_t lastMotor = 0; // Last time a motor was turned on
  4989. millis_t lastMotorCheck = 0; // Last time the state was checked
  4990. void controllerFan() {
  4991. millis_t ms = millis();
  4992. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4993. lastMotorCheck = ms;
  4994. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4995. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4996. #if EXTRUDERS > 1
  4997. || E1_ENABLE_READ == E_ENABLE_ON
  4998. #if HAS_X2_ENABLE
  4999. || X2_ENABLE_READ == X_ENABLE_ON
  5000. #endif
  5001. #if EXTRUDERS > 2
  5002. || E2_ENABLE_READ == E_ENABLE_ON
  5003. #if EXTRUDERS > 3
  5004. || E3_ENABLE_READ == E_ENABLE_ON
  5005. #endif
  5006. #endif
  5007. #endif
  5008. ) {
  5009. lastMotor = ms; //... set time to NOW so the fan will turn on
  5010. }
  5011. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5012. // allows digital or PWM fan output to be used (see M42 handling)
  5013. digitalWrite(CONTROLLERFAN_PIN, speed);
  5014. analogWrite(CONTROLLERFAN_PIN, speed);
  5015. }
  5016. }
  5017. #endif
  5018. #ifdef SCARA
  5019. void calculate_SCARA_forward_Transform(float f_scara[3])
  5020. {
  5021. // Perform forward kinematics, and place results in delta[3]
  5022. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5023. float x_sin, x_cos, y_sin, y_cos;
  5024. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5025. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5026. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5027. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5028. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5029. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5030. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5031. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5032. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5033. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5034. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5035. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5036. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5037. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5038. }
  5039. void calculate_delta(float cartesian[3]){
  5040. //reverse kinematics.
  5041. // Perform reversed kinematics, and place results in delta[3]
  5042. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5043. float SCARA_pos[2];
  5044. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5045. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5046. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5047. #if (Linkage_1 == Linkage_2)
  5048. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5049. #else
  5050. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5051. #endif
  5052. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5053. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5054. SCARA_K2 = Linkage_2 * SCARA_S2;
  5055. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5056. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5057. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5058. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5059. delta[Z_AXIS] = cartesian[Z_AXIS];
  5060. /*
  5061. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5062. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5063. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5064. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5065. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5066. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5067. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5068. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5069. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5070. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5071. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5072. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5073. SERIAL_ECHOLN(" ");*/
  5074. }
  5075. #endif
  5076. #ifdef TEMP_STAT_LEDS
  5077. static bool red_led = false;
  5078. static millis_t next_status_led_update_ms = 0;
  5079. void handle_status_leds(void) {
  5080. float max_temp = 0.0;
  5081. if (millis() > next_status_led_update_ms) {
  5082. next_status_led_update_ms += 500; // Update every 0.5s
  5083. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5084. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5085. #if HAS_TEMP_BED
  5086. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5087. #endif
  5088. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5089. if (new_led != red_led) {
  5090. red_led = new_led;
  5091. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5092. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5093. }
  5094. }
  5095. }
  5096. #endif
  5097. void enable_all_steppers() {
  5098. enable_x();
  5099. enable_y();
  5100. enable_z();
  5101. enable_e0();
  5102. enable_e1();
  5103. enable_e2();
  5104. enable_e3();
  5105. }
  5106. void disable_all_steppers() {
  5107. disable_x();
  5108. disable_y();
  5109. disable_z();
  5110. disable_e0();
  5111. disable_e1();
  5112. disable_e2();
  5113. disable_e3();
  5114. }
  5115. /**
  5116. * Manage several activities:
  5117. * - Check for Filament Runout
  5118. * - Keep the command buffer full
  5119. * - Check for maximum inactive time between commands
  5120. * - Check for maximum inactive time between stepper commands
  5121. * - Check if pin CHDK needs to go LOW
  5122. * - Check for KILL button held down
  5123. * - Check for HOME button held down
  5124. * - Check if cooling fan needs to be switched on
  5125. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5126. */
  5127. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5128. #if HAS_FILRUNOUT
  5129. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5130. filrunout();
  5131. #endif
  5132. if (commands_in_queue < BUFSIZE - 1) get_command();
  5133. millis_t ms = millis();
  5134. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill();
  5135. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5136. && !ignore_stepper_queue && !blocks_queued())
  5137. disable_all_steppers();
  5138. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5139. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5140. chdkActive = false;
  5141. WRITE(CHDK, LOW);
  5142. }
  5143. #endif
  5144. #if HAS_KILL
  5145. // Check if the kill button was pressed and wait just in case it was an accidental
  5146. // key kill key press
  5147. // -------------------------------------------------------------------------------
  5148. static int killCount = 0; // make the inactivity button a bit less responsive
  5149. const int KILL_DELAY = 750;
  5150. if (!READ(KILL_PIN))
  5151. killCount++;
  5152. else if (killCount > 0)
  5153. killCount--;
  5154. // Exceeded threshold and we can confirm that it was not accidental
  5155. // KILL the machine
  5156. // ----------------------------------------------------------------
  5157. if (killCount >= KILL_DELAY) kill();
  5158. #endif
  5159. #if HAS_HOME
  5160. // Check to see if we have to home, use poor man's debouncer
  5161. // ---------------------------------------------------------
  5162. static int homeDebounceCount = 0; // poor man's debouncing count
  5163. const int HOME_DEBOUNCE_DELAY = 750;
  5164. if (!READ(HOME_PIN)) {
  5165. if (!homeDebounceCount) {
  5166. enqueuecommands_P(PSTR("G28"));
  5167. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  5168. }
  5169. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5170. homeDebounceCount++;
  5171. else
  5172. homeDebounceCount = 0;
  5173. }
  5174. #endif
  5175. #if HAS_CONTROLLERFAN
  5176. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5177. #endif
  5178. #ifdef EXTRUDER_RUNOUT_PREVENT
  5179. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5180. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5181. bool oldstatus;
  5182. switch(active_extruder) {
  5183. case 0:
  5184. oldstatus = E0_ENABLE_READ;
  5185. enable_e0();
  5186. break;
  5187. #if EXTRUDERS > 1
  5188. case 1:
  5189. oldstatus = E1_ENABLE_READ;
  5190. enable_e1();
  5191. break;
  5192. #if EXTRUDERS > 2
  5193. case 2:
  5194. oldstatus = E2_ENABLE_READ;
  5195. enable_e2();
  5196. break;
  5197. #if EXTRUDERS > 3
  5198. case 3:
  5199. oldstatus = E3_ENABLE_READ;
  5200. enable_e3();
  5201. break;
  5202. #endif
  5203. #endif
  5204. #endif
  5205. }
  5206. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5207. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5208. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5209. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5210. current_position[E_AXIS] = oldepos;
  5211. destination[E_AXIS] = oldedes;
  5212. plan_set_e_position(oldepos);
  5213. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5214. st_synchronize();
  5215. switch(active_extruder) {
  5216. case 0:
  5217. E0_ENABLE_WRITE(oldstatus);
  5218. break;
  5219. #if EXTRUDERS > 1
  5220. case 1:
  5221. E1_ENABLE_WRITE(oldstatus);
  5222. break;
  5223. #if EXTRUDERS > 2
  5224. case 2:
  5225. E2_ENABLE_WRITE(oldstatus);
  5226. break;
  5227. #if EXTRUDERS > 3
  5228. case 3:
  5229. E3_ENABLE_WRITE(oldstatus);
  5230. break;
  5231. #endif
  5232. #endif
  5233. #endif
  5234. }
  5235. }
  5236. #endif
  5237. #ifdef DUAL_X_CARRIAGE
  5238. // handle delayed move timeout
  5239. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5240. // travel moves have been received so enact them
  5241. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5242. set_destination_to_current();
  5243. prepare_move();
  5244. }
  5245. #endif
  5246. #ifdef TEMP_STAT_LEDS
  5247. handle_status_leds();
  5248. #endif
  5249. check_axes_activity();
  5250. }
  5251. void kill()
  5252. {
  5253. cli(); // Stop interrupts
  5254. disable_all_heaters();
  5255. disable_all_steppers();
  5256. #if HAS_POWER_SWITCH
  5257. pinMode(PS_ON_PIN, INPUT);
  5258. #endif
  5259. SERIAL_ERROR_START;
  5260. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5261. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5262. // FMC small patch to update the LCD before ending
  5263. sei(); // enable interrupts
  5264. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5265. cli(); // disable interrupts
  5266. suicide();
  5267. while(1) { /* Intentionally left empty */ } // Wait for reset
  5268. }
  5269. #ifdef FILAMENT_RUNOUT_SENSOR
  5270. void filrunout() {
  5271. if (!filrunoutEnqueued) {
  5272. filrunoutEnqueued = true;
  5273. enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  5274. st_synchronize();
  5275. }
  5276. }
  5277. #endif
  5278. void Stop() {
  5279. disable_all_heaters();
  5280. if (IsRunning()) {
  5281. Running = false;
  5282. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5283. SERIAL_ERROR_START;
  5284. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5285. LCD_MESSAGEPGM(MSG_STOPPED);
  5286. }
  5287. }
  5288. #ifdef FAST_PWM_FAN
  5289. void setPwmFrequency(uint8_t pin, int val)
  5290. {
  5291. val &= 0x07;
  5292. switch(digitalPinToTimer(pin))
  5293. {
  5294. #if defined(TCCR0A)
  5295. case TIMER0A:
  5296. case TIMER0B:
  5297. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5298. // TCCR0B |= val;
  5299. break;
  5300. #endif
  5301. #if defined(TCCR1A)
  5302. case TIMER1A:
  5303. case TIMER1B:
  5304. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5305. // TCCR1B |= val;
  5306. break;
  5307. #endif
  5308. #if defined(TCCR2)
  5309. case TIMER2:
  5310. case TIMER2:
  5311. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5312. TCCR2 |= val;
  5313. break;
  5314. #endif
  5315. #if defined(TCCR2A)
  5316. case TIMER2A:
  5317. case TIMER2B:
  5318. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5319. TCCR2B |= val;
  5320. break;
  5321. #endif
  5322. #if defined(TCCR3A)
  5323. case TIMER3A:
  5324. case TIMER3B:
  5325. case TIMER3C:
  5326. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5327. TCCR3B |= val;
  5328. break;
  5329. #endif
  5330. #if defined(TCCR4A)
  5331. case TIMER4A:
  5332. case TIMER4B:
  5333. case TIMER4C:
  5334. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5335. TCCR4B |= val;
  5336. break;
  5337. #endif
  5338. #if defined(TCCR5A)
  5339. case TIMER5A:
  5340. case TIMER5B:
  5341. case TIMER5C:
  5342. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5343. TCCR5B |= val;
  5344. break;
  5345. #endif
  5346. }
  5347. }
  5348. #endif //FAST_PWM_FAN
  5349. bool setTargetedHotend(int code){
  5350. target_extruder = active_extruder;
  5351. if (code_seen('T')) {
  5352. target_extruder = code_value_short();
  5353. if (target_extruder >= EXTRUDERS) {
  5354. SERIAL_ECHO_START;
  5355. switch(code){
  5356. case 104:
  5357. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5358. break;
  5359. case 105:
  5360. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5361. break;
  5362. case 109:
  5363. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5364. break;
  5365. case 218:
  5366. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5367. break;
  5368. case 221:
  5369. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5370. break;
  5371. }
  5372. SERIAL_ECHOLN(target_extruder);
  5373. return true;
  5374. }
  5375. }
  5376. return false;
  5377. }
  5378. float calculate_volumetric_multiplier(float diameter) {
  5379. if (!volumetric_enabled || diameter == 0) return 1.0;
  5380. float d2 = diameter * 0.5;
  5381. return 1.0 / (M_PI * d2 * d2);
  5382. }
  5383. void calculate_volumetric_multipliers() {
  5384. for (int i=0; i<EXTRUDERS; i++)
  5385. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5386. }